

AVALIAÇÃO PRELIMINAR DOS RISCOS DE INUNDAÇÕES

REGIÃO HIDROGRÁFICA DO CÁVADO, AVE E LEÇA – RH2

Março 2019

FICHA TÉCNICA

Título: Avaliação Preliminar de Risco de Inundações RH2 - Cávado, Ave e Leça

Editor: Agência Portuguesa do Ambiente, I.P.

Coordenação: Departamento de Recursos Hídricos

Data de edição: Março de 2019

ÍNDICE GERAL

1. Introdução	9
1.1. Objetivos	9
1.2. Enquadramento legal e Institucional	11
1.3. Recomendações da Comissão Europeia para o 2.º Ciclo de Planeamento da Diretiva Inundações	12
2. Avaliação Preliminar de Risco de Inundação - 2.º Ciclo de Planeamento	15
2.1. Definições	15
2.2. Metodologia	15
2.3. Inundações de origem fluvial e/ou pluvial	17
2.3.1. Processo de recolha de informação, critérios e classificação	17
2.3.2. Critério para análise dos eventos de inundação	22
2.3.3. Alterações climáticas na avaliação preliminar de riscos	25
2.4. Inundações de origem costeira	28
2.4.1. Critérios, processo de recolha de informação	28
2.4.2. Seleção de eventos	30
2.4.3. Alterações climáticas	31
3. Avaliação Preliminar de Risco de Inundação para a Região Hidrográfica do Ave, cávado e leça – RH2	34
3.1. Caracterização da Região Hidrográfica	34
3.2. Identificação de ARPSI - 1.º Ciclo	50
3.3. Eventos reportados 2011-2018	52
3.4. Aplicação dos critérios definidos para a seleção de eventos fluviais e pluviais	54
3.5. Influência das alterações climáticas sobre o risco de inundações	55
3.6. Resultados e proposta de atualização das áreas com risco potencial significativo de inundação	58
4. Participação pública	60
5. Conclusão	62
6. Pibliografia	62

ÍNDICE DE FIGURAS

Figura 1. Fases de implementação da DAGRI (fonte: APA, 2016a)	10
Figura 2. Fontes de informação utilizada para validação dos dados reportados	20
Figura 3. Processamento da informação reportada para representação geográfica das ARPSI	25
Figura 4. Variações da precipitação média anual nos meses de verão, na região da Europa ocidental (fo ESPON Climate, 2013, atualização de 2011)	
Figura 5. Vulnerabilidade da zona costeira portuguesa à subida do nível das águas do mar (fonte: APA, 2016c)	33
Figura 6. Delimitação geográfica da RH2 (fonte: APA, 2016b)	35
Figura 7. Precipitação anual e média mensal nas bacias hidrográficas do Cávado, Ave e Leça (adaptado APA, 2018)	
Figura 8. Precipitação a anual média ponderada nas bacias do Cávado, Ave e Leça, em 64 anos (adapta de: APA, 2018)	
Figura 9. Carta de ocupação do solo para a RH2 (adaptado de: DGT, 2015)	40
Figura 10. Áreas ardidas em Portugal Continental nos anos de 2015, 2016 e 2017 (fonte: ICNF, 2018)	41
Figura 11. Distribuição espacial da população na RH3, por freguesias, (adaptado de: INE, 2011)	44
Figura 12. Distribuição espacial dos edifícios na RH2, por freguesias, (adaptado de: INE, 2011)	46
Figura 13. Instalações PCIP na RH2 (fonte: APA, 2016b)	47
Figura 14. Localização ETAR urbanas RH2 (fonte: APA, 2016b)	48
Figura 15. Localização dos regadios públicos existentes na RH2 (fonte: APA, 2016b)	49
Figura 16. Grandes barragens na RH2 (fonte: APA, 2016b)	50
Figura 17. ARPSI de Esposende da RH2 identificada no 1.º ciclo (fonte: APA, 2016a)	51
Figura 18. Exemplo de algumas imagens enviadas pelas entidades que preencheram o formulário	54
Figura 19. Anomalia das precipitações médias mensais na RH2 (%), cenários RCP 4.5 e RCP 8.5, para o conjunto de modelos climáticos - ensemble (adaptado de: Portal do Clima)	56
Figura 20.Número de dias com precipitação igual ou superior a 50 mm – normais climatológicas para a região do Ave, para o período de referência 1971-2000 simulado e simulação do cenário RCP4.5 e período 2041-2070 (fonte: Portal do Clima)	
Figura 21. Número de dias com precipitação igual ou superior a 50 mm – normais climatológicas para a região do Ave, para o período de referência 1971-2000 simulado e simulação do cenário RCP8.5 e período 2041-2070 (fonte: Portal do Clima)	
Figura 22. Número de dias com precipitação igual ou superior a 50 mm – normais climatológicas para a região do Cávado, para o período de referência 1971-2000 simulado e simulação do cenário RCP4.5 período 2041-2070 (fonte: Portal do Clima)	е
Figura 23. Número de dias com precipitação igual ou superior a 50 mm – normais climatológicas para a região do Cávado, para o período de referência 1971-2000 simulado e simulação do cenário RCP8.5 período 2041-2070 (fonte: Portal do Clima)	е
Figura 24. Proposta de ARPSI para a RH2	59
Figura 25. Participações públicas por Região Hidrográfica	60
Figura 26.Proposta de ARPSI para a RH2	62

ÍNDICE DE QUADROS

Quadro 1. Indicadores para a avaliação de impactos significativos	16
Quadro 2. Campos do formulário	17
Quadro 3. Indicadores selecionados para a avaliação de impactos significativos	20
Quadro 4. Indicadores relativos a população	21
Quadro 5. Indicadores relativos as atividades económicas	21
Quadro 6. Tipo de atividade económica	22
Quadro 7. T ipo de ambiente	22
Quadro 8. Património classificado	22
Quadro 9. Sub-bacias identificadas na RH2 (fonte: APA, 2016b)	36
Quadro 10. Percentis da precipitação anual nas bacias do Cávado, Ave e Leça (adaptado de: APA, 2018)	38
Quadro 11. Escoamento médio anual em regime natural na RH2 (fonte: APA, 2016b)	38
Quadro 12. Zonas afetadas na RH2 por cheias históricas (fonte: APA, 2016b)	39
Quadro 13. Distribuição percentual de áreas de classes de uso do solo na RH2 (fonte: DGT, 2015)	40
Quadro 14. Distribuição da área e da população por distrito e por concelho na RH2 (adaptado de: INE,	42
2011)	
Quadro 15. Distribuição dos edifícios por distrito e concelho na RH2 (adaptado de: INE, 2011)	
Quadro 16. Lista ARPSI 1.º ciclo (sistema de coordenadas PT-TM06/ETRS89) (fonte: APA, 2016a)	
Quadro 17. Eventos reportados na RH2	52
Quadro 18. Critérios aplicados aos eventos reportados	54
Quadro 19. Eventos selecionados na RH2	55
Quadro 20. Lista de ARPSI propostas para a RH2	58
Ouadro 21. Lista de ARPSI para a RH2	62

LISTA DE ACRÓNIMOS E SIGLAS

Acrónimos e siglas	Designação
ANMP	Associação Nacional de Municípios Portugueses
ANPC	Autoridade Nacional da Proteção Civil
ARH	Administração de Região Hidrográfica
APA	Agência Portuguesa do Ambiente
ARPI	Avaliação Preliminar dos Riscos de Inundações
ARPSI	Áreas de Risco Potencial Significativo de Inundação
APS	Associação Portuguesa de Seguros
CADC	Comissão para a Aplicação e o Desenvolvimento da Convenção
CAOP	Carta Administrativa Oficial de Portugal
CE	Comissão Europeia
CNGRI	Comissão Nacional da Gestão dos Riscos de Inundações
cos	Carta de Ocupação do Solo
DAGRI	Diretiva de Avaliação e Gestão dos Riscos de Inundações
DGT	Direção-Geral do Território
EM	Estado Membro
ENGIZC	Estratégia Nacional para a Gestão Integrada da Zona Costeira
ICNF	Instituto de Conservação da Natureza e Florestas
INE	Instituto Nacional de Estatística
IPCC	Intergovernmental Panel on Climate Change
IPMA	Instituto Português do Mar e da Atmosfera
PGRI	Plano de Gestão dos Riscos de Inundações
PGRH	Plano de Gestão de Região Hidrográfica
POC	Programa de Orla Costeira
RCP	Representative Concentration Pathways
REI	Regime de Emissões Industriais
REN	Reserva Ecológica Nacional
RH	Região Hidrográfica
RH1	Região Hidrográfica do Minho e Lima
RH2	Região Hidrográfica do Cávado, Ave e Leça
RH3	Região Hidrográfica do Douro
RH4A	Região Hidrográfica do Vouga, Mondego e Lis
RH5A	Região Hidrográfica do Tejo e Oeste
RH6	Região Hidrográfica do Sado e Mira
RH8	Região Hidrográfica do Algarve
SNCZI	Sistema Nacional de Cartografia de Zones Inundables
SNIRH	Sistema Nacional de Informação de Recursos Hídricos
SVARH	Sistema de Vigilância e Alerta de Recursos Hídricos
ZAC	Zonas Ameaçadas pelas Cheias

1. INTRODUÇÃO

1.1. Objetivos

A Diretiva n.º 2007/60/CE, de 23 de outubro, relativa à Avaliação e Gestão dos Riscos de Inundações (DAGRI), integra uma nova abordagem de avaliação de inundações e de gestão dos riscos associados, visando reduzir as consequências nefastas associadas às inundações para a saúde humana, o ambiente, o património cultural e as atividades económicas, na comunidade.

A DAGRI foi transposta para o direito nacional através do Decreto-Lei n.º 115/2010, de 22 de outubro, e define o procedimento associado aos ciclos de planeamento, estabelecendo no artigo 4.º a necessidade de realizar a Avaliação Preliminar dos Riscos de Inundações (APRI) para identificação das Áreas de Risco Potencial Significativo de Inundação (ARPSI), no artigo 6.º a elaboração de cartas de zonas inundáveis e de cartas de riscos de inundações relativas às zonas identificadas e, no artigo 7.º, a elaboração dos respetivos planos de gestão dos riscos de inundações. A mesma diretiva no ponto 1 do artigo 14.º refere que as ARPSI identificadas no 1.º ciclo deverão ser atualizadas até 22 de dezembro de 2018 e seguidamente de seis em seis anos.

A primeira fase do 1.º ciclo da aplicação da diretiva, ou seja a identificação das Zonas Críticas (ZC), entendidas como Áreas de Risco Potencial Significativo de Inundação (ARPSI), foi concluída em novembro de 2013, as respetivas cartas de zonas inundáveis e cartas de riscos de inundações, para as zonas identificadas, foram concluídas em 2015 (segunda fase) e os Planos de Gestão dos Riscos de Inundações - PGRI (APA, 2016a), organizados por Região Hidrográfica (RH), foram aprovados em 2016 através da Resolução de Conselho de Ministros n.º 51/2016, de 20 de setembro, retificada e republicado através da Declaração de Retificação n.º 22-A/2016, de 18 novembro (terceira fase). Em 2018 é necessário dar início aos trabalhos do 2.º ciclo de planeamento com a avaliação preliminar de riscos de inundação Figura 1.

O âmbito de aplicação da Diretiva n.º 2007/60/CE define como inundação "cobertura temporária por água de uma terra normalmente não coberta por água. Inclui as cheias ocasionadas pelos rios, pelas torrentes de montanha e pelos cursos de água efémeros mediterrânicos, e as inundações ocasionadas pelo mar nas zonas costeiras, e pode excluir as inundações com origem em redes de esgotos."

Neste sentido, as inundações a considerar no âmbito da DAGRI são aquelas que pelos seus efeitos negativos podem provocar a perda de vidas, a deslocação de populações, danos no ambiente e no património cultural, ser prejudiciais para a saúde humana, comprometer o desenvolvimento económico e prejudicar todas as atividades da comunidade.

Figura 1. Fases de implementação da DAGRI (fonte: APA, 2016a)

O objetivo deste relatório, tal como referido na Diretiva no ponto 1 do artigo 14.º, consiste em apresentar a reavaliação das ARPSI para Portugal Continental, dando-se início ao 2.º ciclo de implementação da mesma (2018-2022). Para o efeito procedeu-se a um levantamento exaustivo de eventos ocorridos desde dezembro de 2011 seguindo as linhas orientadoras definidas pela Comissão Europeia (CE) no âmbito do Grupo de Trabalho da DAGRI. Com efeito foram avaliados eventos de inundação de origem fluvial, integrando a gestão de infraestruturas hidráulicas associadas, inundações devido a episódios de precipitações intensas - inundações pluviais, as quais podem também conduzir a inundações fluviais especialmente em ribeiras de pequena magnitude, e ainda inundações de origem costeira, as quais podem ocorrer em simultâneo com as de origem fluvial.

Importa ainda salientar o disposto no Despacho n.º 11954/2018, de 12 de dezembro, que determina a necessidade de revisão dos PGRI para o período 2022-2027.

A proposta de identificação de ARPSI agora apresentada, por região hidrográfica e para Portugal Continental, consiste na proposta aprovada na Comissão de Gestão de Riscos de Inundações (**CNGRI**), em reunião de 26 de setembro de 2018, tendo por base a análise de toda a informação recolhida sobre eventos de inundação e a avaliação dos riscos associados. Esta proposta foi colocada a consulta pública, através do sítio de internet da Agência Portuguesa do Ambiente, I.P. (APA), em www.apambiente.pt e na plataforma de partição pública "Participa" em http://participa.pt/. Foi também apresentada na Reunião do Conselho de Região Hidrográfica que decorreu durante o período de participação pública.

1.2. Enquadramento legal e Institucional

Do ponto de vista legal e institucional importa salientar como documentos mais determinantes os seguintes:

- Diretiva n.º 2000/60/CE, do Parlamento Europeu e do Conselho, de 23 de Outubro de 2000, que estabelece o quadro comunitário de atuação no âmbito das políticas da água;
- Lei n.º 58/2005, de 29 de dezembro, que transpõe a Diretiva Quadro da Água;
- Diretiva n.º 2007/60/CE, do Parlamento Europeu e do Conselho, de 23 de outubro de 2007, relativa à avaliação e gestão dos riscos de inundação;
- Decreto-Lei n.º 166/2008, alterado e republicado pelo Decreto-Lei n.º 239/2012, de 2 de novembro, com a redação do seu artigo 20.º dada pelo artigo 21.º do Decreto-Lei n.º 96/2013, de 19 de julho, relativo ao regime jurídico da Reserva Ecológica Nacional (REN), constituindo uma estrutura biofísica que integra áreas com valor e sensibilidade ecológicos ou expostas e com suscetibilidade a riscos naturais. É uma restrição de utilidade pública que condiciona a ocupação, o uso e a transformação do solo a usos e ações compatíveis com os seus objetivos;
- Estratégia Nacional para a Gestão Integrada da Zona Costeira (ENGIZC), que foi aprovada pela Resolução de Conselho de Ministros n.º 82/2009, de 8 de Setembro.
- Decreto-Lei n.º 115/2010, de 22 de outubro de 2010, que transpõe a Diretiva da Avaliação e Gestão dos Riscos de Inundação;
- Decreto-lei n.º 159/2012, de 24 de julho, que regula a elaboração e a implementação dos programas de ordenamento da orla costeira, adiante designados por POC, e estabelece o regime sancionatório aplicável às infrações praticadas na orla costeira, no que respeita ao acesso, circulação e permanência indevidos em zonas interditas e respetiva sinalização;
- Lei n.º 31/2014, de 30 de maio, Lei de Bases Gerais de Política Pública de Solos, de Ordenamento do Território e de Urbanismo;
- Decreto-Lei n.º 80/2015 de 14 de maio, que aprova o Regime Jurídico dos Instrumentos de Gestão Territorial.

O Decreto-Lei n.º 115/2010, de 22 de outubro, determina no artigo 4.º a criação da Comissão Nacional da Gestão dos Riscos de Inundações - CNGRI, destinada a acompanhar a implementação da DAGRI e que funcionará "junto da Autoridade Nacional da Água". A CNGRI integra, atualmente, as seguintes entidades, com funções específicas:

- APA, enquanto Autoridade Nacional da Água, é a instituição que preside às reuniões, integrando também representantes dos seus departamentos regionais, Administração de Região Hidrográfica;
- Um representante da Autoridade Nacional de Proteção Civil (ANPC);
- Um representante da Direção-Geral do Território (DGT);
- Um representante da entidade com atribuições no planeamento e gestão da água na Região Autónoma dos Açores;
- Um representante da entidade com atribuições no planeamento e gestão da água na Região Autónoma dos Madeira;
- Um representante da Associação Nacional de Municípios Portugueses (ANMP).

A CNGRI dispõe de competências próprias legalmente estabelecidas no artigo 4.º do Decreto-Lei n.º115/2010, de 22 de Outubro, que contempla o apoio à APA no desenvolvimento das diferentes fases de implementação da DAGRI: Avaliação Preliminar dos Riscos de Inundações, elaboração das Cartas de Zonas Inundáveis para Áreas de Risco, Cartas de Riscos de Inundações e dos Planos de Gestão dos Riscos de Inundações (PGRI), emissão de pareceres nas Zonas Inundáveis e de Risco, bem como a elaboração de propostas nas Zonas Densamente Povoadas em que o risco não deve ser desvalorizado. A CNGRI funciona em plenário, sendo as suas deliberações tomadas nas reuniões ordinárias, que ocorrem em princípio duas vezes por ano.

Ao longo desta primeira fase do segundo ciclo de implementação da DAGRI a CNGRI tem vindo a acompanhar ativamente os procedimentos em curso tendo a metodologia adotada para a identificação e seleção das ARPSI assim como a proposta agora apresentada sido aprovada em reunião plenária da CNGRI.

1.3. Recomendações da Comissão Europeia para o 2.º Ciclo de Planeamento da Diretiva Inundações

Ao longo do primeiro ciclo de implementação da diretiva das inundações foram muitas as questões metodológicas que se colocaram e para as quais foi necessário encontrar as soluções mais adequadas. Este processo beneficiou largamente da boa cooperação entre os Estados Membro (EM) envolvidos assim como do acompanhamento de todo o processo desenvolvido pela CE, quer ao longo das reuniões do grupo de trabalho da diretiva inundações o qual inclui todos os EM, quer através de ações de avaliação do curso dos trabalhos desenvolvidos em cada EM. Neste contexto são produzidas pela CE análises críticas e avaliações de cada uma das etapas de desenvolvimento, para cada EM, nas quais são dadas indicações que sejam consideradas pertinentes para uma mais eficiente implementação futura da diretiva.

Durante o ano de 2018 e estando já em curso os trabalhos finais de identificação de ARPSI em todos os EM, a CE desenvolveu um relatório de avaliação de todo o primeiro ciclo, tendo em vista principalmente estabelecer referências para a implementação do segundo ciclo, cuja primeira etapa será concluída em dezembro de 2018, com a listagem de ARPSI e em março de 2019, com o reporte geográfico de toda a informação associada a estas. Este relatório da CE, do qual não foi ainda apresentada versão final, além da análise dos procedimentos e resultados de cada EM, inclui também indicações relevantes para o desenvolvimento dos ciclos de implementação futuros e que devem ser já tidos em conta no segundo ciclo, inclusive no procedimento de identificação e reavaliação de ARPSI.

As apreciações finais não são no entanto particularmente dirigidas a cada um dos EM mas visam antes abranger todas as questões que foram entendidas como mais pertinentes e para as quais a CE pretende seja dada particular atenção no desenvolvimento dos ciclos de implementação futuros:

- As inundações de origem pluvial, subterrânea ou costeira, devem ser consideradas nos procedimentos de APRI, sempre que consideradas relevantes;
- É importante assegurar que todos os procedimentos de implementação dos procedimentos previstos na Diretiva das Inundações, APRI, cartografia e PGRI, se refiram entre si e que sejam continuamente disponibilizados, de forma acessível, a todo o público;
- A definição de medidas de redução de risco deve privilegiar medidas de planeamento de uso do solo e/ou de medidas de renaturalização (medidas verdes);
- As medidas definidas nos PGRI para cada uma das ARPSI devem ter ordem de prioridades assente numa avaliação da relação custo-benefício das mesmas;
- As alterações climáticas devem assumir maior relevância na avaliação de riscos de inundações;
- Devem ser considerados mecanismos adicionais que assegurem o envolvimento ativo das partes interessadas (stakeholders), como por exemplo o recurso a painéis ou grupos de aconselhamento (advisory boards);
- Os períodos de consulta pública devem ser alargados e simultâneos para todas as unidades de gestão territorial consideradas no desenvolvimento dos PGRI.

No caso de Portugal, será dada atenção particular a cada um dos aspetos atrás referidos sendo que, no contexto da APRI, estão já a ser implementadas metodologias que se considera traduzirem significativas melhorias nos procedimentos de identificação e avaliação de zonas de risco, em relação ao primeiro ciclo. As alterações climáticas têm vindo a ser incorporadas na avaliação dos riscos, encaradas como riscos futuros, sendo estes aspetos ainda a ser incorporados no desenvolvimento das etapas seguintes de implementação

da diretiva, nomeadamente na elaboração da cartografia de risco de inundações e também no desenvolvimento dos planos de gestão de risco de inundação (PGRI).

Assim, ao longo do processo de APRI em curso foram analisados eventos de inundação independentemente da sua causa, pluvial, fluvial, costeira ou outra. Face a estes, a identificação de ARPSI foi determinada pela significância dos eventos e riscos de recorrência e não da origem destes.

Ao longo de todo o processo de identificação de ARPSI, têm vindo a ser envolvidas não apenas as entidades que se encontram representadas na CNGRI, mas também outras entidades regionais e locais, nomeadamente autarquias, com as quais se desenvolveu um processo de troca de informação ao longo do ano de 2018, quer através de reuniões especificamente realizadas para o efeito através das Comunidades Intermunicipais, quer através da disponibilização de uma plataforma *online* para reporte de informação sobre eventos de inundação, quer ainda através de múltiplos contactos diretos entre a APA, outros membros da CNGRI e as autarquias que mais se envolveram neste processo.

Esta interação com as designadas partes envolvidas conduziu ao resultado agora apresentado para consulta pública com a qual se pretende assegurar a máxima transparência nesta fase de implementação da diretiva e principalmente, potenciar a participação de todas as pessoas e entidades envolvidas, de uma forma ou de outra, na problemática do risco de inundações.

2. AVALIAÇÃO PRELIMINAR DE RISCO DE INUNDAÇÃO - 2.º CICLO DE PLANEAMENTO

2.1. Definições

São vários os tipos de inundações que ocorrem no território nacional: inundações de origem fluvial, cheias repentinas, inundações pluviais e inundações marítimas em zonas costeiras. Os danos causados pelas inundações variam no território, dependendo da sua ocupação quer em termos populacionais, quer em atividades. A origem da maioria das inundações em Portugal é fluvial ou de origem múltipla como fluvial e pluvial.

Inundação fluvial. Fenómeno gerado pela ocorrência de precipitação durante vários dias ou semanas, por fenómenos intensos durante um curto período de tempo, ou pelo rápido degelo de massas de gelo, resultando no alagamento das áreas circundantes, com impacto na sua ocupação. A inundação fluvial pode ainda resultar da falha de uma estrutura de defesa, tal como um dique ou uma barragem.

Inundação pluvial - Resultam de eventos de precipitação intensa que saturam o sistema de drenagem, passando o excesso de água a fluir para as ruas e estruturas próximas.

Inundações repentinas – Inundações causadas pelo rápido aumento do nível da água em riachos, rios ou outros cursos de água, normalmente leitos secos, ou em áreas urbanas, geralmente como resultado de chuvas intensas numa área relativamente pequena ou de chuvas moderadas a intensas sobre superfícies terrestres impermeáveis, ocorrendo geralmente dentro de minutos a várias horas do evento de precipitação.

Inundação costeira. Fenómeno gerado pela subida temporária do nível do mar acima da amplitude normal da maré devido à ocorrência em simultâneo ou pontualmente de sobre elevação marítima, ondas, ventos ou *tsunamis*, levando ao galgamento da linha de costa e à inundação de zonas geralmente secas.

2.2. Metodologia

A Diretiva das Inundações, conforme se descreve nos capítulos anteriores, prevê que em cada ciclo de implementação, a cada 6 anos, seja realizada a **Avaliação Preliminar dos Riscos de Inundações (APRI)**, tendo em conta as seguintes etapas:

Etapa 1 — Levantamento e análise dos eventos de inundações ocorridos desde o início do ciclo anterior até ao presente;

Etapa 2 — Reanálise das Áreas de Risco Potencial Significativo de Inundações (ARPSI) identificadas no ciclo anterior;

Etapa 3 – Definição de novas ARPSI.

A realização da Etapa 1 inclui a caracterização de inundações quer sobre o seu mecanismo, origem, quer no que respeita aos impactos negativos significativos nos quatro recetores definidos na diretiva: População, Ambiente, Atividades Económicas e Turismo. A análise da informação recolhida é realizada tendo em conta os indicadores apresentados no 0, que mediante a aplicação de um sistema de ponderação permitem classificar os eventos relativamente à severidade dos seus impactos negativos.

A avaliação realizada na Etapa 1 é também o suporte para verificar se existem ocorrências de inundações que demonstrem necessidade de alterar as ARPSI do ciclo anterior. As alterações podem ser de diferentes tipos: extensão, redução, eliminação, divisão ou agregação (Etapa 2). Simultaneamente permitem verificar a necessidade de definir novas ARPSI (Etapa 3).

Na fase de avaliação preliminar de risco de inundação é ainda possível definir ARPSI que resultam de inundações sem impactos significativos conhecidos, mas com uma probabilidade não nula de produzirem consequências adversas significativas, caso voltem a ocorrer – eventos futuros. O risco associado a eventuais alterações climáticas poderá ser um dos aspetos que permite suportar a existência de eventos futuros. No Quadro 1 está identificada a lista de critérios definidos no âmbito da implementação comum.

Quadro 1. Indicadores para a avaliação de impactos significativos

Indicadores
Número de residentes potencialmente afetados pela extensão da cheia na planície de inundação
Valor/área de propriedades afetadas (residencial e não residencial)
Número de edifícios potencialmente afetados (residenciais e não residenciais)
Potenciais danos em infraestruturas
Danos excedem um limite específico (área)
Potenciais impactos em massas de água
Potenciais impactos em indústrias que possam causar acidentes de poluição
Potenciais impactos em campos agrícolas
Potenciais impactos em atividades económicas
Potenciais impactos em patrimónios ou áreas protegidas
Período de recorrência
Período de recorrência combinado com o uso do solo
Altura de água ou profundidade
Velocidade da água
Se as cheias ocorreram no passado
Sistemas de ponderação específicos definidos para avaliar a significância
Análise pericial (fundamentação)
Outro (descrição e fundamentação)

2.3. Inundações de origem fluvial e/ou pluvial

2.3.1. Processo de recolha de informação, critérios e classificação

Recolha de informação junto das autoridades locais e nacionais com competência em gestão de eventos de inundações

No seguimento do estabelecido em sede da CNGRI, relativamente ao envolvimento dos municípios através das Comunidades Municipais (CIM), foram realizadas 5 reuniões, realizadas em Vila Nova de Gaia, em Santarém, em Beja, em Coimbra e em Lisboa envolvendo representantes de todas as Comunidades Intermunicipais do Continente, bem como dos Municípios que quiseram estar presentes. Nas reuniões realizadas, tendo por estratégia abranger todos os municípios, a agenda da reunião foi comum, tendo-se procedido à descrição da DAGRI salientando os seus objetivo e estratégia e o procedimento que Portugal pretende seguir neste 2.º ciclo. Destacou-se o procedimento para a recolha e transmissão de informação sobre eventos ocorridos, através de um formulário desenvolvido sob o *google form*, para que todos os intervenientes incluíssem os mesmos dados e que estes fossem o mais homogéneo possível e passíveis de comparação.

A recolha de informação de base para a APRI foi assim realizada através da disponibilização de um formulário para preenchimento *online*. A estrutura do formulário obedece ao esquema publicado pela Comissão para as ARPSI, que de uma forma resumida incluía a caracterização do evento de inundação; a sua propagação e os seus impactos negativos. O período de tempo considerado para a recolha dos eventos de inundações situa-se entre dezembro de 2011 até 2018, e a sua estrutura compreende os campos indicados no Quadro 2.

Quadro 2. Campos do formulário

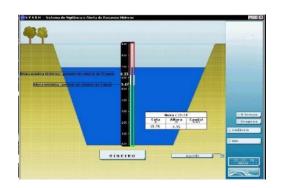
Campos Formulário	Opções preenchimento		
Secção 1 de 6			
Data evento			
Duração do evento (dias)			
Frequência do evento			
Municípios mais afetados			
Nome do rio			
	RH1 – Minho e Lima		
	RH2 – Ave, Cávado e Leça		
	RH3 – Douro		
Região Hidrográfica	RH4A – Vouga, Mondego e Lis		
Regiao Hidrografica	RH5A – Tejo e Ribeiras do Oeste		
	RH6 – Sado e Mira		
	RH7 - Guadiana		
	RH8 – Ribeiras do Algarve		
Origam da shaia	A11 – Fluvial		
Origem da cheia	A12 – Pluvial		

Campos Formulário	Opções preenchimento
	A13 – Subterrânea
	A14 – Costeira
	A15 – Rutura de Infraestruturas
	A16 – Outro
	A17 – origem desconhecida
	A18 – Incerteza sobre a origem da cheia
	Forte precipitação
	Deficiente Drenagem
Causa	Descargas de barragens nacionais
Causa	Descargas de barragens de Espanha
	Subida do rio
	Outra opção
	Inundação natural - Transbordo do leito normal
	Galgamento de infraestrutura de defesa
	Falha de infraestrutura de defesa
Mecanismo da Inundação	Bloqueio ou singularidades no leito do rio (estreitamento, curvas, cotovelos) que
	impedem o escoamento normal
	Outra
	Rápida
	Lenta
	Intermédia
Tipo de inundação	Arraste de sedimentos
	Degelo
	Outra
Limite da inundação	(adicionar ficheiro)
Secção 2 de 6 – Impacto na po	
	Até 10
	10 a 30
Número de pessoas afetadas	30 a 50
	50 a 100
	Mais de 100
Número de desalojados	
Número de mortos	
	Escolas
	Hospitais
Serviços afetados	Outros serviços públicos
	Redes viárias
	Outras
	VH – Muito Alto
	H – Alto
Grau de impacto na	M – Médio
população	L – Baixo
	I – Insignificante
	U – Desconhecido
Secção 3 de 6 – Impactos econ	
	Até 30 000€
	30 000€ a 50 000€
Prejuízos	50 000€ a 100 000€
	100 0005 - 500 0005
	100 000€ a 500 000€ Elevados, mas não contabilizados

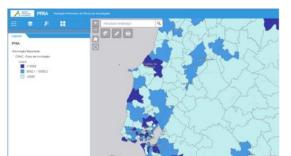
Campos Formulário	Opções preenchimento		
	Reduzidos		
	Outros		
Atividades económicas afetadas	B41 – Propriedade privada		
	B42 – Infraestruturas		
	B43 – Campos agrícolas		
	B44 – Indústrias e outras atividades económicas		
	Outra		
	Baixo		
Impacto nas atividades	Médio		
económicas	Elevado		
	Muito elevado		
Secção 4 de 6 – Impacto ambie	ntal		
	B21 – Massa de água		
	B22 – Área protegida		
Impacto no ambiente	Fontes de poluição afetadas		
	Indústrias que podem causar acidentes de poluição		
	Outras		
Secção 5 de 6 – Impacto no Tu	rismo / Património		
	Hotéis		
Estruturas afetadas	Termas		
Estruturas aretauas	Património classificado		
	Outras		
	Baixo		
Prejuízos Turismo	Médio		
/Património	Elevado		
	Outras		
Secção 6 de 6			
	Número de residentes potencialmente afetados		
Critério para a seleção do	Edifícios potencialmente afetados		
local	Potenciais impactos agrícolas		
local	Potenciais danos em infraestruturas		
	Outra		
Localização (Município, freguesias)			
Documentos de suporte à seleção	(adicionar ficheiro)		

Foram carregados na plataforma *online* 306 formulários distribuídas pelas oito Regiões Hidrográficas em Portugal Continental.

Análise e processamento da informação recolhida


A análise da informação iniciou-se com a validação dos dados reportados no formulário, recorrendo ao cruzamento com outras fontes de informação e bases de dados da Autoridade Nacional de Proteção Civil (ANPC), do Sistema Nacional de Informação de Recursos Hídricos (SNIRH) e informação disponibilizada pela Associação Portuguesa de Seguros (APS), imagens de satélite COPERNICUS e ainda notícias publicadas em jornais, Figura 2. A análise de consistência da informação reportada foi realizada através da agregação de




campos do formulário com conteúdos equivalentes (por exemplo: "Origem: Pluvial"; "Causa: subida do rio"). Deste modo foi possível corrigir as inconsistências e melhorar a informação reportada.

O tratamento da informação permitiu aumentar a qualidade dos dados reportados e eliminar informação espúria, o que resultou num conjunto de 306 eventos de inundação, que passaram à fase de classificação quanto à severidade dos seus impactos.

SNIRH

COPERNICUS

Informação da Associação Portuguesa de Seguros

Base de dados de registo de ocorrências da Autoridade Nacional de Proteção Civil

Figura 2. Fontes de informação utilizada para validação dos dados reportados

Critério para a classificação da severidade dos impactos dos eventos

Após a validação dos dados reportados foram selecionados os indicadores que se apresentavam mais completos, com informação relevante para a formulação do critério de classificação da severidade dos impactos. Os indicadores selecionados estão descritos no Quadro 3.

Quadro 3. Indicadores selecionados para a avaliação de impactos significativos

	Indicadores selecionados
•	Número de residentes potencialmente afetados pela extensão da cheia na planície de inundação
•	Potenciais danos em infraestruturas
•	Potenciais impactos em massas de água
•	Potenciais impactos em indústrias que possam causar acidentes de poluição

- Potenciais impactos em campos agrícolas
- Potenciais impactos em atividades económicas
- Potenciais impactos em patrimónios ou áreas protegidas
- Período de recorrência
- Se as cheias ocorreram no passado

Os indicadores selecionados foram agregados por recetor: população, atividades económicas, ambiente e património classificado e estabeleceram-se diferentes classes, que foram valoradas desde o efeito insignificante da cheia até um prejuízo muito elevado. E por uma questão de tratamento dos dados foi atribuído um valor quantitativo.

Em relação à **população**, considerou-se o número de pessoas afetadas e o impacto na população, tendo sido estabelecidas 5 classes que foram valoradas de 1 a 5 conforme representado no Quadro 4.

Quadro 4. Indicadores relativos a população

Impacto na População (A)	Escala
Insignificante	1
Baixo	2
Médio	3
Elevado	4
Muito Elevado	5

Número de pessoas afetadas (B)	Escala
< 10	1
10 a 30	2
30 a 50	3
50 a 100	4
> 100	5

O impacto das inundações nas atividades económicas foi diferenciado em 4 classes, tendo sido valoradas de 1 a 4. Os prejuízos provocados pelas inundações nas atividades económicas foram agrupados, tendo-se diferenciado em 6 classes, valorados de 1 a 6, conforme representado no Quadro 5.

Quadro 5. Indicadores relativos as atividades económicas

Impacto nas atividades económicas (C)	Escala
Baixo	1
Médio	2
Elevado	3
Muito Elevado	4

Prejuízos (D)	Escala
< 30 000 €	1
30 000 a 50 000 €	2
50 000 a 100 000 €	3
100 000 a 500 000 €	4
500 000 a 1 000 000 €	5
> 1 000 000 €	6

Em relação às **atividades económicas**, considerou-se o tipo de atividades afetadas, os prejuízos resultantes e o impacto nas atividades económicas. No âmbito do tipo de atividades económicas, seguindo a terminologia da Diretiva, e as características do território consideraram-se 4 tipo de atividades, Quadro 6.

Quadro 6. Tipo de atividade económica

Tipo de atividade económica			
B41	Propriedade privada		
B42	Infraestruturas		
B43	Campos agrícolas		
B44	Indústrias e outras atividade económicas		

Em relação ao **ambiente**, seguindo a terminologia da Diretiva foi considerado o tipo de ambiente passível de ser afetado e atendendo à informação reportada consideraram-se 3 classes, Quadro 7.

Quadro 7. Tipo de ambiente

Tipo de ambiente		
B21	Massa de água	
B22	Áreas protegidas	
B23	Fontes de poluição	

Em relação ao **património classificado**, atendendo à Diretiva, estabeleceu-se que este seria integrado referindo-se apenas se seria afetado ou não e tendo sido atribuído o valor 1 ao património afetado e ao património não afetado (Quadro 8), tendo em vista a sua ponderação na identificação das zonas a selecionar.

Quadro 8. Património classificado

Impacto em património		
Afetado	1	
Não afetado	0	

2.3.2. Critério para análise dos eventos de inundação

Na formulação do critério foi atribuída igual ponderação aos 4 fatores – Impacto na população (A), Número de pessoas afetadas (B), Impacto nas atividade económicas (C) e Prejuízos (D), através da disjunção de condições de superação de limites considerados gravosos para os recetores:

- Impacto na população alto (valor 4, segundo a classificação apresentada);
- Número de pessoas afetadas 50 a 100 (valor 4, segundo a classificação apresentada);
- Impacto nas atividades económicas elevado (valor 3, a classificação apresentada);
- Prejuízos 500 000 a 1 000 000 Euros (valor 5, segundo a classificação apresentada).

Resultando na fórmula

$$(A >= 4) \ V (B >= 4) \ V (C >= 3) \ V (D >= 5)$$

Foram ainda analisados os eventos que, por ausência de informação nos 4 fatores, não verificavam as condições acima, mas que apresentavam impactos significativos no Ambiente e no Património. A aplicação do critério acima descrito aos 306 eventos analisados resultou em **122 eventos** finais.

Análise espacial dos eventos finais

A Avaliação Preliminar de Risco de Inundações que culminou na seleção de 122 eventos ao nível das oito Regiões Hidrográficas, pressupõe a sua representação espacial e, assim, ficam identificadas as Áreas de Risco Potencial Significativo de Inundações — ARPSI. A representação espacial pode configurar apenas um ponto, uma linha ou um polígono, dependendo da informação disponível. Esta análise teve em conta a seguinte informação:

- Municípios e freguesias afetados;
- Indicação do nome do rio;
- Shapefiles com área inundadas;
- Imagens das zonas inundadas;
- População afetada;
- Notícias;
- Cartografia de Zonas Ameaçadas por Cheias (ZAC) da Reserva Ecológica Nacional (REN);
- Estudos sobre cheias.

Adicionalmente foi associada a informação geográfica nacional, disponível nas bases de dados geográficas da Agência Portuguesa do Ambiente, I.P e de outras entidades:

- Rede hidrográfica nacional à escala 1: 25 000, APA¹;
- Classificação decimal 1: 250 000, DGRAH (1981)²;
- Modelo Digital do Terreno de base do IST/INAG, com resolução espacial de 25 metros, APA
- Carta de Ocupação do Solo COS 2015 V1³ DGT (2015);
- Bacias hidrográficas nacionais⁴ e internacionais, APA⁵;

¹ https://sniambgeoportal.apambiente.pt/geoportal/catalog/search/resource/details.page?uuid={254DB56D-4B52-4D77-8397-80CE53915353}

² https://sniambgeoportal.apambiente.pt/geoportal/catalog/search/resource/details.page?uuid={05260294-10AC-4AEA-B9C7-03E2E33819C8}

http://snig.dgterritorio.pt/geoportal/catalog/search/resource/detailsPretty.page?uuid=%7B5ED54FDD-62E9-40AC-A988-8A9C387DF1FE%7D

⁴ https://sniambgeoportal.apambiente.pt/geoportal/catalog/search/resource/details.page?uuid={44069241-1C3B-455A-A026-64B50E137B8A

https://sniambgeoportal.apambiente.pt/geoportal/catalog/search/resource/details.page?uuid={978FF2AE-A9AC-44BA-AA8B-1EEDF1B4C90B}

- Carta Administrativa Oficial de Portugal (CAOP), delimitação e demarcação das circunscrições administrativas do País – CAOP 2011⁶ e 2017⁷, DGT (2011 e 2017);
- Estatística da população, Censos 2011, (INE, 2011);
- Cartografia de zonas inundáveis e de risco de inundações de Portugal, 1.ciclo de implementação da DAGRI, APA⁸;
- Cartografia de zonas inundáveis de Espanha, SNCZI Ministério para la Transición Ecológica⁹;
- Áreas Ardidas, ICNF (2018).

O tratamento da informação geográfica disponível e dos metadados dos eventos foi realizado de acordo com esquema da Figura 3.

O Tratamento descrito conduziu à agregação espacial de alguns eventos, à delimitação de linhas, de pontos, à extensão de ARPSI do ciclo anterior de implementação da diretiva, resultando num total a nível das 8 Regiões Hidrográficas de 58 ARPSI.

 $^{^{6}\} http://www.dgterritorio.gov.pt/static/repository/2013-07/2013-07-11123811\ b511271f-54fe-4d21-9657-24580e9b7023\$$922F69B2-9A14-45A4-AF84-AF5C6F384C2A\$$4647A9CA-16BD-417D-A61D-DE65D6662866\$\$file\$\$pt\$\$1.pdf$

 $^{^{7} \}underline{\text{http://snig.dgterritorio.pt/geoportal/catalog/search/resource/detailsPretty.page?uuid=\%7B5ED54FDD-62E9-40AC-A988-8A9C387DF1FE\%7D} \\$

⁸ https://sniambgeoportal.apambiente.pt/geoportal/catalog/search/resource/details.page?uuid={AD1A2D0A-0057-43BF-8BEA-72EAB7AD6171}

⁹ https://sig.mapama.gob.es/snczi/visor.html?herramienta=DPHZI

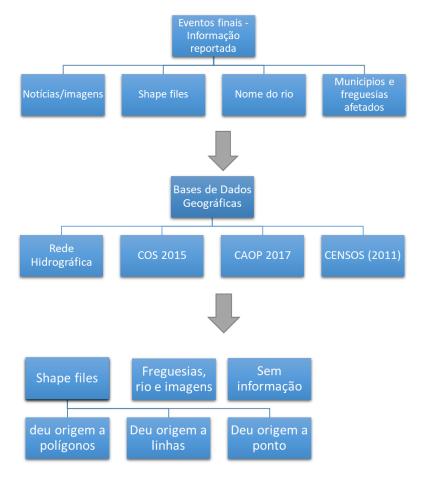


Figura 3. Processamento da informação reportada para representação geográfica das ARPSI

2.3.3. Alterações climáticas na avaliação preliminar de riscos

No preâmbulo da Diretiva n.º 2007/60/CE é expresso o facto de que as alterações climáticas contribuem para um aumento da probabilidade de ocorrência de inundações e do respetivo impacto negativo, sendo igualmente referida a necessidade de serem tidas em consideração os efeitos prováveis das alterações climáticas na ocorrência das inundações no desenvolvimento dos planos de gestão de risco de inundação.

Em consonância, o artigo 4.º da diretiva determina que a avaliação preliminar de riscos de inundação deverá ter em conta o impacto das alterações climáticas no contexto da avaliação das potenciais consequências prejudiciais das futuras inundações para a saúde humana, o ambiente, o património cultural e as atividades económicas (alínea d), do ponto 2 da Diretiva n.º 2007/60/CE). Igualmente e no ponto 4 do artigo 14.º é estabelecido que o reexame da avaliação preliminar de riscos de inundação (atualmente em curso e traduzido no presente relatório) deverá ter em consideração o impacto provável das alterações climáticas.

De acordo com os cenários de emissão de carbono descritos no 5.º Relatório de Avaliação (AR5) do *Intergovernmental Panel on Climate Change* (IPCC, 2013) os riscos associados ao fenómeno das alterações

climáticas na Península Ibérica estão fortemente associados a aumentos da temperatura média anual, que em função dos cenários considerados podem atingir valores superiores a 3.ºC na maior parte do território nacional, bem como a reduções da precipitação média anual associada a mudanças significativas dos padrões de distribuição da precipitação mensal e interanula, Figura 4.

De facto e no que se refere à precipitação, segundo os estudos de simulação climática que têm vindo a ser desenvolvidos pela comunidade científica internacional, parte destes com resultados concentrados nos sítios de internet da iniciativa EURO-CORDEX (https://www.euro-cordex.net/) e do IPCC (https://www.ipcc.ch/), é de admitir, em Portugal Continental, uma tendência de diminuição da precipitação média em todo o território. Esta diminuição poderá ser associada a uma redução da precipitação média mensal durante os meses de verão e outono e um aumento relativo da precipitação nos meses de inverno (entre dezembro e fevereiro). Estas alterações podem vir a ter um impacte mais significativo nas regiões do sul do país, onde quer a distribuição da precipitação ao longo do ano quer as precipitações totais anuais são já hoje mais desfavoráveis do que na região norte.

As alterações nos padrões de precipitação mensal podem também vir a condicionar a operação de barragens, tendo em conta que os correspondentes caudais afluentes deverão acompanhar as alterações no padrão de precipitação. Esta situação pode resultar em dificuldades acrescidas na gestão de infraestruturas hidráulicas, tendo em conta a necessidade de ser garantida a capacidade de regulação de cheias, e assim minimizar eventuais riscos de inundação.

A tendência de concentração da precipitação em períodos mais curtos deverá traduzir-se também num aumento da frequência de eventos extremos, com ocorrência de precipitações intensas mais frequentes (diminuição dos períodos de retorno) e eventualmente de maior intensidade. Esta situação representa riscos acrescidos quer no contexto das inundações de origem pluvial, por insuficiências nos sistemas de drenagem urbana para fazer face a estes eventos, quer das inundações fluviais, por insuficiente capacidade de drenagem nas linhas ou eventuais dificuldades na gestão de infraestruturas hidráulicas a montante.

Deve ser aliás referido que, os aumentos de precipitação média mensal que se admite venham a verificar-se no futuro nos meses de dezembro de fevereiro serão em grande medida determinados por aumento da frequência de eventos extremos ou seja, de um maior número de ocorrência de precipitações elevadas concentradas em períodos curtos. Este efeito pode ser traduzido no número de dias em que se verifica precipitação elevada (e.g. superiores a 20 ou 50 mm).

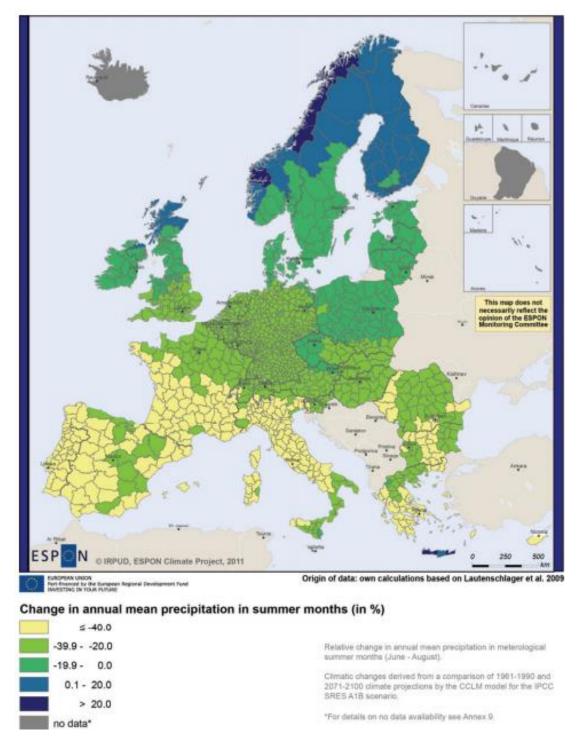


Figura 4. Variações da precipitação média anual nos meses de verão, na região da Europa ocidental (fonte: ESPON Climate, 2013, atualização de 2011)

Em Portugal e tendo como objetivo a disseminação de séries históricas e de alterações climáticas a nível regional assim como de indicadores climáticos para setores específicos em Portugal, foi desenvolvido pelo Instituto Português do Mar e da Atmosfera (IPMA) o Portal do Clima (www.portaldoclima.pt), assente no processamento de dados climáticos recolhidos a partir das projeções do IPPC (projeto CORDEX). Os dados

disponíveis através do referido portal permitem caracterizar cenários de alteração do clima nas várias regiões de Portugal Continental de acordo com os resultados de múltiplos conjuntos de modelos climáticos.

Ainda que se reconheça que a incerteza associada à caracterização dos cenários de alterações climáticas é ainda significativa, existe um significativo consenso da relevância que os impactes das alterações climáticas representam no contexto do estudo das cheias e inundações em Portugal Continental. Por esta razão estes potenciais impactes foram também considerados na análise de toda a informação referente a eventos de inundação recolhida durante o ano de 2018. Neste contexto é de referir em particular o caso das inundações de origem costeira, cujo processo de identificação de ARPSI traduz também os riscos associados à subida do nível do mar.

Assim e ao longo do processo em curso de avaliação preliminar de riscos de inundações os riscos de aumento da frequência e de intensidade de eventos já ocorridos foram também considerados na avaliação realizada para identificação do conjunto de ARPSI identificadas.

Pela mesma razão o procedimento de delimitação das zonas de risco de inundação terá que ter em linha de conta os correspondentes riscos acrescidos de inundação, em frequência e intensidade. Para esse efeito, entre os cenários de simulação a implementar para cada uma das ARPSI agora identificadas serão incluídos cenários de alterações climáticas, de acordo com a melhor informação disponível.

No entanto a magnitude e a frequência das inundações não dependem apenas de fatores meteorológicos e climáticos, mas também são influenciadas por outros parâmetros ambientais e humanos. Por exemplo, mudanças na morfologia da seção dos rios, o assoreamento dos cursos de água, o estado da conservação da galeria ripícola, as alterações do uso do solo, ou a maior incidência de incêndios florestais influenciam o escoamento e a capacidade de drenagem dos fluxos de cheias. Ora estes são aspetos que vão sendo modificados ao longo do tempo como resultado da influência da mudança climática ou de fatores de desenvolvimento social ou económico, pelo que qualquer mudança neles afetará diretamente o perigo de inundações.

2.4. Inundações de origem costeira

2.4.1. Critérios, processo de recolha de informação

A ARPSI das zonas costeiras com risco de galgamento e inundação foi desenvolvida recorrendo aos dados de base existentes, nomeadamente: registo de ocorrências por observação direta no terreno nas áreas com histórico confirmado (limitadas ou não por obras de proteção/defesa costeira), estudos de caracterização no âmbito dos Planos de Ordenamento/Programas da Orla Costeira (POC), estudos técnicos específicos e projetos realizados no âmbito de intervenções de proteção/defesa costeira, publicações existentes no meio

académico e científico e informação produzida no âmbito de projetos/estudos prévios de monitorização local/regional (e.g. APA/ARH Tejo 2010-2013).

A seleção dos locais foi efetuada com base na informação acima referida, com enfoque nas zonas de litoral baixo e arenoso, com tendência erosiva instalada e défice sedimentar, limitada por sistemas dunares com maior vulnerabilidade e menor robustez morfológica e áreas urbanas protegidas por obras de defesa costeira (e.g. obras longitudinais aderentes, paredões) com frequência e histórico representativos deste fenómeno.

O registo de ocorrências no terreno foi recentemente otimizado através da criação de plataforma *online* (via PC ou *smartphone*) (https://monitsiarl.apambiente.pt), a qual permite o registo e comunicação em tempo real deste tipo de ocorrências, contando com mais de 240 utilizadores registados entre as entidades com responsabilidades nesta matéria (APA, ARH, Autarquias, SM Proteção Civil, Autoridade Marítima).

Os estudos de caracterização dos POC incluem uma análise dos fatores climáticos e físicos relevantes para os riscos costeiros de Portugal Continental e consideram também os aspetos dinâmicos da vulnerabilidade costeira, em resultado das alterações climáticas e dos cenários evolutivos definidos para o território nacional.

A avaliação foi realizada para os horizontes temporais de 2050 e 2100, tendo sido incluídos os efeitos associados às alterações climáticas, particularmente no que diz respeito à subida do nível médio do mar. Foi, também, considerado o potencial de recuo "instantâneo" do perfil de uma praia (e da linha de costa) quando atuado por um temporal extremo, com períodos de retorno diferentes e ainda a evolução futura da linha de costa associada a tendência de longo termo, com base na evolução observada nos últimos 50 anos.

O galgamento e a inundação costeira são entendidos como a concretização da condição de submersão por água marinha, episódica ou duradoura (durante um intervalo de várias horas), de elementos da faixa costeira que habitualmente se encontram a seco. A cota máxima alcançada pela superfície livre do mar no domínio em estudo (cota de máximo espraio) depende, em cada ponto da linha de costa e em cada momento, da soma das seguintes componentes verticais:

- (i) Nível do mar, determinado pela maré astronómica, acrescido da sobre-elevação meteorológica;
- (ii) *Run-up*, que inclui o *wave set-up* (empilhamento de água junto à costa) induzido pela presença de ondas de vento e o espraio das ondas.

Todas as componentes que contribuem para o galgamento aumentam de importância durante eventos de tempestade, com exceção da maré astronómica, crescendo com o aumento da respetiva intensidade. As condições mais favoráveis à ocorrência de galgamento reúnem-se quando existe coincidência temporal entre um pico de intensidade da agitação marítima e uma preia-mar de águas vivas equinocial. A probabilidade de

ocorrência conjunta de valores muito elevados de todas as variáveis acima consideradas é muito pequena e tanto mais pequena quanto mais extremos forem os valores.

O cálculo do recuo, o qual irá influenciar a delimitação da componente de galgamento e inundação, baseouse na determinação das variáveis:

- (i) Profundidade na rebentação;
- (ii) Altura na rebentação;
- (iii) Sobrelevação meteorológica; e,
- (iv) Largura do perfil ativo para cada um dos temporais identificados.

2.4.2. Seleção de eventos

As ocorrências de fenómenos de galgamento e inundação variam significativamente ao longo do país, face aos valores naturais presentes, situações de risco, geomorfologia costeira, práticas de gestão e condições de forçamento oceanográfico e meteorológico.

A seleção das zonas costeiras a integrar nesta APRI considerou ainda os seguintes critérios:

- N.º e frequência de ocorrências;
- Existência de aglomerado urbano/área predominantemente artificializada;
- Suscetibilidade do sistema (morfologia e geomorfologia);
- Área associada a erosão costeira/existência de obras de proteção costeira.

Troço Costeiro Caminha - Espinho

Este troço desenvolve-se ao longo de cerca de 144 km desde a foz do estuário do rio Minho até ao limite concelhio a norte da barrinha de Esmoriz, com uma orientação preferencial NNW-SSE. Trata-se de um troço costeiro talhado em arribas baixas, muito recortada, com escolhos e leixões frequentes e pontuada por praias encaixadas e em baía, com extensão longilitoral, encaixe e exposição variáveis. Constituem exceção os sistemas de barreira que limitam a embocadura de estuários (e.g. Minho, Âncora, Lima, Cávado, Ave e Douro) onde efeitos locais de inversão da deriva mantêm restingas arenosas enraizadas a sul (Andrade, 2006).

As áreas de maior vulnerabilidade à erosão e galgamento/inundação, e subsequente risco, localizam-se nas frentes edificadas de Moledo do Minho, Amorosa a Castelo do Neiva, São Bartolomeu do Mar, Ofir, Apúlia, Aguçadoura, Árvore a Mindelo, Granja e Paramos (Veloso-Gomes, 2007).

Em janeiro e fevereiro de 2014, na sequência dos eventos erosivos e de galgamento/inundação associados às tempestades Hércules e Stephanie (APA, 2014), registaram-se uma série de ocorrências numa série de locais (e.g. Moledo, V.P. de Âncora, Castelo do Neiva, Belinho, Mar, Ofir, Pedrinhas/Apúlia, Cedovém, Estela, Mindelo, Angeiras, Lavadores/Salgueiros, Salgueiros/Madalena, Madalena/Francelos, Francelos/Miramar), que se traduziram em danos nos passadiços de acesso à praia, destruição de sistemas de proteção dunar, danos pontuais em equipamentos/apoios de praia e danos localizados em infraestruturas de proteção/defesa costeira.

2.4.3. Alterações climáticas

As alterações climáticas e os impactes resultantes são um problema relevante que se coloca a médio e a longo prazo à gestão da zona costeira e, em particular, à gestão dos riscos associados. Os principais efeitos das alterações climáticas no risco de erosão nas zonas costeiras são os seguintes:

- Elevação do nível médio das águas do mar, incluindo as marés meteorológicas;
- Alteração dos padrões de tempestuosidade (número de temporais por decénio, intensidade, rumos, direções de ventos, agitação e persistência);
- Modificação de caudais fluviais (líquidos e sólidos).

As zonas costeiras apresentam elevada suscetibilidade a estes efeitos atendendo a que os respetivos sistemas naturais são frágeis e relativamente debilitados por ações antrópicas, fatores que diminuem a capacidade de resiliência dos mesmos. Pode prever-se a possibilidade de ocorrência mais frequente de tempestades mais intensas bem como de um défice sedimentar generalizado acompanhado de uma agitação marítima muito energética o que propiciará uma situação generalizada de erosão (migração de praias para o interior) e maior vulnerabilidade nas planícies costeiras de baixa altitude. As dificuldades de previsão das condições de evolução correspondentes aos cenários exigem medidas de precaução do seguinte tipo:

- Monitorização adequada e acompanhamento de evolução da situação;
- Melhoria dos conhecimentos nomeadamente a partir de simulações de comportamentos com base nos cenários de alterações climáticas;
- Planeamento de medidas de adaptação que possam acompanhar a evolução da situação.

A costa portuguesa Continental estende-se ao longo de cerca de 987 km, concentra cerca de 75% da população nacional e é responsável pela geração de 85% do produto interno bruto. Mais de 30% da linha de costa é considerada área protegida com estatuto legal e integrada na Rede Nacional de Áreas Protegidas, valor que atinge praticamente 50% se forem igualmente consideradas as áreas que integram a Rede Natura

2000. Aproximadamente 25% da orla costeira Continental é afetada por erosão costeira. Regista-se tendência erosiva ou erosão confirmada em cerca de 232 km, sendo de referir a existência de um risco potencial de perda de território em 67% da orla costeira. Como causas principais de erosão apontam-se a artificialização das bacias hidrográficas, a expansão urbana, a construção de infraestruturas como vias de comunicação e outras, a interrupção do transporte de sedimentos ao longo da costa devido a construção de portos, estruturas de defesa costeira como esporões, dragagens e exploração de inertes.

Os processos erosivos poderão ser agravados pelos efeitos das alterações climáticas, designadamente pela subida mais rápida do nível do mar e da ocorrência mais frequente de fortes temporais.

Embora os valores médios de elevação anual sejam da ordem de 1,5 mm e pareçam ser, em primeira análise, desprezáveis, não o são de facto. Pequenas variações persistentes do nível médio do mar induzem, com frequência, grandes modificações nas zonas ribeirinhas (e.g. em zonas estuarinas e lagunares e em zonas costeiras de baixa altitude). Compreende-se melhor a amplitude do problema, quando se tem em atenção o conhecimento (nomeadamente através da análise dos maregramas das estações de Cascais e de Lagos) de que o nível médio do mar em Portugal se encontra, atualmente, quase 20 cm acima da posição que ocupava no início do século XIX.

A Figura 5 ilustra a vulnerabilidade da zona costeira portuguesa à subida do nível das águas do mar (APA, 2016c).

Para o período de 2014-2020 a prioridade estratégica nacional centrar-se-á essencialmente no investimento dirigido à proteção do litoral e das suas populações, especialmente nas áreas identificadas como mais vulneráveis face a fenómenos erosivos, complementando as intervenções realizadas em áreas prioritárias. A identificação das áreas a intervir, assim como as principais medidas a apoiar, estão alinhadas com os instrumentos de política pública nesta matéria, como sejam:

- i. A Estratégia Nacional para a Gestão Integrada da Zona Costeira;
- ii. Os Planos de Ordenamento da Orla Costeira/Programas da Orla Costeira;
- iii. O Plano de Ação Litoral XXI, que prevê um conjunto de intervenções prioritárias, com vista a assegurar a salvaguarda de pessoas e bens face aos riscos inerentes à dinâmica da faixa costeira.

Figura 5. Vulnerabilidade da zona costeira portuguesa à subida do nível das águas do mar (fonte: APA, 2016c)

3. AVALIAÇÃO PRELIMINAR DE RISCO DE INUNDAÇÃO PARA A REGIÃO HIDROGRÁFICA DO AVE, CÁVADO E LEÇA – RH2

3.1. Caracterização da Região Hidrográfica

A RH2, com uma área total de 3 585 km², integra as bacias hidrográficas dos rios Cávado, Ave e Leça e as bacias hidrográficas das ribeiras de costa, incluindo as respetivas águas subterrâneas e águas costeiras adjacentes.

A RH2 engloba, total ou parcialmente 28 concelhos sendo que 9 estão totalmente englobados na RH e 19 estão parcialmente abrangidos.

O rio **Cávado** nasce na Serra do Larouco a uma altitude de cerca de 1520 metros, percorrendo aproximadamente 129 km na direção geral Este – Oeste até à foz, em Esposende. A área abrangida pela bacia hidrográfica do rio Cávado é de 1699 km², dos quais cerca de 256 km² e 248 km² correspondem, respetivamente às sub-bacias dos afluentes mais importantes: na margem direita, o rio Homem, com um comprimento de 45 km, que nasce na Serra do Gerês e drena uma área de 256 km²; na margem esquerda, o rio Rabagão, com um comprimento de 37 km, que nasce entre as serras do Barroso e Larouco e drena uma área de 248 km². Incluem-se naquela área as superfícies das bacias das ribeiras costeiras a Norte (20 km²) e a Sul (50 km²), bem como a região de Tourém com cerca de 15 km².

O rio **Ave** nasce na Serra da Cabreira, a cerca de 1200 m de altitude, no Pau da Bela, percorrendo cerca de 85 km até desaguar no Oceano Atlântico, a sul de Vila do Conde. Os seus principais tributários são na sua margem esquerda o rio Vizela, que drena uma área de 340 km² e, na margem direita, o rio Este que drena uma área de 247 km². A bacia hidrográfica do rio Ave confronta a Norte com a bacia hidrográfica do rio Cávado, a Oriente com a bacia hidrográfica do rio Douro e a Sul com a bacia hidrográfica do rio Leça. Ocupa uma área de 1 391 km², dos quais cerca de 247 km² e 340 km² correspondem, respetivamente, às áreas das bacias dos seus dois afluentes mais importantes: os rios Este e Vizela. As faixas costeiras a norte e a sul drenam uma área de 3,4 km² e 64 km², respetivamente.

O rio **Leça** nasce no Monte de Santa Luzia a cerca de 420 metros de altitude, percorrendo 48 km até à sua foz no Oceano Atlântico. Os principais tributários do rio Leça são a ribeira do Arquinho e a ribeira de Leandro, ambos afluentes da margem direita. A bacia hidrográfica do rio Leça é confrontada a Norte pela bacia hidrográfica do rio Ave e a Oriente e Sul com a bacia hidrográfica do rio Douro, e tem uma área de cerca de 185 km². As faixas costeiras a Norte e a Sul têm 26km² e 24 km² de superfície, respetivamente.

A Figura 6 apresenta a delimitação geográfica da RH2.

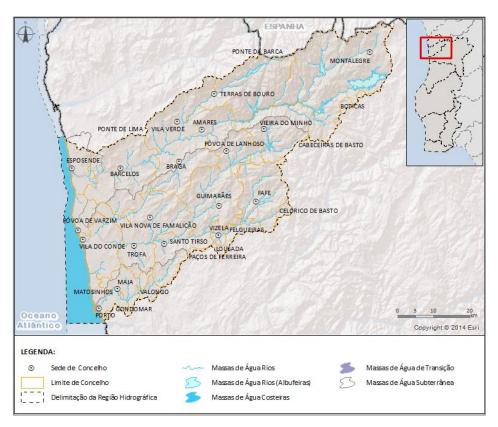


Figura 6. Delimitação geográfica da RH2 (fonte: APA, 2016b)

Caracterização biofísica

O clima da RH2 resulta, não só da sua posição geográfica e proximidade ao Oceano Atlântico, como também da forma e disposição dos principais conjuntos montanhosos do noroeste de Portugal. Uma parte significativa da região (correspondente aos setores de jusante e intermédio e às áreas expostas a barlavento do setor de montante) insere-se numa vasta região de clima de tipo marítimo, fachada atlântica.

De acordo com critérios simples de classificação, o clima na RH2 varia entre fresco, húmido e muito chuvoso nos setores de montante e temperado, húmido e moderadamente chuvoso na faixa litoral. A região abrangida pela bacia hidrográfica do rio Cávado apresenta valores da precipitação média anual que variam entre 900 e 4 200 mm. Observa-se uma tendência para a precipitação diminuir progressivamente de montante para jusante, registando-se valores inferiores a 1 500 mm anuais junto à costa da bacia. A parte do setor de montante da bacia do rio Cávado, correspondente à serra do Larouco insere-se numa região de clima do tipo Continental, acentuado pela posição topográfica.

A região abrangida pela bacia hidrográfica do rio Ave apresenta valores da precipitação média anual que variam entre 900 e 3 900 mm. As precipitações mais elevadas ocorrem na região da serra da Cabreira, onde se observam precipitações médias anuais variando entre 2 700 e 3 900 mm anuais. Existe uma tendência para a precipitação diminuir progressivamente de montante para jusante, ao longo da bacia hidrográfica,

registando-se valores inferiores a 1 500 mm anuais nas zonas próximas da foz do rio Ave. A região abrangida pela bacia hidrográfica do rio Leça apresenta valores da precipitação média anual que variam entre os 900 e os 2 400 mm, localizando-se os valores mais elevados na região próxima da nascente do rio Leça. À medida que se caminha para a foz regista-se uma diminuição progressiva dos valores. A área da RH2 abrange, em praticamente toda a sua extensão, formações geológicas correspondentes aos afloramentos graníticos das montanhas do noroeste de Portugal. No setor de montante da bacia hidrográfica do Cávado, entre Montalegre e a albufeira de Paradela, na margem direita do rio Cávado, destaca-se uma importante área de rochas do Complexo Gnaissomigmatítico, composto por micaxistos, gnaisses e migmatitos que se estendem até ao limite da bacia.

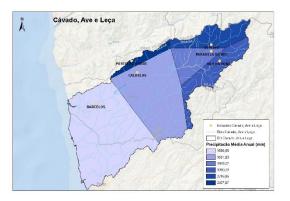
Na bacia hidrográfica do rio Cávado a importância da tectónica, traduzida pela fraturação que o maciço apresenta, encontra expressão morfológica nos numerosos vales de traçado retilíneo existentes na bacia. São exemplos o próprio rio Cávado e os rios Homem e Rabagão com direção ENE-OSO, os afluentes da margem direita, rios Cabril e Caldo no troço montanhoso, e rios Prado e Grande no setor de jusante apresentando direção N-S. É o caso típico de um padrão de drenagem condicionado pela estrutura, designado por padrão em "crina".

Na bacia do rio Ave a importância da tectónica, traduzida pela fracturação que o maciço apresenta, encontra expressão morfológica no vale alinhado do rio Leça, segundo a direção predominante NE-SO no setor intermédio e de montante, entre a nascente e a confluência com a ribeira do Arquinho, afluente da margem direita do rio Leça.

Massas de água

A delimitação das massas de água é um dos pré-requisitos para aplicação dos mecanismos da DQA, tendo sido efetuada no âmbito do Plano de Gestão de Região Hidrográfica em vigor. Estão incluídas na RH2, 69 massas de água naturais (60 massas de água da categoria rios, 4 de transição e 1 costeiras), 17 fortemente modificadas, 1 artificial e 4 massas de água subterrânea. São consideradas 3 sub-bacias hidrográficas que integram as principais linhas de água afluentes aos rios Cávado Neiva, Ave, Leça e ainda as bacias costeiras associadas a pequenas linhas de água que drenam diretamente para o Oceano Atlântico. O Quadro 9 apresenta a denominação das sub-bacias assim como as áreas e os concelhos total ou parcialmente abrangidos. De referir que foram apenas considerados os concelhos nos quais a bacia da massa de água ocupa mais de 5% da área do concelho.

Quadro 9. Sub-bacias identificadas na RH2 (fonte: APA, 2016b)



Sub-bacias	Área (km²)	Concelhos abrangidos	N.º massas de água
Cávado e costeiras entre o Neiva e o Cávado	1611	Amares, Barcelos, Boticas, Braga, Caminha, Esposende, Montalegre, Póvoa do Lanhoso, Terras de Bouro, Vieira do Minho e Vila Verde.	46
Ave e costeiras entre o Cávado e o Ave	1460	Barcelos, Braga, Celorico de Basto, Fafe, Felgueiras, Guimarães, Lousada, Paços de Ferreira, Póvoa do Lanhoso, Póvoa de Varzim, Santo Tirso, Trofa, Vieira do Minho, Vila do Conde, Vila Nova de Famalicão e Vizela	32
Leça e Costeiras entre o Ave e o Leça	291	Maia, Matosinhos, Porto, Santo Tirso, Trofa, Valongo e Vila do Conde	5

Caracterização da precipitação

A precipitação média anual nas bacias do Cávado, Ave e Leça é muito elevada, sendo uma das regiões do país com precipitação mais elevada, que varia entre 1540 mm e 2370 mm, ver Figura 7, (APA, 2018). Destaca-se a precipitação elevada no alto e médio Cávado anual e mensal. Relativamente à distribuição da precipitação ao longo do ano hidrológico, o segundo trimestre é o mais pluvioso, destacam-se os meses de dezembro e janeiro como os mais pluviosos. Nos meses de dezembro e janeiro registam-se os valores mais elevados de precipitação diária (APA, 2018).

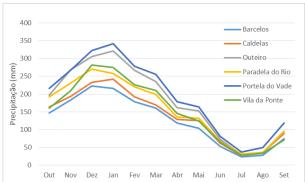


Figura 7. Precipitação anual e média mensal nas bacias hidrográficas do Cávado, Ave e Leça (adaptado de: APA, 2018)

A observação da precipitação média anual ponderada em 64 anos mostra uma tendência para decréscimo na precipitação anual, com maior incidência na última década, Figura 8. Pode, ainda, observar-se que os últimos anos têm-se caracterizado por anos secos essencialmente secos, Quadro 10.

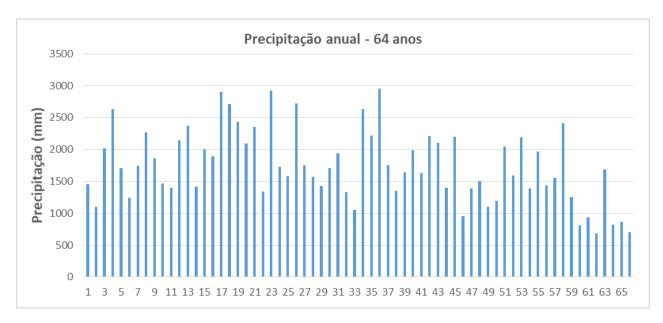


Figura 8. Precipitação a anual média ponderada nas bacias do Cávado, Ave e Leça, em 64 anos (adaptado de: APA, 2018)

Quadro 10. Percentis da precipitação anual nas bacias do Cávado, Ave e Leça (adaptado de: APA, 2018)

Percentis	Ano Seco (P20)	Ano Médio (P50)	Ano Húmido (P80)
Precipitação anual (mm)	1286	1708,7	2213,9

Escoamento

A distribuição anual média do escoamento, que decorre essencialmente da distribuição da precipitação anual média, é caracterizada por uma grande variabilidade do escoamento mensal, a qual está presente também nas diferentes bacias hidrográficas. O Quadro 11 apresenta os valores anuais de escoamento em regime natural.

Quadro 11. Escoamento médio anual em regime natural na RH2 (fonte: APA, 2016b)

	Escoamento médio anual (m³)					
Bacia/região/continente	80% (ano húmido)	50% (ano médio)	20% (ano seco)			
Cávado	2 837 086 000	2 106 877 000	1 424 179 000			
Ave	1 808 751 000	1 295 388 000	833 078 000			
Leça	163 683 000	113 825 000	68 101 000			
Costeiras entre o Neiva e o Douro	135 533 000	90 779 000	53 785 000			
RH2	4 945 053 000	3 606 869 000	2 379 144 000			

<u>Inundações</u>

Para a RH2 e de acordo com os eventos identificados no primeiro ciclo de planeamento resume-se no Quadro 12 as zonas em que, reconhecidamente, se verificaram cheias históricas com danos patrimoniais e humanos significativos.

Quadro 12. Zonas afetadas na RH2 por cheias históricas (fonte: APA, 2016b)

Bacia do rio Cávado	Bacia do rio Ave	Bacia do rio Leça
Zona ribeirinha da cidade de Esposende	Troço do Rio Ave na sua passagem entre os aglomerados urbanos de Sande e Riba de Ave, troço do Rio Selhe na sua passagem entre os aglomerados urbanos de Aldão e Selhe e a ribeira da Costa na sua passagem por Guimarães Troço do Rio Este na sua passagem entre os aglomerados urbanos de Arnoso e Gondifelos, troço do Rio Guizando na sua passagem entre os aglomerados urbanos de Oliveira e Arnoso e troço do rio Pelhe na sua passagem entre os aglomerados urbanos de Telhado e Eriz	Zonas ribeirinhas na área urbana da Maia
	Zona ribeirinha da cidade de Trofa	
	Zona ribeirinha da cidade de Vila do Conde	

Ocupação do solo

A Carta de Ocupação do Solo (COS) de 2015 é fundamental para a determinação do grau de vulnerabilidade do território face a um evento de inundação, tendo por base a obtenção do seu impacto nos 4 recetores da diretiva das inundações: população, ambiente, património cultural e atividades económicas. Assim, na análise de risco são considerados os usos associados a estes recetores.

Com base na COS de 2015, conclui-se que a RH2 revela um predomínio das áreas de florestas e agricultura e território artificializados, Figura 9. O território artificializado representa 17 % da área total, a agricultura 26 % e a floresta 35%, Quadro 13. Esta região hidrográfica apresenta uma área superior a 50% com revestimento arbóreo arbustivo, o que grosso modo irá atenuar as inundações devido este coberto potenciar a retenção (infiltração e interceção) da precipitação em detrimento do escoamento superficial.

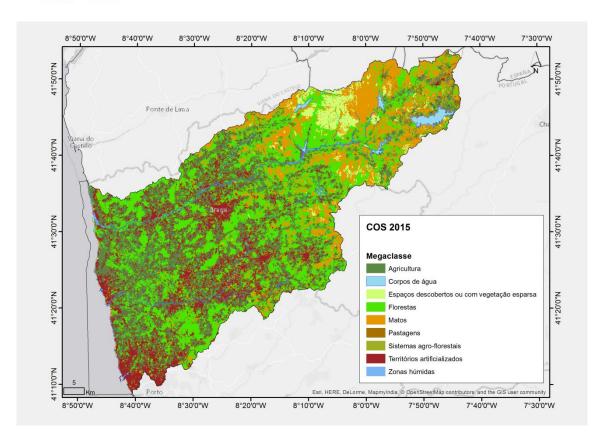


Figura 9. Carta de ocupação do solo para a RH2 (adaptado de: DGT, 2015)

Quadro 13. Distribuição percentual de áreas de classes de uso do solo na RH2 (fonte: DGT, 2015)

Classe de uso do solo	%	Área (km²)
Agricultura	26%	873,41
Corpos de água	2%	52,31
Espaços descobertos ou com vegetação esparsa	4%	119,17
Florestas	35%	1173,17
Matos	16%	548,36
Pastagens	1%	31,55
Sistemas agro-florestais	0%	0,24
Territórios artificializados	17%	560,26
Zonas húmidas	0%	1,05

Incêndios

Os incêndios florestais constituem um dos principais obstáculos à sustentabilidade da floresta e dos ecossistemas que lhe estão associados. Ao destruírem o coberto vegetal interferem fortemente com o ramo terrestre do ciclo hidrológico, contribuindo, assim, para o aumento do escoamento superficial em detrimento da infiltração o que se traduz, na potenciação do aumento das inundações e seus efeitos prejudiciais. Nesta

RH, de acordo com a informação disponibilizada pelo ICNF (2018), em 2015 e 2016 registou-se uma área ardida significativa e com menor expressão em 2017, Figura 10.

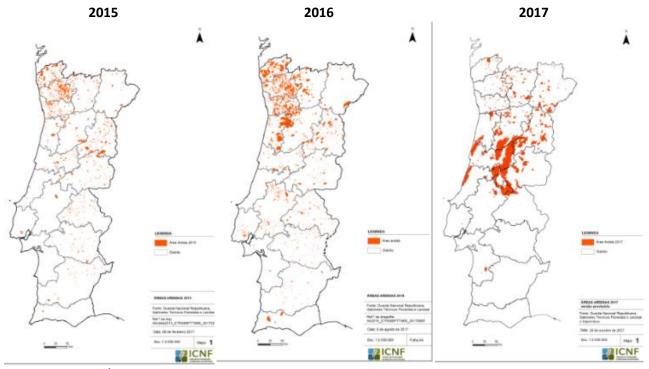


Figura 10. Áreas ardidas em Portugal Continental nos anos de 2015, 2016 e 2017 (fonte: ICNF, 2018)

População

O enquadramento sociográfico e administrativo é elaborado com base na informação disponibilizada pelo Instituto Nacional de Estatística (INE), contida nos INE, Censos 2011, e na Carta Administrativa Oficial de Portugal de 2011 – CAOP 2011 (DGT, 2011). De forma a possibilitar a agregação da informação por unidades de análise (concelho, distrito e região hidrográfica) procedeu-se à aplicação de um coeficiente de afetação de área, da população e dos edifícios das unidades de referenciação geográfica de base (nível de desagregação máximo dos dados censitários disponibilizados: freguesia) dentro dos limites das unidades de análise. O primeiro diz respeito à área de cada freguesia que é abrangida pela região hidrográfica, o segundo diz respeito à população residente de cada freguesia enquanto o terceiro corresponde ao património edificado nessa região hidrográfica. A posterior agregação pelas diferentes unidades de análise foram obtidas pela aplicação dos três coeficientes de ponderação.

Na região hidrográfica do Cávado, Ave e Leça residem cerca de 1 465 693 habitantes, distribuídos por 4 distritos e 30 concelhos, representando cerca de 15% da população residente no Continente em 2011. As unidades de análise consideradas nesta região hidrográfica assim como as respetivas áreas, população residente, número de freguesias abrangidas (referência CAOP 2011), número de edifícios e densidade

populacional são apresentadas no Quadro 14 e Quadro 15. A Figura 11 Figura 11 representa a distribuição espacial da população residente por freguesia e a Figura 12 representa a distribuição do património edificado.

Na RH2, Braga é o distrito com maior extensão territorial, com cerca de 2113 km² e com maior número de habitantes (787 328 hab.), enquanto o distrito de Viana do Castelo abrange menor área no território e o menor número de habitantes (14 hab.). O concelho de Montalegre é aquele com maior dentro da área contida na região hidrográfica, Braga é concelho com maior população (12% de toda a população da região hidrográfica). Por oposição, Ponte de Lima é o concelho que apresenta menor área (0,1 km²) e Ponte da Barca o que apresenta menor número de habitantes (6 hab.).

Quadro 14. Distribuição da área e da população por distrito e por concelho na RH2 (adaptado de: INE, 2011)

Distrito	Concelho	Área (km²)	Área abrangida (%)	População residente (hab.)	Densidade populacional (hab./km²)
		2 113	78%	787 328	373
	Amares	82	100%	18 889	230
	Barcelos	309	82%	108 565	351
	Braga	183	100%	181 474	990
	Cabeceiras de Basto	1	0%	33	31
	Celorico de Basto	14	7%	1 051	78
	Esposende	76	79%	28 666	379
Braga	Fafe	200	91%	50 001	250
	Guimarães	241	100%	158 124	656
	Póvoa de Lanhoso	133	100%	21 886	165
	Terras de Bouro	272	98%	7 128	26
	Vieira do Minho	216	99%	12 863	60
	Vila Nova de Famalicão	202	100%	133 832	664
	Vila Verde	160	70%	41 080	256
	Vizela	25	100%	23 736	961
		665	29%	670 450	1008
	Felgueiras	33	28%	10 956	335
	Gondomar	0	0%	1 014	5404
	Lousada	11	11%	3 667	341
	Maia	81	98%	129 020	1587
	Matosinhos	60	97%	164 688	2727
Porto	Paços de Ferreira	5	8%	2 924	544
	Porto	10	25%	55 511	5357
	Póvoa de Varzim	82	100%	63 408	771
	Santo Tirso	136	99%	71 340	525
	Trofa	72	100%	38 999	543
	Valongo	25	33%	49 391	1987
	Vila do Conde	149	100%	79 533	534
Viana da		1	0,05%	14	13
Viana do Castelo	Ponte da Barca	1	1%	6	7
Castell	Ponte de Lima	0.1	0,03%	7	80
		581	13%	7 901	14
Vila Real	Boticas	18	6%	139	8
	Montalegre	563	70%	7 763	14

A densidade populacional determinada é máxima do distrito do Porto (1 008 hab./km²) e no concelho de Gondomar e 5 404 hab./Km², e mínima no distrito de Vila Real (14 hab./km²) e concelho de Ponte da Barca (distrito de Viana do Castelo) com 7 hab./Km². Nenhum dos distritos está totalmente contido na RH2, no entanto, o distrito de Braga é aquele que apresenta maior número de concelhos cujos limites estão totalmente abrangidos pela região hidrográfica (43% dos concelhos do distrito de Braga). Viana do Castelo é

o distrito menos representado onde menos de 1% da área territorial se encontra dentro da RH2, com destaque para o concelho de Ponte da Lima.

Espacialmente, as freguesias que apresentam maior número de residentes são isoladas, com exceção daquelas em redor da área metropolitana do Porto. A população apresenta uma tendência de residência no litoral.

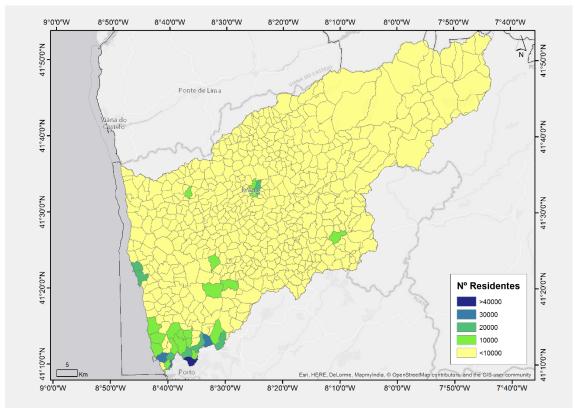


Figura 11. Distribuição espacial da população na RH3, por freguesias, (adaptado de: INE, 2011)

Avaliando o património edificado sob o ponto de vista do número de edifícios, a região hidrográfica do Cávado, Ave e Leça engloba cerca de 399 800 edifícios, representando cerca de 12% do total nacional. O distrito mais significativo relativamente ao número de edifícios é o de Braga (60% do número total de edifícios da região hidrográfica) e o concelho é o de Guimarães (11%). As unidades menos representativas do número de edifícios são o distrito de Viana do Castelo (14 edifícios), concelho de Ponte de Lima (5 edifícios).

Avaliando o património edificado sob o ponto de vista do número de edifícios, a região hidrográfica do Cávado, Ave e Leça engloba cerca de 394 296 edifícios, representando cerca de 12% do total nacional. O distrito mais significativo relativamente ao número de edifícios é o de Braga, o concelho é o de Guimarães (11% do total de edifícios da região hidrográfica). As unidades menos representativas do número de edifícios são o distrito de Viana do Castelo (16 edifícios), concelho de Ponte de Lima (5 edifícios).

Quadro 15. Distribuição dos edifícios por distrito e concelho na RH2 (adaptado de: INE, 2011)

Distrito	Concelho	Número de edifícios	Densidade edificada (ed./km²)	Densidade edificada (ed./hab.)
		239 026	113	0,30
	Amares	8 452	103	0,45
	Barcelos	32 517	105	0,30
	Braga	38 881	212	0,21
	Cabeceiras de Basto	20	18	0,59
	Celorico de Basto	585	43	0,56
	Esposende	12 646	167	0,44
Braga	Fafe	19 317	96	0,39
	Guimarães	43 927	182	0,28
	Póvoa de Lanhoso	9 750	74	0,45
	Terras de Bouro	4 556	17	0,64
	Vieira do Minho	7 366	34	0,57
	Vila Nova de Famalicão	38 868	193	0,29
	Vila Verde	16 325	102	0,40
	Vizela	5 815	235	0,24
		153 634	231	0,23
	Felgueiras	3 454	105	0,32
	Gondomar	183	977	0,18
	Lousada	1 095	102	0,30
	Maia	25 770	317	0,20
	Matosinhos	31 697	525	0,19
Porto	Paços de Ferreira	810	151	0,28
	Porto	9 356	903	0,17
	Póvoa de Varzim	17 060	208	0,27
	Santo Tirso	21 861	161	0,31
	Trofa	10 022	139	0,26
	Valongo	9 432	379	0,19
	Vila do Conde	22 894	154	0,29
		10	10	0,75
Viana do	Ponte da Barca	6	6	0,88
Castelo	Ponte de Lima	5	51	0,63
		7 130	12	0,90
Vila Real	Boticas	101	6	0,73
	Montalegre	7 029	12	0,91

Em termos de densidade de edificação, verifica-se um máximo de 231 ed./Km² no distrito de Porto e 965 ed./Km² no respetivo concelho e um mínimo no distrito Vila Real e concelho de Boticas. Esta variável também pode ser avaliada sob a forma do número de edifícios por habitante. Este indicador é máximo no distrito de Vila Real (0,94 ed./hab.), no concelho de Montalegre (0,94 ed./hab.) e mínimo no distrito e concelho do Porto (0,23 ed./hab. e 0,17 ed./hab.). A maior densidade de edifícios ocorre, à semelhança da

distribuição do número de residentes, com maior incidência no litoral da região hidrográfica administrativa e zona metropolitana do Porto.

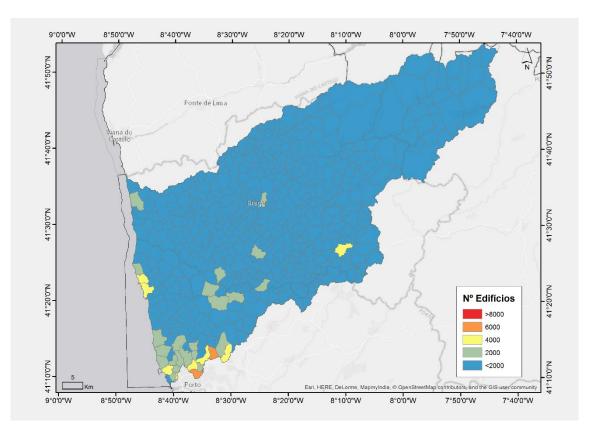


Figura 12. Distribuição espacial dos edifícios na RH2, por freguesias, (adaptado de: INE, 2011)

A população constitui um dos principais recetores na avaliação dos impactos negativos significativos, no contexto da diretiva das inundações. Nesta região hidrográfica foram reportados diversos eventos para alguns dos municípios com maior densidade populacional, nomeadamente Braga. Esta condição será importante na análise de risco, tendo em conta a exposição da população e a sua vulnerabilidade ao risco de inundações. Nas restantes zonas que apresentam elevada densidade populacional não há registo de inundações.

Elementos potencialmente expostos

Instalações PCIP (REI) - instalações abrangidas pelo Regime de Emissões Industriais (REI), aplicável à prevenção e ao controlo integrados da poluição.

O número de instalações abrangidas pelo regime PCIP, existentes na RH, é de 59, Figura 13. Destas o setor mais representativo diz respeito aos Têxteis e ao Tratamento de superfície (processo eletrolítico ou químico),

que representam cerca de 41% do total. Salientam-se ainda os Aterros de Resíduos Urbanos/Industriais e o Tratamento de superfície (com solventes orgânicos), que representam cerca de 17% do número total de instalações PCIP com licença ambiental.

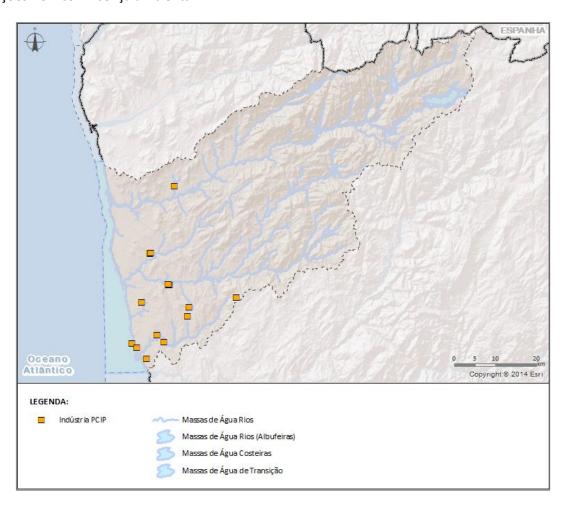


Figura 13. Instalações PCIP na RH2 (fonte: APA, 2016b)

A grande maioria das instalações PCIP localiza-se nos concelhos de Guimarães, Santo Tirso e Vila Nova de Famalicão (bacia do Ave), nos concelhos de Matosinhos e Maia (bacia do Leça) e nos concelhos de Braga e Barcelos (bacia do Cávado).

Instalações Seveso - instalações abrangidas pelo regime da prevenção de acidentes graves que envolvam substâncias perigosas (instalações Seveso).

Na RH2 estão identificadas 20 instalações Seveso, com índice de severidade 5 (máximo) que afeta 9 massas de água.

ETAR Urbanas

Foram identificadas na RH2 98 ETAR, sendo que a maioria das **ETAR** urbanas existentes na RH2 tem tratamento secundário (79 %), Figura 14. As ETAR de maior dimensão estão equipadas com um tratamento mais exigente que o secundário para cumprir as condições de rejeição adequadas no meio recetor.

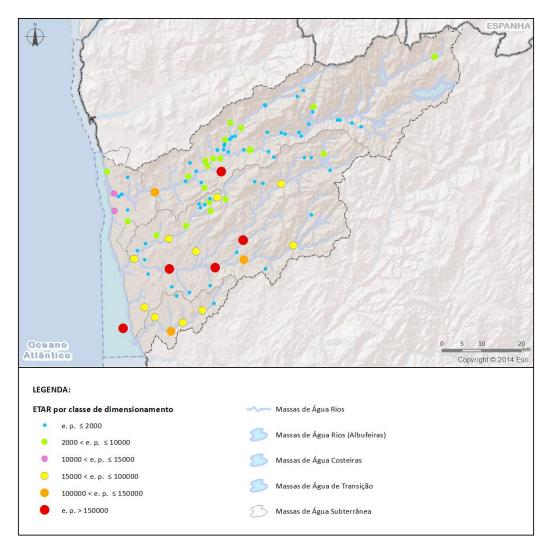


Figura 14. Localização ETAR urbanas RH2 (fonte: APA, 2016b)

Refira-se que as ETAR urbanas apenas com tratamento primário correspondem a ETAR que servem populações inferiores a 2000 e.p., num total de 6% das existentes.

Regadios Públicos

Na RH2 existe apenas um aproveitamento hidroagrícola, Sabariz-Cabanelas, a área beneficiada de 6,55 km². Este aproveitamento localiza-se na margem direita do rio Cávado, em Vila Verde, Figura 15 Na RH2 a percentagem de superfície regada na área de SAU (43,6%) é bastante superior à média do continente (13%). As principais culturas representativas da região são milho, batata e prados, devido à disponibilidade de água.

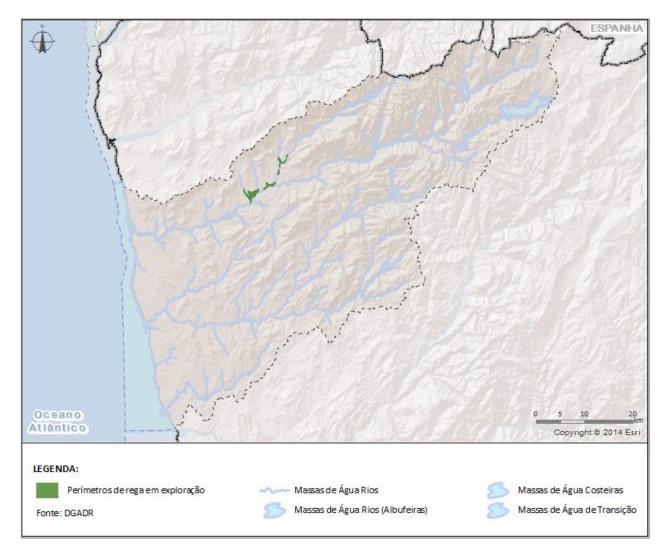


Figura 15. Localização dos regadios públicos existentes na RH2 (fonte: APA, 2016b)

Infraestruturas hidráulicas

Na RH2 existe um número elevado de infraestruturas transversais, barragens e açudes. Localizam-se 13 grandes barragens, 11 para produção de energia, 1 para abastecimento público e 1 de fins múltiplos. Os principais aproveitamentos hidroelétricos estão localizados no Alto Cávado e Rabagão. Na bacia do Ave os grandes aproveitamentos estão localizadas na cabeceira (Guilhofrei e Andorinhas). Ainda nesta bacia, localiza-se um conjunto vasto de aproveitamentos mini-hídricos, normalmente associados às grandes unidades fabris de têxteis. No concelho de Fafe foi construída uma grande barragem (Queimadela) nas cabeceiras do rio Vizela, que se destina a assegurar as necessidades de água para consumo humano do município, Figura 16.

A barragem de Guilhofrei no rio Ave e toda a cascata existente no Cávado são estratégicas na gestão das cheias que ocorrem nestas bacias hidrográficas.

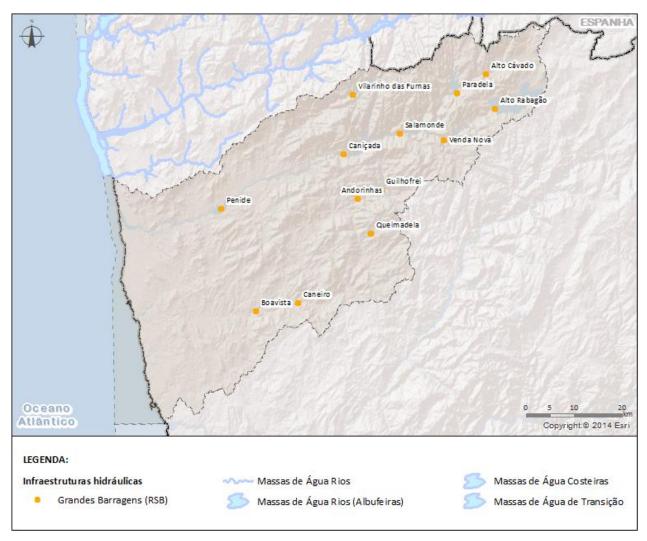


Figura 16. Grandes barragens na RH2 (fonte: APA, 2016b)

3.2. Identificação de ARPSI - 1.º Ciclo

No âmbito do primeiro ciclo de implementação da diretiva das inundações a identificação das ARPSI foi desenvolvida até Novembro de 2011. Ao longo deste processo foi avaliado o histórico de eventos registados em Portugal Continental, incluindo a RH2.

A análise então realizada determinou a seleção de 1 ARPSI, identificada no Quadro 16 e apresentada na Figura 17.

Quadro 16. Lista ARPSI 1.º ciclo (sistema de coordenadas PT-TM06/ETRS89) (fonte: APA, 2016a)

N.O. CÁJE ADDOL		Cádica ABBCI Basinuação Como Á						Coordenadas finais		Comprimento	
IN.≌	N.º Código ARPSI	Designação	Curso Agua	X (m)	Y (m)	X (m)	Y (m)	(km)			
11	PTCAVEsposende	Esposende	Rio Cávado	-55000	208243	-48079	204457	10			

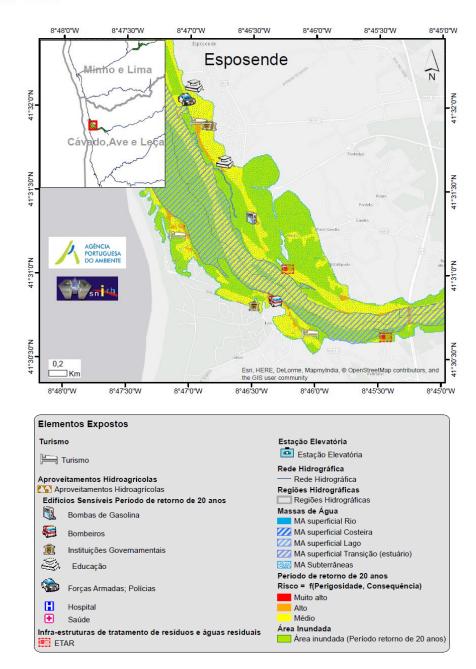


Figura 17. ARPSI de Esposende da RH2 identificada no 1.º ciclo (fonte: APA, 2016a)

Tendo em consideração que o ciclo de planeamento de seis anos se encontra, em 2018, ainda a meio (o PGRI da RH2 foi publicado em 2016), considerou se adequado manter a ARPSI identificada n 1.º ciclo e assim integra-la no conjunto de ARPSI a considerar no 2.º ciclo. Esta opção reflete o facto de se considerar que não é ainda possível determinar se as medidas preconizadas no PGRI da RH2 foram eficazes, quer no caso das que não estão ainda totalmente implementadas, quer ainda nas que já o foram mas não houve ainda tempo de se confirmar a sua eficácia.

Mais será de ter em conta que algumas das medidas preconizadas não se traduzem numa eliminação da possibilidade de ocorrência de inundações, mas antes na redução do risco que lhes está associado, quer em termos de saúde e vidas humana, quer em termos de bens materiais. De facto, uma das medidas importantes definidas no 1.º ciclo foi o reforço da monitorização de eventos de cheia, através do Sistema de Alerta e Vigilância e Alerta de Recursos Hídricos (SVARH), monitorização essa que se pressupõe essencial manter no futuro e que torna adequada a manutenção das respetivas ARPSI.

3.3. Eventos reportados 2011-2018

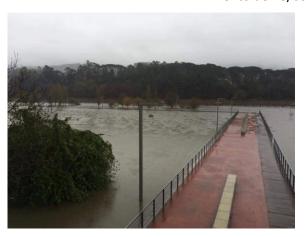
Os procedimentos de recolha de informação descritos no documento "Avaliação Preliminar de Riscos de Inundações em Portugal Continental — Metodologia" permitiram o registo e caracterização de 306 eventos em Portugal Continental. Estes eventos foram principalmente reportados por entidades municipais, as quais procederam também à caraterização dos mesmos, de acordo com informação solicitada através do formulário disponibilizado através da internet. Sempre que possível esta informação foi complementada através da colaboração entre os membros da Comissão Nacional de Gestão de Riscos de Inundação.

No caso da RH2 foram caracterizados 22 eventos, Quadro 17.

Quadro 17. Eventos reportados na RH2

Data evento	Municípios mais afetados	Origem da cheia	Causa	Serviços afetados	Entidade
26/10/2011	Braga	Fluvial e Pluvial	Forte precipitação e Subida do rio	Redes viárias	CM Braga
06/04/2012	Braga	Fluvial e Pluvial	Forte precipitação, Descargas de barragens nacionais e Subida do rio		CM Braga
14/12/2012	Braga	Fluvial e Pluvial	Forte precipitação e Subida do rio	Redes viárias e Campos agrícolas	CM Braga
18/01/2013	Santo Tirso	Fluvial	Forte precipitação	Outros serviços públicos, Redes viárias e Escolas	CM Santo Tirso
19/01/2013	Vila Nova de Famalicão	Fluvial	Forte precipitação e Subida do rio		CM Vila Nova Famalicão
19/01/2013	Vila Nova de Famalicão	Fluvial	Forte precipitação e Descargas de barragens nacionais		CM Vila Nova Famalicão
21/10/2013	Póvoa de Varzim	Fluvial	Forte precipitação		Sem informação

Data evento	Municípios mais afetados	Origem da cheia	Causa	Serviços afetados	Entidade
23/10/2013	Esposende	Fluvial e Pluvial	Forte precipitação, Deficiente drenagem e Subida do rio	Outros serviços públicos e Redes viárias	Cm Esposende
27/12/2013	Guimarães	Fluvial	Forte precipitação e Subida do rio	Redes viárias	Particular
24/02/2014	Braga	Fluvial e Pluvial	Forte precipitação e Subida do rio	Outros serviços públicos e Redes viárias	CM Braga
08/10/2014	Braga	Fluvial e Pluvial	Forte precipitação, Deficiente drenagem e Subida do rio	Escolas, Outros serviços públicos e Redes viárias	CM Braga
08/05/2015	Santo Tirso	Fluvial	Forte precipitação e Subida do rio	Outros serviços públicos e Redes viárias	CM Santo Tirso
14/09/2015	Braga	Fluvial e Pluvial	Forte precipitação e Subida do rio	Redes viárias	CM Braga
08/01/2016	Santo Tirso	Fluvial	Forte precipitação	Outros serviços públicos e Redes viárias	CM Santo Tirso
10/01/2016	Guimarães	Fluvial	Forte precipitação e Subida do rio	Outros serviços públicos e Redes viárias	Particular
18/01/2016	Guimarães	Fluvial	Forte precipitação e Subida do rio	Outros serviços públicos e Redes viárias	Particular
12/02/2016	Vila Nova de Famalicão	Fluvial	Forte precipitação e Descargas de barragens nacionais		CM Vila Nova Famalicão
13/02/2016	Guimarães	Fluvial	Forte precipitação	Redes viárias	Particular
13/02/2016	Santo Tirso	Fluvial	Forte precipitação	Outros serviços públicos e Redes viárias	CM Santo Tirso
13/02/2016	Trofa	Fluvial e Pluvial	Forte precipitação e Deficiente drenagem	Outros serviços públicos, Redes viárias, Comércios e serviços	CM Trofa
11/12/2017	Santo Tirso	Fluvial	Forte precipitação	Escolas e Redes viárias	CM Santo Tirso
01/03/2018	Braga	Fluvial e Pluvial	Forte precipitação e Subida do rio	Redes viárias e Industria	CM Braga


Foram também documentadas por fotografias das quais se incluem as mais representativas, Figura 18.

Evento de 18/03/2013 em Santo Tirso

Evento de 13/02/2013 em Santo Tirso

Figura 18. Exemplo de algumas imagens enviadas pelas entidades que preencheram o formulário

3.4. Aplicação dos critérios definidos para a seleção de eventos fluviais e pluviais

Aos eventos identificados foi aplicada a metodologia de classificação e seleção de eventos significativos de acordo com a descrição metodológica incluída no Capítulo 2.2., considerando os efeitos adversos sobre a população (mortos, desalojados), nas atividades económicas, no património, bem como os prejuízos associados. Da aplicação da metodologia definida aos eventos de origem fluvial e pluvial, resumidamente apresentados no Quadro 18, resultou a seleção de 15 eventos de inundação na RH2, Quadro 19.

Quadro 18. Critérios aplicados aos eventos reportados

Impacto na População (A)	Escala
Elevado	4
Impacto nas Atividades	Escala

Número de pessoas afetadas (B)	Escala
50 a 100	4
Prejuízos (D)	Escala

Elevado	3	500 000 a 1 000 000 €	5
---------	---	-----------------------	---

Quadro 19. Eventos selecionados na RH2

Data evento	Municípios mais afetados	Origem da cheia	Entidade
26/10/2011	Braga	Fluvial e Pluvial	CM Braga
06/04/2012	Braga	Fluvial e Pluvial	CM Braga
14/12/2012	Braga	Fluvial e Pluvial	CM Braga
18/01/2013	Santo Tirso	Fluvial	CM Santo Tirso
21/10/2013	Póvoa de Varzim	Fluvial	Sem informação
23/10/2013	Esposende	Fluvial e Pluvial	CM Esposende
24/02/2014	Braga	Fluvial e Pluvial	CM Braga
08/10/2014	Braga	Fluvial e Pluvial	CM Braga
08/05/2015	Santo Tirso	Fluvial	CM Santo Tirso
14/09/2015	Braga	Fluvial e Pluvial	CM Braga
08/01/2016	Santo Tirso	Fluvial	CM Santo Tirso
13/02/2016	Santo Tirso	Fluvial	CM Santo Tirso
13/02/2016	Trofa	Fluvial e Pluvial	CM Trofa
11/12/2017	Santo Tirso	Fluvial	CM Santo Tirso
01/03/2018	Braga	Fluvial e Pluvial	CM Braga

Da aplicação da metodologia definida aos eventos de origem costeira, que teve por base os seguintes critérios: i) n.º e frequência de ocorrências; ii) existência de aglomerado urbano/área predominantemente artificializada; iii) suscetibilidade do sistema (morfologia e geomorfologia); e iv) área associada a erosão costeira/existência de obras de proteção costeira resultou a identificação dos eventos associados ao troço **Ofir - Praia da Apúlia**.

3.5. Influência das alterações climáticas sobre o risco de inundações

No contexto da RH2 e de acordo como os resultados disponíveis através do Portal do Clima, a tendência de variação observada nos valores médios mensais da agregação dos modelos climáticos traduz uma diminuição das precipitações médias ao longo do ano no cenário RCP4.5 e com maior intensidade no cenário

RCP8.5 (RCP = Representative Concentration Pathways, definidos segundo o 5.º Relatório de avaliação do IPCC (2013)), como se pode observar na Figura 19.

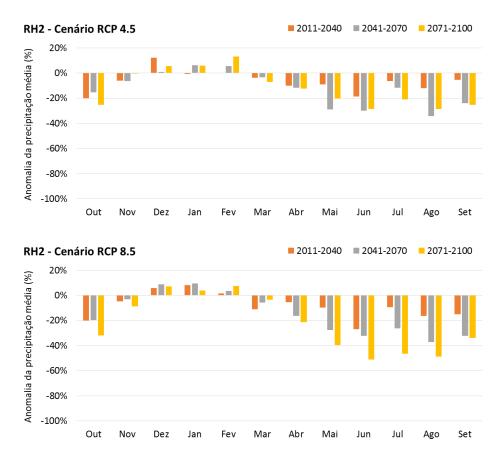


Figura 19. Anomalia das precipitações médias mensais na RH2 (%), cenários RCP 4.5 e RCP 8.5, para o conjunto de modelos climáticos - ensemble (adaptado de: Portal do Clima)

No que se refere aos riscos associados ao aumento da intensidade e frequência de eventos de precipitação de curta duração, os dados disponíveis através do Portal do Clima permitem a avaliação da variação do número de dias com precipitação superior ou igual a 50 mm, através da comparação entre as normais climatológicas para o período de referência 1971-2000, simulado, e cenários RCP4.5 e RCP8.5, para o ensemble de resultados de modelos regionais referentes ao período de anos 2041-2070 (admitindo que se trata de um futuro intermédio). Esta comparação tem por base os gráficos representativos da distribuição estatística anual, traduzida através dos valores do percentil 10 e 25, mediana e percentil 75 e 90 do indicador.

Como se pode observar nas Figuras 20, 21, 22 e 23, o número de dias por ano com precipitação superior a 50 mm tenderá a aumentar para a RH2 nos cenários RCP4.5 e RCP8.5. Se tivermos em conta as diferentes estações do ano, a que apresenta variações mais significativa, nomeadamente no aumento da incidência do

número de dias medianos, é a primavera, em ambos os cenários. No inverno tenderá a verificar-se um aumento em ambos os cenários e no outono uma diminuição para o cenário RCP8.5.

Os resultados apresentados não traduzem apesar de tudo variações muito expressivas da precipitação diária. É no entanto de valorizar que os mesmos apontam para uma tendência de aumento, em particular do cenário RCP4.5, apesar da incerteza que caracteriza as simulações climáticas para precipitação diária e mesmo sub-diária, para o período 2041-2070. Assim e no contexto do estudo do risco de inundações é de se admitir um aumento efetivo da probabilidade de ocorrência deste tipo de eventos.

No entanto não se considerou, nesta fase, necessário identificar mais ARPSI associadas aos efeitos das alterações climáticas, mas esta avaliação será relevante no âmbito da elaboração das cartas das zonas inundáveis e dos riscos de inundações.

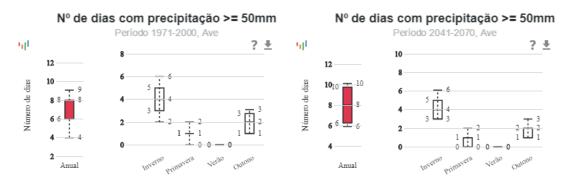


Figura 20.Número de dias com precipitação igual ou superior a 50 mm — normais climatológicas para a região do Ave, para o período de referência 1971-2000 simulado e simulação do cenário RCP4.5 e período 2041-2070 (fonte: Portal do Clima)

Figura 21. Número de dias com precipitação igual ou superior a 50 mm — normais climatológicas para a região do Ave, para o período de referência 1971-2000 simulado e simulação do cenário RCP8.5 e período 2041-2070 (fonte: Portal do Clima)

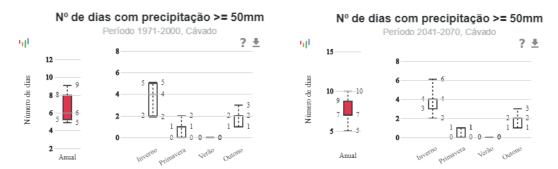


Figura 22. Número de dias com precipitação igual ou superior a 50 mm — normais climatológicas para a região do Cávado, para o período de referência 1971-2000 simulado e simulação do cenário RCP4.5 e período 2041-2070 (fonte: Portal do Clima)

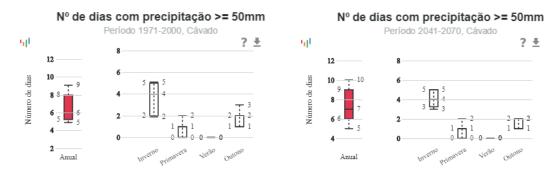


Figura 23. Número de dias com precipitação igual ou superior a 50 mm — normais climatológicas para a região do Cávado, para o período de referência 1971-2000 simulado e simulação do cenário RCP8.5 e período 2041-2070 (fonte: Portal do Clima)

3.6. Resultados e proposta de atualização das áreas com risco potencial significativo de inundação

O estudo desenvolvido com vista ao desenvolvimento da **Avaliação Preliminar de Riscos de Inundações** (**APRI**) teve em consideração as zonas de risco identificadas no primeiro ciclo de implementação da Diretiva n.º 2007/60/CE, de 23 de outubro, os eventos de inundação conhecidos desde dezembro 2011, potenciais eventos futuros face a riscos associados a alterações climáticas e a cooperação com o Reino de Espanha, de acordo com as determinações na diretiva em questão.

Para o efeito foram caracterizados eventos de inundação com base em informação recolhida junto de entidades regionais e nacionais, em coordenação com a Comissão Nacional de Gestão de Risco de Inundação (CNGRI) e em cooperação com entidades oficiais espanholas.

A implementação da metodologia desenvolvida para a APRI conduziu à identificação de um conjunto de seis **Áreas de Risco Potencial Significativo de Inundação (ARPSI)** na RH2, todas identificadas no Quadro 20 e na Figura 24.

Quadro 20. Lista de ARPSI propostas para a RH2

Designação	1 0 Cialo	Origem		Niómana
	1.º Ciclo	Costeira	Pluvial/Fluvial	Número
Esposende	Х		Х	11
Braga Padim da Graça			X	9
Braga Este			X	10
Póvoa de Varzim			X	13
Santo Tirso			Х	14
Ofir Apúlia		Х		А

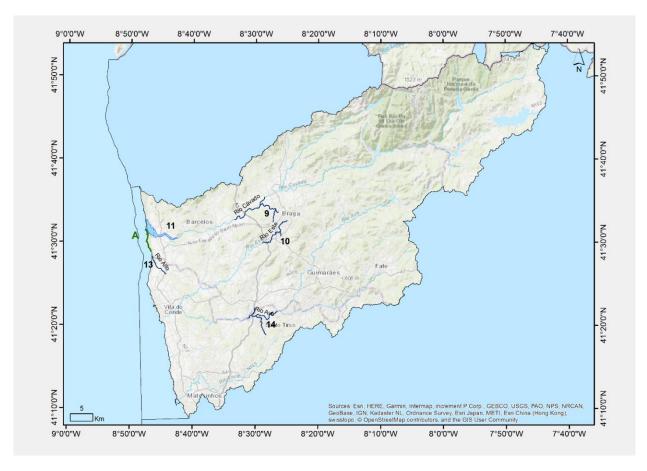
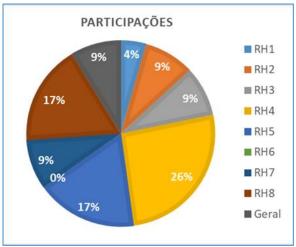


Figura 24. Proposta de ARPSI para a RH2

4. PARTICIPAÇÃO PÚBLICA

O presente capítulo formaliza a ponderação do processo de participação pública da proposta sobre a Avaliação Preliminar da Riscos de Inundações (APRI), com a identificação dos locais mais expostos a riscos significativos associados a eventos de inundação, para as oito Regiões Hidrográficas do Continente.


Nos termos do estabelecido no nº 2, do artigo 10º, da Diretiva 2007/60/CE, deve ser incentivada a participação de todos os interessados, no reexame, na elaboração e na atualização dos planos de gestão dos riscos de inundações.

Pretendeu-se com este processo promover uma participação ativa dos municípios, da academia e dos cidadãos, tendo a APRI estado disponível para consulta e participação durante um período de 30 dias, entre 26/11/2018 a 26/12/2018. A divulgação dos relatórios sobre a APRI foi realizada por diferentes fóruns:

- 1 Portal Participa portal dedicado à consulta e participação de processos, acessível a todos;
- 2 Portal da Agência Portuguesa do Ambiente. I.P. (APA);
- 3 Sessões públicas Apresentação da APRI nas sessões do Conselho de Região Hidrográfica (CRH), onde estiveram presentes para além dos conselheiros da região hidrográfica, também representantes dos municípios mais afetados por eventos de inundação.

A receção das participações foi possível através de email do Sistema Nacional de Informação de Recursos Hídricos (SNIRH), Portal Participa, através do formulário de caracterização de eventos e email da APA.

Foram recebidas e ponderadas 22 participações/sugestões, com a distribuição por Região Hidrográfica presente nos gráficos da Figura 25 25.

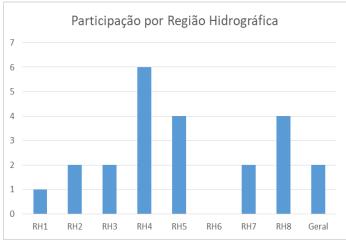


Figura 25. Participações públicas por Região Hidrográfica

A classificação das participações/sugestões apresentadas foi organizada em três níveis:

- (i) Dentro do âmbito, quando o conteúdo se enquadrava dentro do âmbito da APRI;
- (ii) **Parcialmente dentro do âmbito**, quando só uma parte do conteúdo se enquadrava dentro do âmbito da APRI;
- (iii) Fora do âmbito, quando o conteúdo estava fora do âmbito de APRI.

Após análise foi atribuído uma ponderação à participação/sugestão com a classificação de "Considerado"; "Parcialmente Considerado" e "Não Considerado".

O processo de participação pública não conduziu a alterações nas ARPSI inicialmente propostas, conforme consta no relatório "Participação Pública da Avaliação Preliminar de Risco de Inundações", fevereiro 2019.

5. CONCLUSÃO

Na Região Hidrográfica Cávado, Ave e Leça (RH2) não houve alterações resultantes da consulta pública, tendo-se mantido as ARPSI inicialmente identificadas. Neste ciclo houve foram adicionadas cinco ARPSI à Região Hidrográfica do Ave, Cávado e Leça (RH2), Quadro 21 e Figura 26.

Quadro 21. Lista de ARPSI para a RH2

Designação	1.º Ciclo	Origem		Niśwania
		Costeira	Pluvial/Fluvial	Número
Braga Padim da Graça			X	9
Ofir Apúlia		X		11
Braga Este			X	10
Esposende	Х		X	8
Póvoa de Varzim			X	12
Santo Tirso			X	13

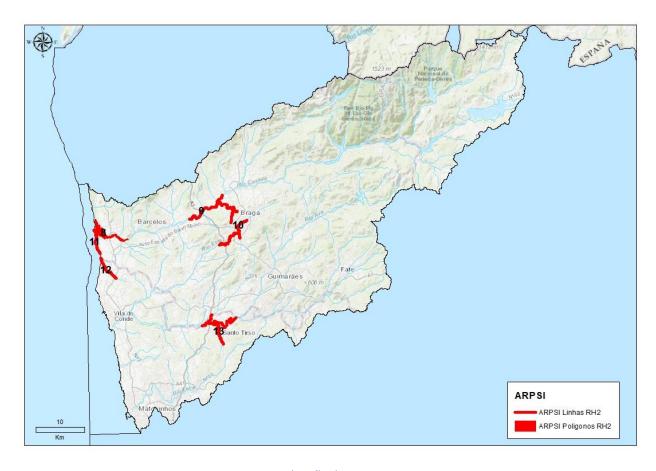


Figura 26. Localização das ARPSI para a RH2

6. BIBLIOGRAFIA

- Andrade, C., Pires, H. O., Silva, P., Taborda, R. & Freitas, M. C (2006). Zonas Costeiras. In: Santos, F. D. & Miranda, P. (Eds). Alterações Climáticas em Portugal. Cenários, Impactos e Medidas de Adaptação. Projecto SIAM II, Gradiva, pp. 169-208.
- Antunes, C., Taborda, R., (2009). Sea level at Cascais tide gauge: data, analysis and results, Journal of Coastal Research, SI 56, 218-222.
- APA Agência portuguesa do Ambiente, I.P. (2014). Registo das ocorrências no litoral. Temporal de 3 a 7 de janeiro de 2014. Relatório Técnico. Agência Portuguesa do Ambiente. 116p.
- APA Agência portuguesa do Ambiente, I.P. (2015). Enquadramento metodológico para a demarcação das Faixas de Salvaguarda à Erosão Costeira (Nível I e II) em litoral baixo e arenoso. Relatório Técnico DLPC n.º 1/2015. APA.
- APA Agência Portuguesa do Ambiente, I.P. (2016a). Plano de Gestão dos Riscos de Inundação do Cavado, Ave e Leça RH2. Disponível em:
- https://www.apambiente.pt/_zdata/Politicas/Agua/PlaneamentoeGestao/PGRI/2016-2021/PGRI_RH2.pdf
- APA Agência portuguesa do Ambiente, I.P. (2016b). Plano de Gestão da Região Hidrográfica do Cavado, Ave e Leça RH2.Parte 2 – Caracterização e diagnóstico. Disponível em:
- https://www.apambiente.pt/_zdata/Politicas/Agua/PlaneamentoeGestao/PGRH/2016-2021/PTRH2/PGRH2 Parte2.pdf
- APA Agência portuguesa do Ambiente, I.P. (2016c). Plano de Gestão da Região Hidrográfica do Tejo e Ribeiras do Oeste. Disponível em:
- https://www.apambiente.pt/_zdata/Politicas/Agua/PlaneamentoeGestao/PGRH/2016-2021/PTRH5A/PGRH5A_Parte2.pdf
- APA Agência portuguesa do Ambiente, I.P. (2017). Plano de Acção do Litoral XXI. Disponível em:
- https://sniambgeoviewer.apambiente.pt/GeoDocs/geoportaldocs/Litoral/Plano Acao Litoral XXI 201 7.pdf
- APA Agência portuguesa do Ambiente, I.P. (2018). Redes de Monitorização do Sistema Nacional de Informação dos Recursos Hídricos (SNIRH). Consultado a outubro de 2018. Disponível em: https://snirh.apambiente.pt/index.php?idMain=2&idItem=1

- APS Associação Portuguesa de Seguradores (2014). Cartas de Inundação e Risco em Cenário de Alterações Climáticas. Disponível em: https://www.apseguradores.pt/cirac-V2/
- Declaração de Retificação n.º 22-A/2016, de 18 novembro, Diário da República n.º 222/2016, 1º Suplemento, Série I, Presidência do Conselho de Ministros, Lisboa, que retifica a Resolução do Conselho de Ministros n.º 51/2016, de 20 de novembro, Diário da República n.º 181/2016, Série I, Presidência do Conselho de Ministros, Lisboa que aprova os Planos de Gestão dos Riscos de Inundações do Vouga, Mondego e Lis, do Minho e Lima, do Cávado, Ave e Leça, do Douro, do Tejo e Ribeiras do Oeste, do Sado e Mira e das Ribeiras do Algarve. Os planos encontram-se disponíveis em: https://www.apambiente.pt/index.php?ref=16&subref=7&sub2ref=9&sub3ref=1250
- Declaração de Retificação n.º 22-B/2016, de 18 de novembro, Diário da República n.º 222/2016, 1º Suplemento, Série I, Presidência do Conselho de Ministros Secretaria-Geral, Lisboa, que retifica a Resolução do Conselho de Ministros n.º 52/2016, de 20 de setembro, Diário da República n.º 181/2016, Série I, Presidência do Conselho de Ministros, Lisboa, que aprova os Planos de Gestão das Regiões Hidrográficas do Minho e Lima, do Cávado, Ave e Leça, do Douro, do Vouga e Mondego, do Tejo e Ribeiras Oeste, do Sado e Mira, do Guadiana e das Ribeiras do Algarve. Os planos encontramse disponíveis em:

https://www.apambiente.pt/index.php?ref=16&subref=7&sub2ref=9&sub3ref=848

- Decreto-Lei n.º 115/2010, de 22 de outubro de 2010, Diário da República n.º 206/2010, Série I, Ministério do Ambiente e do Ordenamento do Território, Lisboa.
- Decreto-lei n.º 159/2012, de 24 de julho, Diário da República n.º 142/2012, Série I Ministério da Agricultura, do Mar, do Ambiente e do Ordenamento do Território, Lisboa.
- Decreto-Lei n.º 239/2012, de 2 de novembro, Diário da República n.º 212/2012, Série I, Ministério da Agricultura, do Mar, do Ambiente e do Ordenamento do Território, Lisboa.
- Decreto-Lei n.º 80/2015 de 14 de maio, Diário da República n.º 93/2015, Série I, Ministério do Ambiente, Ordenamento do Território e Energia, Lisboa.
- Decreto-Lei n.º 89/87, de 26 de fevereiro, Diário da República n.º 48/1987, Série I, Ministério do Plano e da Administração do Território, Lisboa.
- DGRAH Direção Geral dos Recursos e Aproveitamentos Hidráulicos (1981). Índice Hidrográfico e Classificação Decimal dos Cursos de Água de Portugal. Ministério da Habitação e obras Públicas. Lisboa.

gor /

- DGT Direção Geral do Território (ex. IGP Instituo Geográfico Português) (2011). Carta Administrativa Oficial de Portugal (CAOP 2011). Disponível em:
 - http://www.dgterritorio.pt/cartografia e geodesia/cartografia/carta administrativa oficial de portugal caop /caop download /carta administrativa oficial de portugal versao 2011 2/
- DGT Direção Geral do Território (ex. IGP Instituo geográfico Português) (2017). Carta Administrativa
 Oficial de Portugal (CAOP 2017). Disponível em:

 http://www.dgterritorio.pt/cartografia e geodesia/cartografia/carta administrativa oficial de po

 rtugal_caop_/caop_download_/carta_administrativa_oficial_de_portugal_versao_2017_em_vi
- DGT Direção-Geral do Território (ex. IGP Instituo geográfico Português) (2015). Carta de Uso e Ocupação do Solo de Portugal Continental para 2015 (COS 2015). Disponível em: http://snig.dgterritorio.pt/geoportal/catalog/search/resource/detailsPretty.page?uuid=%7B5ED54F
 DD-62E9-40AC-A988-8A9C387DF1FE%7D
- Diretiva n.º 2000/60/CE, de 23 de Outubro de 2000, do Parlamento Europeu e do Conselho, Comissão Europeia, Jornal Oficial das Comunidades Europeias L327, Luxemburgo.
- Diretiva n.º 2007/60/CE, de 23 de outubro de 2007, do Parlamento Europeu e do Conselho, Comissão Europeia, Jornal Oficial das Comunidades Europeias L 288, Luxemburgo.
- ESPON Climate (2013) Climate Change and Territorial Effects on Regions and Local Economies (Applied Research 2013; Final Repport 2011). 4 pp. Disponível em: https://www.espon.eu/climate
- Estratégia Nacional para a Gestão Integrada da Zona Costeira (ENGIZC), Diário da República n.º 174/2009, Série I, Presidência do Conselho de Ministros, Lisboa.
- European Commission (2013). A Blueprint to Safeguard Europe's Water Resources.
- European Commission (2013). Guidance for reporting under the floods directive (2007/60/EC).
- European Commission (2015) .The Water Framework Directive and The Flood Directive: Action towards the 'good status' of EU water and to reduce flood risks.
- European Commission (2015). Ecological flows in the implementation of the Water Framework Directive,
 Policy Summary of Guidance Document n.º 31.
- ICNF Instituto da Conservação da Natureza e das Florestas (2018). Cartografia da Área Ardida Incêndios Rurais. Consultado a outubro de 2018. Disponível em:

http://www2.icnf.pt/portal/florestas/dfci/inc/mapas

- IGOT Instituto de Geografia e Ordenamento do Território da Universidade de Lisboa, Centro do Estudos Geográficos (2014). Desastres naturais de origem hidro-geomorfológica em Portugal: base de dados SIG para apoio à decisão no ordenamento do território e planeamento de emergência. Disponível em: https://riskam.ul.pt/disaster
- INE Instituto Nacional de Estatística (2011). Censos 2011. Lisboa.
- IPCC (2013) "Summary for Policymakers". In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- LAWA (2013) Recommendations on Coordinated Application of the EU Flood Risk Management Directive and the EU Water Framework Directive Potential Synergies in measures, data management and public consultation. German Working Group on Water Issues of The Federal States and Federal Government.
- Lei n.º 31/2014, de 30 de maio, Diário da República n.º 104/2014, Série I, Assembleia da República, Lisboa.
- Lei n.º 58/2005, de 29 de dezembro, Diário da República n.º 249/2005, Série I-A, Assembleia da República, Lisboa.
- Portal do Clima (2018). Alterações Climáticas em Portugal. Consultado a outubro de 2018. Disponível em: http://portaldoclima.pt/pt/
- Pinto, C. (2008) Alimentação artificial das praias de São João e Costa de Caparica. Enquadramento da intervenção e síntese dos resultados de monitorização (2007-2008). Nota técnica DRHL. ARH do Tejo. Lisboa. 75p. (não publicado).
- Silva, A., Taborda, R., Lira, C Andrade C., Silveira, T. & Freitas, C. (2013) Determinação e cartografia da perigosidade associada à erosão de praias e ao galgamento oceânico na Costa da Caparica. Relatório Técnico (Entregável 2.4.a). Projeto Criação e implementação de um sistema de monitorização no litoral abrangido pela área de jurisdição da Administração da Região Hidrográfica do Tejo. FFCUL/APA, I.P., Lisboa. 39 p. (não publicado).
- Teixeira, S.B. (2014) Alterações climáticas: impactes nas zonas costeiras (Apresentação oral: 06.03.2014).
- Veloso-Gomes, F. (2007). A gestão da zona costeira portuguesa. Revista da Gestão Costeira Integrada. N.º 7(2). pp. 83-95.

