

Avaliação das disponibilidades hídricas por massa de água e aplicação do índice de escassez WEI+, visando complementar a avaliação do estado das massas de água

<u>RELATÓRIO FINAL</u>

Avaliação das disponibilidades hídricas por massa de água e aplicação do Índice de escassez WEI+, visando complementar a avaliação do estado das massas de água

Relatório Final

,	-				
ı	N I	_	1/	•	_
	NI				_

1.	Introdução	1
2.	Metodologia e premissas de cálculo	5
	2.1 Dados de Precipitação	5
	Recolha e análise preliminar de dados	5
	Preenchimento de falhas	6
	Superfícies de precipitação mensal	7
	2.2 Dados de Temperatura e Evapotranspiração	g
	Superfícies de evapotranspiração potencial mensal	ç
	Superfícies de temperatura média mensal	10
	2.3 Escoamentos em regime natural	11
	2.4 Cenários de alterações climáticas	16
	2.5 Determinação das necessidades de água dos vários setores	17
	2.6 Disponibilidades hídricas em regime modificado	23
	Avaliação da disponibilidade hídrica garantida em regime modificado	23
	Modelação da gestão e alocação das disponibilidades de água em regime modificado	25

Avaliação do grau de alteração dos escoamentos com base no indicador RCON 37

	2.7 Cálculo do WEI+	38
3.	Síntese de resultados	43
	3.1 Precipitação	43
	Recolha e análise preliminar de dados	43
	Preenchimento de falhas	45
	Superfícies de precipitação	45
	3.2 Temperatura e evapotranspiração	58
	Recolha e análise preliminar de dados	58
	Preenchimento de falhas	59
	Superfícies de temperatura	60
	Superfícies de evapotranspiração potencial	70
	3.3 Escoamento em regime natural	77
	3.4 Cenários de alterações climáticas	88
	3.5 Necessidades de água	92
	3.6 Escoamentos em regime modificado	95
	Avaliação da disponibilidade hídrica garantida em regime modificado	95
	Modelação da gestão e alocação das disponibilidades de água em regime modificado	101
	Avaliação do grau de alteração dos escoamentos com base no indicador RCON 113	
	3.7 Índice WEI+	119
4.	Considerações Finais	125
5	Poforôncias	127

Índice de Quadros

Quadro 1 – Culturas agrícolas consideradas no cálculo dos volumes consumidos para rega	18
Quadro 2 – Associação das culturas identificadas no RA2019 com as classes da COS2018	19
Quadro 3 – Barragens consideradas no modelo MIKE HYDRO Basin	26
Quadro 4 – Valores assumidos para o tempo de residência	36
Quadro 5 – Relação entre as variáveis incluídas nas equações de cálculo do RWR e as variáveis dos modelos hidrológico e de alocação de água (MIKE HYDRO Basin)	41
Quadro 6 – Número de estações de medição da precipitação por rede de monitorização	43
Quadro 7 – Comparação da precipitação anual média com superfícies de referência em todas as sub-bacias em território português	s 46
Quadro 8 – Comparação da precipitação anual média com superfícies de referência nas baci internacionais em território espanhol	ias 51
Quadro 9 – Precipitação anual e mensais médias por sub-bacia (período out-1930 a set-2016	6) 53
Quadro 10 – Número de estações de medição da temperatura por rede de monitorização	58
Quadro 11 – Comparação da temperatura anual média com superfícies de referência	60
Quadro 12 – Comparação da temperatura anual média com superfície de referência nas baci internacionais em território espanhol	ias 62
Quadro 13 – Temperatura anual e mensais médias por sub-bacia (período out-1930 a set- 2016)	64
Quadro 14 – Evapotranspiração anual e mensais médias pelo método de Hargreaves por subbacia (período out-1930 a set-2016)	b- 72
Quadro 15 – Comparação do escoamento anual médio obtido pelo CEDEX e neste estudo	79
Quadro 16 – Escoamentos em regime natural (hm³)	80
Quadro 17 – Escoamento anual e mensais médios por sub-bacia considerando afluências de outras sub-bacias a montante quando aplicável (hm³)	9 83
Quadro 18 – Volumes captados pelos setores urbano, industrial, da pecuária e do golfe (hm³/ano)	92
Quadro 19 – Área regadas (ha)	94
Quadro 20 – Volumes consumidos e captados (hm³/ano)	94

Quadro 21 – Estimativas de disponibilidades de água em regime modificado para vários valores de garantia de abastecimento96Quadro 22 – Escoamentos em regime natural e modificado102Quadro 23 – Déficits e garantias por secção105Quadro 24 – Indicador RCON114Quadro 25 – Valores médios do índice de escassez WEI+ por RH e bacia119Quadro 26 – Valores médios do índice de escassez WEI+ por sub-bacia120

Índice de Figuras

Figura 1 – Esquema do modelo de Temez	12
Figura 2 – Relação entre a precipitação e o excedente da precipitação	12
Figura 3 – Relação entre o excedente de precipitação e a recarga	13
Figura 4 – Estações consideradas na calibração e na validação	15
Figura 5 – Esquema do funcionamento do MIKE HYDRO Basin	25
Figura 6 – Esquema hidrográfico das bacias hidrográficas do Minho e Âncora	29
Figura 7 – Esquema hidrográfico das bacias hidrográficas do Lima e Neiva	29
Figura 8 – Esquema hidrográfico da bacia hidrográfica do Cávado	30
Figura 9 – Esquema hidrográfico da bacia hidrográfica do Ave e Leça	30
Figura 10 – Esquema hidrográfico da bacia hidrográfica do Douro	30
Figura 11 – Esquema hidrográfico da bacia hidrográfica do Vouga	31
Figura 12 – Esquema hidrográfico da bacia hidrográfica do Mondego	31
Figura 13 – Esquema hidrográfico da bacia hidrográfica do Lis	31
Figura 14 – Esquema hidrográfico da bacia hidrográfica das ribeiras do Oeste	32
Figura 15 – Esquema hidrográfico da bacia hidrográfica do Tejo	32
Figura 16 – Esquema hidrográfico da bacia hidrográfica do Sado	33
Figura 17 – Esquema hidrográfico da bacia hidrográfica do Guadiana	34
Figura 18 – Esquema hidrográfico das bacias hidrográficas do Mira e ribeiras do Algarve	35

Figura 19 – Esquema de duas bacias hidrográficas, com a bacia 1 situada a montante da bac 2	cia 38
Figura 20 – Número de valores precipitação mensal disponíveis por ano hidrológico	44
Figura 21 – Estações selecionadas	44
Figura 22 – Superfície de precipitação anual média obtida por IDW	51
Figura 23 – Superfície de precipitação mensais obtidas por IDW	52
Figura 24 – Número de valores de temperatura média mensal disponíveis por ano hidrológico	o 58
Figura 25 – Estações selecionadas	59
Figura 26 – Superfície de temperatura anual média	63
Figura 27 – Superfícies de temperatura mensal	70
Figura 28 – Comparação da evapotranspiração potencial anual média por sub-bacia pelos métodos de Thornthwaite e Hargreaves	70
Figura 29 – Superfície de evapotranspiração potencial anual média obtida pelo método de Hargreaves	71
Figura 30 – Erro médio do modelo na estimativa do escoamento anual médio em cada estaçã hidrométrica	ão 77
Figura 31 – Exemplos de comparação entre os valores observados e calculados do escoamento mensal	78
Figura 32 – Comparação das estimativas de recarga anual média	78
Figura 33 – Razão entre o escoamento anual médio obtido neste estudo e obtido pelo CEDE	X 79
Figura 34 – Superfície de escoamento médio anual (mm)	82
Figura 35 – Superfícies de escoamento mensal	87
Figura 36 – Precipitação média anual para três horizontes temporais futuros e para RCP 4.5 (topo) e RCP 8.5 (base)	88
Figura 37 – Temperatura média anual para três horizontes temporais futuros e para RCP 4.5 (topo) e RCP 8.5 (base)	89
Figura 38 – Evapotranspiração média anual para três horizontes temporais futuros e para RC 4.5 (topo) e RCP 8.5 (base)	СР 90
Figura 39 – Escoamento médio anual para três horizontes temporais futuros e para RCP 4.5 (topo) e RCP 8.5 (base)	91
Figura 40 – Percentagem de área regada total, resultante da espacialização dos resultados d RA2019	do 93

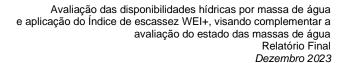
Avaliação das disponibilidades hídricas por massa de água e aplicação do Índice de escassez WEI+, visando complementar a avaliação do estado das massas de água Relatório Final Dezembro 2023

Figura 41 – Relação do coeficiente de regularização com a razão entre o escoamento com garantia de 90% e o escoamento médio	100
Figura 42 – Comparação dos volumes armazenados modelados e observados nas barragel de Vilar Tabuaço (RH3), Aguieira (RH4), Idanha (RH5), Campilhas e Monte da Rocha (RH6 Arade (RH8)	
Figura 43 – Relação do RCON com a razão entre os usos e o escoamento anual médio em regime natural	118
Figura 44 – WEI+ por região hidrográfica (período 1930-2015)	120
Figura 45 – WEI+ por sub-bacia hidrográfica de planeamento (período 1930-2015)	124

1. INTRODUÇÃO

O presente documento apresenta a metodologia e os principais resultados do projeto "Avaliação das disponibilidades hídricas por massa de água e aplicação do Índice de escassez WEI+, visando complementar a avaliação do estado das massas de água", desenvolvido pelo Consórcio NEMUS — Gestão e Requalificação Ambiental, Lda. / BLUEFOCUS — Unipessoal, Lda. / HIDROMOD — Modelação em Engenharia, Lda. para a Agência Portuguesa do Ambiente (APA), I.P.. O documento reúne textos de vários documentos internos que foram sendo produzidos ao longo do projeto, nomeadamente notas técnicas sobre metodologia, relatórios técnicos e relatórios administrativos. Embora exista alguma sobreposição de temas e de textos entre esses documentos e o presente relatório, a compilação num único documento da informação reunida e produzida pelo projeto facilita a divulgação do trabalho realizado.

O projeto "Avaliação das disponibilidades hídricas por massa de água e aplicação do Índice de escassez WEI+" teve por objetivo último a determinação do índice de escassez WEI+ das regiões hidrográficas de Portugal continental, o que exigiu a avaliação das disponibilidades hídricas e dos consumos de água setoriais de cada massa de água em cada região hidrográfica. Os resultados do estudo foram integrados nos trabalhos de elaboração dos Planos de Gestão de Recursos Hídricos (PGRH) do 3.º ciclo de planeamento e contribuíram para o cumprimento do requisito da Diretiva Quadro da Água, no que respeita à avaliação do estado das massas de água e a avaliação do uso sustentável da água.


Para a concretização dos objetivos do estudo, foram realizadas as seguintes tarefas:

- Avaliação das disponibilidades hídricas em regime natural, recorrendo ao um modelo hidrológico;
- Avaliação dos usos de água nos setores da agricultura, pecuária e golfe;
- Avaliação da evolução das disponibilidades hídricas face a cenários de alterações climáticas;
- Avaliação das disponibilidades hídricas em regime modificado e da capacidade de satisfação dos usos da água, utilizando um modelo de alocação de água MIKE HYDRO Basin;
- Análise das situações de escassez, recorrendo ao índice WEI+.

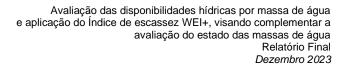
O âmbito geográfico do estudo foi Portugal continental e as áreas em Espanha das bacias hidrográficas partilhadas. Tendo em conta os dados disponíveis, analisou-se o

período histórico entre 1930/31 e 2015/16 e os cenários climáticos projetados para o século XXI.

As séries de escoamento mensal, em regime natural, foram determinadas recorrendo a um modelo hidrológico que tem como dados de entrada as séries de precipitação mensal, de temperatura do ar média mensal e de amplitude térmica diária média mensal. O modelo desenvolvido adotou uma grelha de cálculo matricial, com células de 1 km x 1 km.

A utilização de um modelo hidrológico distribuído exigiu a geração de superfícies a partir dos registos de monitorização da precipitação e temperatura. Foi assim necessário recolher e validar esses dados, identificar os valores em falta e preencher essas falhas. Para produzir as superfícies a partir dos registos mensais das estações de monitorização foram testados vários métodos de interpolação espacial, tendo-se optado pelo método IDW (*Inverse Distance Weighting*). O escoamento mensal foi calculado pela formulação proposta por Temez (Oliveira e Simões, 2022) e a evapotranspiração potencial foi determinada pela equação de Hargreaves-Samani (1982).

Os usos de água setoriais foram determinados por diferentes metodologias, consoante o tipo de uso e os dados disponíveis, sendo no âmbito deste trabalho realizadas estimativas para os usos de água nos setores da agricultura, pecuária e golfe.


As séries de escoamento mensal em regime natural juntamente com estimativas dos usos da água foram inseridas no modelo MIKE HYDRO Basin (DHI, 2017) para determinar a alocação de água aos vários usos e as séries de escoamento em regime regularizado. O modelo simula as decisões de alocação de água aos vários usos, em função dos valores de procura e da disponibilidade de água em albufeiras e em águas subterrâneas. Os resultados do modelo incluem a evolução dos volumes armazenados, os volumes fornecidos a cada uso e indicadores de desempenho dos sistemas de armazenamento e adução, com destaque para a garantia e vulnerabilidade do abastecimento.

Os resultados do modelo MIKE HYDRO Basin permitem calcular o índice de escassez WEI+, uma evolução do índice WEI (Water Exploitation Index) (EEA, 2010), também conhecido por *Criticality Ratio* (Alcamo et al., 2000), *Withdrawal-to-Availability ratio* (WTA) (Damkjaer e Taylor, 2017) ou *Water Resources Vulnerability Index* (Raskin et al., 1997; Rijsberman, 2006). O WEI corresponde apenas à razão entre o volume médio captado anualmente para satisfazer os vários usos e as disponibilidades anuais médias de água. Este índice ignora a variabilidade e sazonalidade do escoamento e da procura de água, o efeito regularizador das albufeiras e as transferências de água entre bacias

hidrográficas. Assim, o WEI+ procura ultrapassar estas limitações, calculando a escassez de água em cada mês de um período longo de análise. O seu cálculo exige o conhecimento do escoamento mensal nas secções significativas da bacia hidrográfica e da recarga mensal das massas de água subterrâneas, assim como as suas variações de volume e os respetivos volumes captados. Esta grande quantidade de dados só é possível obter recorrendo à simulação da alocação de água aos vários usos.

Este relatório está organizado em quatro capítulos. Após o presente capítulo introdutório, o capítulo 2 apresenta a metodologia e premissas de cálculo de cada uma das tarefas realizadas, o capítulo 3 faz uma síntese dos resultados alcançados e o capítulo 4 apresenta as principais conclusões. As referências citadas são apresentadas no capítulo 5.

Avaliação das disponibilidades hídricas por massa de água e aplicação do Índice de escassez WEI+, visando complementar a avaliação do estado das massas de água Relatório Final Dezembro 2023

Esta página foi deixada propositadamente em branco.

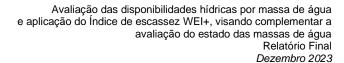
2. METODOLOGIA E PREMISSAS DE CÁLCULO

2.1 Dados de Precipitação

Recolha e análise preliminar de dados

O conjunto de séries de precipitação mensal recolhido inclui dados do SNIRH, do IPMA e da AEMET. As séries de dados recolhidas foram objeto de um controlo de qualidade que incluiu os seguintes passos:

- Avaliação da fiabilidade dos valores de cada série;
- Deteção de eventuais alterações bruscas da média de cada série;
- Deteção de eventuais tendências da média de cada série;
- Avaliação da aleatoriedade e estacionaridade de cada série;
- Deteção de eventuais alterações bruscas da relação média entre cada série e as séries suas vizinhas;
- Deteção de eventuais tendências da relação média entre cada série e as séries suas vizinhas.


Para avaliar a fiabilidade dos valores recolhidos, verificaram-se os valores mínimos e máximos em cada mês e comparou-se o registo de cada estação com um registo de referência calculado a partir dos registos de células vizinhas. Trata-se de uma apreciação subjetiva que visa eliminar séries que apresentem valores francamente anómalos, como valores negativos de precipitação ou valores francamente fora da gama expectável.

A deteção de eventuais alterações bruscas da média de cada série foi realizada aplicando os seguintes testes estatísticos às séries de precipitação anual: *Standard Normal Homogeinity Test* (Alexandersson, 1986), Buishand's *Range Test* (Buishand, 1982), Buishand's *Range Test* (Buishand, 1982, 1984) e Pettit (Pettit, 1979). Estes testes verificam se existe um instante no tempo que defina duas subséries, anteriores e posteriores a esse instante, com médias significativamente distintas.

Para a deteção de eventuais tendências da média de cada série aplicaram-se os seguintes testes estatísticos às séries de precipitação anual: Mann-Kendall *Test* (Hipel e McLeod, 1994; Libiseller e Grimvall, 2002) e *Sen's Slope Test* (Hiple e McLeod, 1994; Sen, 1968).

A aleatoriedade e estacionariedade de cada série foi verificada aplicando o teste de Bartells (Bartells, 1982) às séries de precipitação anual. Este teste é uma versão modificada do Von Neuman's *rank test*, aplicado à ordem (*rank*) de cada valor da série.

Para verificar eventuais alterações da relação entre cada série e as séries suas vizinhas, o registo de valores anuais de cada série foi comparado com um registo de referência, determinado por uma média ponderada dos registos mensais de postos vizinhos. No cálculo desta precipitação de referência, foram incluídos os 20 postos mais próximos de cada uma das estações em teste, que possuíam com esta mais de 80% de valores mensais síncronos. À série que resulta da divisão do registo da série em teste com o registo de referência foram aplicados os testes de deteção de alterações bruscas da média e de deteção de tendência acima referidos.

Todos os testes estatísticos foram aplicados recorrendo às bibliotecas do software de estatística R.

A seleção do conjunto final de estações udométricas a considerar na modelação hidrológica resultou da análise dos seguintes fatores:

- Número de valores de cada registo de monitorização, exigindo-se em princípio um número mínimo de 180 valores mensais (15 anos);
- Qualidade dos registos de monotorização no que diz respeito à sua homogeneidade, aleatoriedade e não existência de tendências detetáveis;
- Distribuição espacial do conjunto de estações, de modo a assegurar que toda a área em análise é monitorizada.

Preenchimento de falhas

No preenchimento dos valores de precipitação em falta foi adotado um modelo de regressão sem termo independente, tendo as falhas sido preenchidas por regressão múltipla ou regressão simples de valores medidos em postos vizinhos ao posto com valores em falta. Os postos considerados como variáveis independentes do modelo de regressão foram aqueles que apresentaram uma maior correlação com o posto com valores em falha. O modelo de regressão a utilizar foi decidido caso a caso, de modo a maximizar o valor da estatística R2 ajustado e a assegurar que todos os coeficientes das variáveis independentes são significativamente diferentes de zero (verificado pela estatística t dos coeficientes das varáveis independentes).

Superfícies de precipitação mensal

As superfícies de precipitação mensal foram produzidas por interpolação espacial dos valores pontuais medidos nos postos udométricos, tendo sido testados os seguintes métodos (Childs, 2004):

- Inverse Distance Weighting (IDW) assume que os pontos que estão próximos entre si são mais parecidos do que os pontos que estão afastados, usando os valores obtidos na vizinhança para prever um valor num local não monitorizado; assumiu-se uma potência (expoente da distância que controla a significância dos pontos vizinhos no valor interpolado) de 2 e um raio de pesquisa (pontos vizinhos que serão usados para controlar o resultado) de 15 000;
- Kriging com deriva externa assume que a distância entre pontos reflete uma correlação espacial que pode ser utilizada para explicar a variação numa superfície. Estabeleceu-se uma regressão múltipla entre os valores de precipitação e os valores de altitude, latitude e distância à costa e produziram-se superfícies às quais se somaram os resíduos da regressão múltipla interpolados por krigagem simples, com média igual a zero e modelo esférico;
- Thin plate spline (TPS) ajusta uma superfície a partir de uma covariável (neste caso, a altitude), admitindo alguns erros em cada ponto, de forma que a superfície resultante fica mais lisa do que se os dados fossem ajustados exatamente.

As superfícies mensais obtidas pelos três métodos foram comparadas com superfícies de precipitação anual média produzidas para Portugal e Espanha por diferentes entidades:

- Atlas do Ambiente¹ (1931-1960) Portugal (APA, 1982);
- Rita Nicolau (1959-1990) Portugal (Nicolau, 2010);
- IPMA PT02 (1950-2003) Portugal (Belo-Pereira et al.;2011);
- MAPAMA (1940-2005) Espanha (MITECO, 2015);
- AEMET ES02 (1951-2015) Espanha (Herrera et al.; 2012);
- Iberia (1971-2015) Portugal e Espanha (Herrera et al; 2019);
- ERA5 (1940-presente) Portugal e Espanha (Hersbach et al, 2020).

O Atlas do Ambiente apresenta intervalos de precipitação, tendo-se assumido um valor intermédio para comparar com os resultados obtidos.

Avaliação das disponibilidades hídricas por massa de água e aplicação do Índice de escassez WEI+, visando complementar a avaliação do estado das massas de água Relatório Final Dezembro 2023

Note-se que o produto Iberia (Herrera et al; 2019) corresponde a uma atualização das superfícies PT02 e ES02 no período 1970-2015.

Os resultados preliminares de escoamento obtidos pelo modelo hidrológico foram também utilizados para avaliar o desempenho de cada método de interpolação espacial.

Verificou-se que o IDW foi o método que conduziu aos melhores resultados.

2.2 Dados de Temperatura e Evapotranspiração

Superfícies de evapotranspiração potencial mensal

A evapotranspiração potencial foi estimada pelos métodos de Thornthwaite e de Hargreaves.

O método de Thornthwaite estima a evapotranspiração potencial no mês t (em mm/mês), a partir da temperatura média mensal T_t (em °C) e de um índice de calor anual, la. Uma vez que a fórmula original assume meses com 30 dias de 12 horas de sol por dia, incluiu-se no cálculo um fator f_m que é função do número de dias que existem em cada mês, D_m , e da insolação astronómica diária média, N_m .

$$ETP_t = 16 \cdot f_m \cdot \left(10 \frac{T_t}{I_a}\right)^a$$

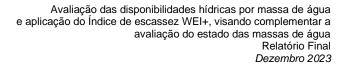
$$I_a = \sum_{m=1}^{12} \left(\frac{T_m}{5}\right)^{1,514}$$

$$a = 675 \times 10^{-9} \ I^3 - 77,1 \times 10^{-6} \ I^2 + 17,92 \times 10^{-3} \ I + 492,39 \times 10^{-3}$$

$$f_m = \frac{D_m \cdot N_m}{360}$$

O método de Hargreaves estima a evapotranspiração potencial no mês t (em mm/dia), ETPt, em mm/dia, a partir da temperatura média mensal (em ${}^{\circ}$ C), T_t , da diferença entre a temperatura máxima mensal média diária e a temperatura mínima mensal média diária, ΔT_t (em °C), e da radiação solar mensal média no topo da atmosfera, R^A_t (em mm/dia):

$$ETP_t = 0.0023 \cdot R_t^A \cdot (T_t + 17.8) \cdot \sqrt{\Delta T_t}$$


A radiação solar foi obtida a partir de uma superfície de latitude (em radianos), da declinação e da distância relativa da Terra ao Sol.

Depois de analisados os resultados obtidos pelos dois métodos, optou-se por aplicar o método de Hargreaves.

Superfícies de temperatura média mensal

O conjunto de séries de temperatura do ar média mensal recolhido inclui dados do SNIRH, do IPMA e da AEMET. No preenchimento dos valores de temperatura em falta foi adotado um modelo de regressão sem termo independente, tendo as falhas sido preenchidas por regressão múltipla ou regressão simples de valores medidos em postos vizinhos ao posto com valores em falta. Os postos considerados como variáveis independentes do modelo de regressão foram aqueles que apresentaram uma maior correlação com o posto com valores em falha. O modelo de regressão a utilizar foi decidido caso a caso, de modo a maximizar o valor da estatística R2 ajustado e a assegurar que todos os coeficientes das variáveis independentes são significativamente diferentes de zero (a verificar pela estatística t dos coeficientes das varáveis independentes).

As superfícies de temperatura média mensal foram produzidas por interpolação espacial dos valores pontuais medidos nos postos udométricos pelo método IDW.

As superfícies mensais obtidas foram agregadas em anuais e comparadas com as superfícies do IDL (1971-2015), para a Península Ibérica, Atlas do Ambiente² (APA, 1982) para o período 1931-1960, para Portugal, e MAPAMA (1940-2005), para as bacias internacionais em território espanhol.

² O Atlas do Ambiente disponibiliza intervalos de temperatura, tendo-se assumido um valor médio dentro de cada um dos intervalos.

2.3 Escoamentos em regime natural

Os modelos hidrológicos ou de balanço hídrico simulam o processo de transformação da precipitação em escoamento. Os primeiros modelos hidrológicos foram desenvolvidos por Thornthwaite nos anos 1940 (Thornthwaite, 1948; Thornthwaite e Mather, 1955). Desde então, vários algoritmos têm sido propostos (Oliveira e Simões, 2022), destacando-se o modelo de Temez (1977) por ser amplamente utilizado em Portugal e Espanha em instrumentos de planeamento.

A avaliação das disponibilidades hídricas em regime natural foi realizada com recurso ao modelo de Temez distribuído com um passo temporal mensal e que também é usado em Espanha. O escoamento mensal foi obtido a partir das séries de precipitação e evapotranspiração potencial (obtidas a partir das séries de temperatura) com uma resolução espacial de 1 km x 1 km. Tendo em conta a quantidade de dados disponíveis, restringiu-se a análise ao período entre outubro de 1930 e setembro de 2016 (86 anos hidrológicos e 1032 meses) e foram consideradas 3818 estações de precipitação e 438 estações de temperatura.

A interpolação espacial dos valores pontuais de precipitação mensal e de temperatura média mensal foi concretizada recorrendo ao método IDW após preenchimento de falhas por regressão múltipla e simples. A evapotranspiração potencial foi estimada a partir da temperatura do ar pela equação de Hargreaves-Samani (1982), tendo em conta a maior disponibilidade de dados de temperatura média mensal.

O modelo de Temez considera duas zonas da coluna litológica: uma zona superficial não saturada e uma zona subterrânea saturada, ambas simuladas através de dois reservatórios (Figura 1). A água armazenada no reservatório superficial corresponde à retenção de água à superfície do terreno e à humidade do solo, enquanto a água armazenada no reservatório subterrâneo corresponde ao armazenamento nos aquíferos da bacia hidrográfica.

O reservatório superficial recebe água por precipitação, P, e perde por evapotranspiração, ETR, ou por excesso da sua capacidade de armazenamento. O excedente, X, infiltra-se e recarrega a zona saturada ou escoa-se superficialmente.

O reservatório subterrâneo recebe água por recarga, R, e perde por esgotamento do aquífero, G. O escoamento superficial total da bacia, T, corresponde à soma do excedente superficial com a parcela proveniente do aquífero.

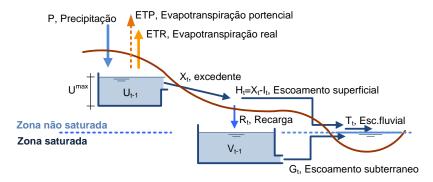


Figura 1 - Esquema do modelo de Temez

No modelo de Temez, o excedente de precipitação, X_t , num dado intervalo de tempo t é calculado pela seguinte expressão:

$$X_t = \begin{cases} 0 & se \ P_t \leq P_o \\ \frac{(P_t - P_o)^2}{P_t + \delta - 2 \cdot P_o} & se \ P_t > P_o \end{cases}$$

que se traduz no gráfico apresentado na Figura 2.

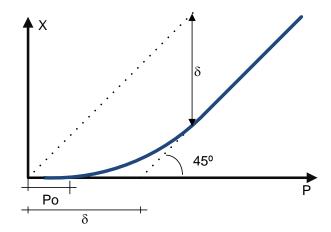


Figura 2 - Relação entre a precipitação e o excedente da precipitação

De acordo com esta expressão só existe excedente quando a precipitação é superior a Po. Este valor corresponde a uma fração do volume disponível no reservatório superficial no início do período de simulação de acordo com a expressão:

$$P_o = C \cdot (U^{max} - U_{t-1})$$

em que C é o coeficiente de excedente, U^{max} é a capacidade de campo (capacidade do reservatório superficial) e U_{t-1} é o volume armazenado no reservatório superficial no final do período t-1.

Monreal (1986) refere-se a *C* como um parâmetro de excedente. Este parâmetro é, no entanto, um coeficiente de perda de água para o escoamento superficial imediato, pois valores elevados do mesmo conduzem a maiores retenções de água no solo.

O parâmetro δ é a máxima diferença possível entre a precipitação e o excedente, o que corresponde ao volume de armazenamento disponível no reservatório de superfície durante o período t. O seu valor pode ser calculado por

$$\delta = U^{max} - U_{t-1} - ETP_{t-1}$$

A evapotranspiração da bacia, ETR, é limitada pela evapotranspiração potencial, ETP, e pela água disponível no reservatório superficial. O volume armazenado no reservatório de superfície é calculado por balanço de massa deste reservatório.

$$ETR_t = min(U_{t-1} + P_t - X_t, ETP_t)$$

$$U_t = max(U_{t-1} + P_t - X_t - ETR, 0)$$

O excedente de precipitação subdivide-se em duas parcelas: a recarga da zona saturada e o escoamento superficial. A recarga, R_t, é calculada pela expressão

$$R_t = R^{max} \cdot \frac{X_t}{X_t + R^{max}}$$

que é representada pelo gráfico da Figura 3. De acordo com esta expressão, a recarga aumenta com o excedente, tendendo assintoticamente para um máximo R^{max}.

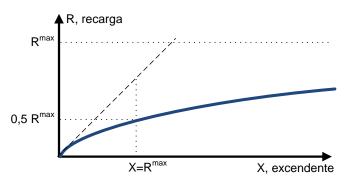


Figura 3 - Relação entre o excedente de precipitação e a recarga

A recarga, R, constitui a entrada de água nos aquíferos da bacia, representados por um reservatório que se supõe ter uma capacidade ilimitada.

O modelo de Temez pressupõe uma única saída de água do aquífero que aflui à rede hidrográfica. A descarga do aquífero subterrâneo é proporcional ao volume armazenado no reservatório, sendo o parâmetro de proporcionalidade o coeficiente de esgotamento do aquífero, α.

$$q = \alpha' \cdot V$$

em que g é a descarga do aquífero num dado instante, V é o volume armazenado no aquífero nesse instante e α' é a constante de descarga. Se o passo de cálculo for pequeno, e.g., um dia, o cálculo da descarga no aquífero no intervalo t pode ser estimado por:

$$G_t = V_{t-1} + R_t - V_t$$

No caso de passos de cálculo mais longos, por exemplo, um mês, é necessário considerar a recarga e a descarga ao longo desse intervalo de tempo. Assumindo que a recarga do aquífero se processa uniformemente ao longo do intervalo de simulação e que α é estimado com a unidade 1/mês, o cálculo da descarga mensal pode ser aproximado por:

$$G_t = \alpha \cdot V_{t-1} + (1 - e^{-\alpha}) \cdot R_t$$

O volume armazenado no aquífero no final do intervalo de simulação é o resultado do balanço de massa do reservatório subterrâneo:

$$V_t = V_{t-1} + \frac{1 - e^{-\alpha}}{\alpha} \cdot R_t$$

Finalmente, o escoamento superficial total da bacia é a soma:

$$T_t = H_t - R_t + G_t$$

A formulação do modelo de Temez inclui quatro parâmetros que é necessário estimar. U_{max} , C e alfa foram estimados de modo a replicar, na medida do possível, os registos das estações hidrométricas em Portugal e Espanha e, ainda, a superfície de escoamento anual médio em Espanha calculada pelo modelo SIMPA (MITECO, 2019). O parâmetro R_{max} foi obtido em Espanha com base em MAPAMA (2017) e posteriormente ajustados de modo a igualar a recarga anual média com o valor obtido em calibrações anteriores do modelo SIMPA (MITECO, 2019). Em Portugal, R_{max} foi obtido de modo a igualar a recarga anual média determinada pelo modelo de Temez com a estimativa da recarga anual média disponibilizada pela APA e obtida por um modelo descrito em APA (2019).

Para calibrar e validar estes parâmetros do modelo de Temez usaram-se os registos de 274 estações hidrométricas (Figura 4). A partir das estimativas pontuais desses parâmetros produziram-se superfícies que assumem uma variação espacial em função da precipitação anual média, do declive do terreno e do tipo do solo.

Figura 4 – Estações consideradas na calibração e na validação

2.4 Cenários de alterações climáticas

Os cenários climáticos foram selecionados de entre os disponibilizados pelo projeto EURO-CORDEX (Jacob et al, 2014). De modo a assegurar a compatibilização do presente trabalho com os trabalhos para o Roteiro Nacional para Adaptação 2100, a cargo da Faculdade de Ciências da Universidade de Lisboa e do Instituto D. Luiz, foi utilizado um ensemble dos 13 modelos considerados por estas instituições.

Foram calculadas as anomalias da precipitação mensal média, em percentagem, e das temperaturas mensais mínima e máxima, em °C, para os períodos 2011-2040, 2041-2070 e 2071-2100 e para duas trajetórias de emissão RCP4.5 e RCP8.5, em relação a um período histórico de 1971 a 2000, também disponibilizado pelo projeto EURO-Cordex. Estas anomalias foram associadas às superfícies da precipitação e temperatura do período histórico (de outubro de 1930 a setembro de 2016), obtendo-se seis cenários climáticos (3 períodos futuros x 2 trajetórias de emissão) compostos pelas séries de precipitação mensal média e de temperatura média mensal com uma duração de 86 anos.

A evapotranspiração potencial (ETP) mensal foi calculada pela fórmula de Hargreaves usando o resultado da soma das temperaturas mensais históricas (de outubro de 1930 a setembro de 2016) às anomalias da temperatura média e a diferença entre as temperaturas máximas e mínimas mensais somadas com as anomalias respetivas destas temperaturas para cada período e RCP, tendo-se obtido seis cenários de ETP mensais.

As superfícies de escoamento mensal para os seis cenários climáticos foram determinadas aplicando o modelo de Temez, calibrado e validado de acordo com o apresentado no relatório das disponibilidades hídricas superficiais em regime natural.

2.5 Determinação das necessidades de água dos vários setores

Os volumes captados pelos setores urbano e industrial foram fornecidos pela APA para as bacias drenantes das massas de água superficiais e para as massas de água subterrâneas e provieram dos dados de base utilizados no cálculo da taxa de recursos hídricos (TRH) relativa ao ano de 2018, complementada, sempre que necessário, com informação dos TURH (Títulos de Utilização de Recursos Hídricos).

Os volumes captados pelo setor da pecuária foram estimados com base na informação disponibilizada pela DGAV para o ano de 2019 sobre os efetivos pecuários por exploração e localização (DGAV, 2020). O documento da DGAV (2014) apresenta os valores de capitação por tipo de animal, tendo-se usado capitações médias e uma distribuição mensal uniforme, exceto para os bovinos, para os quais se considerou uma capitação de 0,9 m³/(animal.mês) entre novembro e abril, 1,0 em maio e 1,2 entre junho e setembro. Os valores utilizados para o cálculo das quantidades de água de lavagem provieram do Código de Boas Práticas Agrícolas (CBPA) publicado pelo Despacho n.º 1230/2018, de 5 de fevereiro.

Os volumes captados pelo setor do golfe foram estimados com base na metodologia desenvolvida pela *United States Golf Association* (USGA) (Gross & Hartwiger, 2016), que estima as necessidades anuais da rega em função da área do campo de golfe e de variáveis climáticas e ambientais, como a evapotranspiração, a precipitação ou o coeficiente de cultura. O Turismo de Portugal, I.P. (2020) disponibiliza a distribuição dos campos de golfe, as suas áreas e o número de buracos. Como o método de rega geralmente utilizado é por aspersão, adotou-se uma eficiência de aplicação igual a 85%. Não foram consideradas perdas no processo de transporte uma vez que os campos de golfe utilizam sistemas de abastecimento próprios com origem em captações privadas (maioritariamente de águas subterrâneas), onde o ponto de consumo/rega está muito próximo do local de extração.

O cálculo dos volumes de água consumidos para rega foi realizado tendo em conta as 28 culturas temporárias, as 28 culturas permanentes e as duas pastagens permanentes consideradas no RA2019 (INE, 2019) e identificadas no Quadro 1.

Quadro 1 – Culturas agrícolas consideradas no cálculo dos volumes consumidos para rega

Classe	Cultura						
	Arroz, Cereais para grão (trigo, centeio, cevada, aveia, triticale, milho,						
Arroz o outroo	outros), Leguminosas secas para grão (feijão, grão-de-bico, outras),						
Arroz e outras	Prados temporários, Culturas forrageiras (raízes e couves, consociações,						
temporárias	sorgo, aveia, milho, centeio, outras), Batata, Culturas industriais (girassol,						
	outras), Culturas hortícolas extensivas, Outras culturas temporárias						
Abrica	Hortícolas intensivas – Ar livre e abrigo abaixo, Hortícolas intensivas –						
Abrigo e	Estufa e abrigo alto, Flores e Plantas ornamentais (ar livre/ abrigo abaixo,						
ornamentais	estufa e abrigo alto)						
Olival	Olival (para azeitona de mesa, para azeite)						
Vinho	Vinha (para vinho, para vinho VQPRD, para outro vinho, para uva de						
Vinha	mesa)						
	Citrinos (laranjeiras, tangerineiras, limoeiros, outros), Frutos frescos						
	(macieiras, pereiras, pessegueiros, cerejeiras, outros), Frutos sub-						
Pomares	tropicais (kiwis, anoneiras, bananeiras, abacateiros, ananaseiros,						
	maracujazeiros, outros), Frutos secos (amendoeiras, castanheiros,						
	nogueiras, alfarrobeiras, outros) e Outras culturas permanentes (vime)						
Pastagens	Compados a Fanantânaca malharadas						
permanentes	Semeadas e Espontâneas melhoradas						

Do ponto de vista espacial, o território continental foi dividido em mais de 50 000 polígonos, com uma área máxima de 273 km², que resultaram do cruzamento dos limites das freguesias, dos aproveitamentos hidroagrícolas dos grupos II, III e IV, e das classes da carta de ocupação do solo (COS) (DGT, 2018). Esse cruzamento visou distribuir os valores de superfície regada por freguesia e por cultura, disponibilizados no RA2019, por áreas de menor dimensão que respeitam os limites dos aproveitamentos hidroagrícolas e, se possível, as classes de uso do solo da COS de 2018.

A superfície regada fornecida por freguesia e por cultura pelo RA2019 foi distribuída de acordo com as seguintes regras:

 Para cada classe de cultura, procurou-se associar a totalidade da superfície regada na freguesia, de acordo com o RA2019 à parcela da freguesia que está inserida no perímetro de rega e que, de acordo com a COS, tem essa classe de cultura;

- O valor remanescente, a existir, foi associado a área fora do polígono de rega que a COS indica como tendo essa classe de cultura;
- Num número reduzido de casos ainda ficou área por distribuir após este processo.
 Relembra-se que a COS 2018 não possui informação se o cultivo da cultura é realizado em regadio ou sequeiro.

Não existindo uma relação biunívoca entre as taxonomias adotadas no RA2019 e na COS2018 e o facto da segunda englobar o cultivo de sequeiro e de regadio na mesma classe, foi necessário associar as culturas identificadas na primeira a uma ou mais classes da segunda para aplicar as regras acima descritas (Quadro 2). A associação às classes da COS2018 foi realizada na sequência indicada na coluna da direita do Quadro 2.

Quadro 2 – Associação das culturas identificadas no RA2019 com as classes da COS2018

Cultura identificada no RA2019	Associação na COS2018					
	2.4.1 Agricultura protegida e viveiros					
Culturas temporárias de	2.1.1 Culturas temporárias de sequeiro e regadio e arrozais					
abrigo e ornamentais	2.3. Áreas agrícolas heterogéneas					
	4.1.1 Superfícies agroflorestais (SAF)					
	2.1.1 Culturas temporárias de sequeiro e regadio e arrozais					
Outras culturas temporárias	2.3. Áreas agrícolas heterogéneas					
	4.1.1 Superfícies agroflorestais (SAF)					
	2.2.3 Olivais					
Olival	2.3. Áreas agrícolas heterogéneas					
	4.1.1 Superfícies agroflorestais (SAF)					
	2.2.1 Vinhas					
Vinha	2.3. Áreas agrícolas heterogéneas					
	4.1.1 Superfícies agroflorestais (SAF)					
	2.2.2 Pomares					
Pomares	2.3. Áreas agrícolas heterogéneas					
	4.1.1 Superfícies agroflorestais (SAF)					
	3.1.1 Pastagens melhoradas					
Pastagens permanentes	2.3. Áreas agrícolas heterogéneas					
	4.1.1 Superfícies agroflorestais (SAF)					

Reconhece-se que, recorrendo a outras fontes de dados, a metodologia adotada para a distribuição espacial das superfícies regadas identificadas no RA2019 pode ser objeto de melhoria, mas os resultados obtidos são adequados para o propósito do projeto. É importante realçar que os valores agregados por freguesia patentes no RA2019 são respeitados e que existem outras fontes de incerteza com maior impacto no cálculo das necessidades de água e no índice de escassez WEI+.

O volume de água $V_{i,c}$, consumido em cada polígono i na rega de cada cultura c, foi calculado pelo produto da superfície regada da cultura $A_{i,c}$ pela dotação cultural $d_{i,c}$, tendo em conta o método de rega adotado na região onde se insere o polígono.

$$V_{i,c} = A_{i,c} \cdot d_{i,c}$$

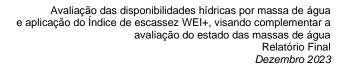
A identificação do método de rega utilizado em cada polígono provém do RA (2019).

As dotações de rega de cada cultura foram obtidas em DGADR (2018), com as seguintes adaptações para ter em conta culturas e métodos de rega não referidos nesse documento:

- As dotações do arroz foram obtidas em Madaleno (2015);
- As dotações das pastagens permanentes foram consideradas iguais às dotações dos prados temporários;
- As dotações de outros frutos secos, outros frutos sub-tropicais, outros pequenos frutos, outras leguminosas secas foram consideradas iguais às dotações médias desses tipos de cultura ou foram estimadas com base em dotações culturais específicas (média das dotações dos cereais para grão das culturas hortícolas ou industriais, das culturas temporárias ou das culturas permanentes);
- As dotações das culturas de abrigo foram consideradas iguais às respetivas culturas ao ar livre, com um incremento de 10%;
- As dotações de métodos de rega por gravidade foram consideradas iguais às dotações por aspersão, corrigidas pelo quociente entre as eficiências dos métodos associados à dotação e à cultura regada (x1.15 para sulcos tradicionais e x1.5 para escorrimento).

Para os cálculos subsequentes, os volumes de água consumidos em cada polígono para a rega de cada uma das culturas foram agregados nas classes identificadas no Quadro 1. Um dos resultados do projeto é uma *shapefile* com mais de 50 000 polígonos, com uma área máxima de 27 300 ha. Cada polígono é caracterizado pelo seguinte conjunto de atributos:

- Área do polígono (km²);
- Percentagem da área do polígono que corresponde a áreas regadas de cada uma das seguintes classes de culturas: arroz e outras culturas temporárias, culturas de abrigo, olival, vinha, pomares, e pastagens permanentes (seis atributos);
- Área regada de cada classe de culturas (km²), correspondendo ao produto da percentagem de área regada pela área total do polígono (seis atributos);
- Consumo específico (m³/ha) resultante da razão entre a soma dos consumos e a soma das áreas regadas por cultura na freguesia; este atributo representa a média ponderada das dotações associadas às culturas pertencentes à classe de culturas; é um resultado, i.e., que não foi utilizado no cálculo.
- Consumo de água de cada uma das culturas acima referidas (m³), resultante da multiplicação do consumo específico pela área regada (seis atributos).


A área afeta a cada classe de cultura em cada polígono é definida em valor absoluto, i.e., em km², e em percentagem da área do polígono. O valor da percentagem é utilizado na produção de mapas que exibem a percentagem do território em que cada classe de cultura é regada.

A shapefile acima referida caracteriza o consumo de água para rega em Portugal continental, assumindo uma distribuição espacial que respeita os valores de áreas regada do RA2019 e, sempre que possível, os dados dos aproveitamentos hidroagrícolas e a distribuição das classes de uso do solo do COS2018.

Para o cálculo dos volumes captados, cada um dos polígonos de cálculo foi associado a uma das 1804 massas de água superficiais e 93 massas de água subterrâneas. Essa associação foi realizada tendo por base o conhecimento sobre a origem de água dos aproveitamentos hidroagrícolas, a localização das captações superficiais de acordo com os dados dos TURH do setor agrícola e a localização de captações de águas subterrâneas. Na prática, procurou-se identificar todas as captações superficiais, assumindo que o volume não satisfeito por origens superficiais tinha origem subterrânea nas imediações dos polígonos de cálculo do consumo. Pontualmente, avaliaram-se os registos de monitorização das massas de água subterrâneas para confirmar a razoabilidade das estimativas dos volumes aí captados. A identificação das origens do abastecimento de água para rega foi um dos passos mais difíceis deste processo de cálculo, atendendo às muitas captações existentes, à falta de medição e reporte dos volumes utilizados, considerando que a obrigação de obtenção de título de utilização dos recursos hídricos ocorre essencialmente a partir de 2007. A suspensão do processo

de regularização, previsto no Decreto-lei n.º 226-A/2007, para as situações anteriores à sua publicação, não permite atualmente um conhecimento detalhado da situação devendo, por isso, merecer estudos mais aprofundados em futuras revisões deste trabalho.

No cálculo dos volumes captados em cada massa de água, os volumes de água consumidos foram afetados por uma eficiência de adução e distribuição, que considera as perdas de água nos canais de rega, entre o local de captação e o equipamento de aplicação da rega. Note-se que a eficiência de aplicação da rega é refletida nos valores de dotação de rega adotados, que têm em consideração os diversos métodos de rega.

Nos casos em que a rega é satisfeita por águas subterrâneas, assumiu-se uma eficiência de adução e distribuição de 100%, pressupondo que, nestes casos, a captação é realizada junto ao local da aplicação da rega, pelo que não existem sistemas de adução e distribuição. Pela mesma razão, também nos pequenos aproveitamentos hidroagrícolas do Grupo IV se considerou uma eficiência de adução e distribuição de 100% (IHERA, 2001). Este aspeto também necessita de estudos mais aprofundados em futuras revisões deste trabalho, já que nestes sistemas não se verifica esta eficiência.

No caso dos aproveitamentos hidroagrícolas coletivos dos Grupos II e III, que podem compreender sistemas constituídos por canais adutores e canais de distribuidores, assumiram-se valores de eficiência inferiores a 100%. Procurou-se obter essa informação junto das associações de beneficiários desses aproveitamentos e da EDIA, recorrendo-se a outras fontes sempre que tal não foi possível, nomeadamente o Plano Regional de Eficiência Hídrica da Região do Algarve (APA/DGADR, 2020).

Finalmente, a distribuição mensal dos volumes captados foi realizada considerando distribuições distintas para cada região, de acordo com os dados disponíveis nos relatórios anuais dos AH ou nos contratos de concessão. No caso das culturas e pastagens permanentes, assumiu-se uma única distribuição de rega para todo o país, adaptada de Rosa (2019).

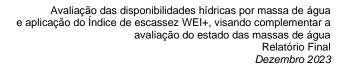
Foi também considerada a produção de hidroeletricidade (uso não consumptivo) a partir dos caudais turbinados nas principais barragens e da potência instalada.

2.6 Disponibilidades hídricas em regime modificado

Avaliação da disponibilidade hídrica garantida em regime modificado

As disponibilidades hídricas garantidas em regime modificado foram inicialmente avaliadas através de um modelo simples que permite avaliar o escoamento mensal que é possível assegurar de forma constante com um dado valor de garantia anual, ou seja, com uma dada percentagem de anos em que é possível libertar um dado volume, durante todos os meses desse ano. Este conceito é designado por *yield* na literatura anglo-saxónica.

O modelo é aplicado separadamente a cada uma das secções em análise, agregando numa única albufeira toda a capacidade de armazenamento instalada a montante e considerando que as afluências de água geradas em regime natural nessa bacia hidrográfica confluem, na sua totalidade, para essa albufeira. A regra de operação da albufeira fictícia é definida de modo a maximizar o volume constante que é possível libertar mensalmente, com uma dada garantia, ao longo de todo o período de simulação.


Correndo o modelo para diferentes valores objetivo de *yield* e determinando os valores de garantia associados a cada um deles, é possível estabelecer uma curva de garantia (*yield curve*) que relaciona esta grandeza com o volume garantido. Trata-se de uma curva que é condicionada pela capacidade de armazenamento da albufeira e pela variabilidade das suas afluências em regime natural. Em cada secção, a garantia diminui com o aumento do volume a garantir e aumenta com a capacidade de armazenamento instalada. O aumento da capacidade de armazenamento permite aumentar a garantia de abastecimento de um dado volume ou aumentar o volume fornecido com uma dada garantia.

Este modelo permite determinar a ordem de grandeza das disponibilidades hídricas garantidas, em regime modificado, tendo em conta a capacidade de armazenamento instalada na bacia hidrográfica de forma simplificada. Os volumes mensais que afluem à albufeira em regime natural correspondem aos valores de escoamento total gerado na bacia hidrográfica determinados por um modelo hidrológico de balanço hídrico, que os calcula a partir da precipitação e da evapotranspiração potencial, assumindo-se que toda a recarga das massas de água subterrâneas aflui, com algum atraso, à rede hidrográfica. Os volumes garantidos determinados pelo modelo incluem, por isso, os recursos subterrâneos que podem ser mobilizados para satisfação dos vários usos.

No entanto, a concentração de toda a capacidade de armazenamento instalada na secção final da bacia hidrográfica pode conduzir a uma sobrestimação das

disponibilidades em regime regularizado, uma vez que se assume que todas as disponibilidades de água da bacia hidrográfica podem ser reguladas pela albufeira e que não há perdas por evaporação.

Formalmente, o modelo adota a seguinte formulação: seja Q_m o valor de escoamento mensal em regime natural que ocorre no mês m numa dada secção e seja K_u a capacidade útil instalada a montante dessa secção. Através de um balanço de massas, calculado à escala mensal, é possível determinar o volume mensal Y_g que é possível satisfazer com uma garantia anual g. Esta garantia g representa a percentagem de anos em que o valor Y_g foi inteiramente satisfeito nos 12 meses do ano.

O valor Y_g é calculado num processo interativo em que vários valores Y são considerados num exercício de simulação da operação da albufeira, até se determinar o valor Y_g que é integralmente satisfeito nos 12 meses dos anos do período de simulação. A simulação da operação da albufeira para cada valor de Y impõe o cálculo do volume útil armazenado na albufeira no final de cada mês, V_m , e do volume que é possível fornecer em cada mês, tendo em conta o volume armazenado no início do mês e as afluências desse mês. O volume armazenado no final do mês m é calculado por:

$$V_m = min[K_u, max(0, V_{m-1} + Q_m - Y)]$$

A expressão indicada assume que o volume armazenado não pode ser inferior a 0 ou superior à capacidade útil da albufeira, K_u e que, nos meses em que não é possível satisfazer a totalidade das necessidades Y, é fornecido todo o volume útil disponível.

No final de cada simulação, a contagem dos anos em que não foi possível satisfazer a totalidade das necessidades nos 12 meses do ano determina a garantia anual de abastecimento do volume Y. Assumindo uma capacidade de armazenamento útil nula, o mesmo modelo fornece o volume de água que é garantido, em regime natural, para diferentes valores de garantia de abastecimento.

Modelação da gestão e alocação das disponibilidades de água em regime modificado

Para ultrapassar as limitações do modelo acima descrito, as disponibilidades em regime modificado foram também obtidas a partir do modelo MIKE HYDRO Basin (DHI, 2017), que representa uma bacia hidrográfica através de uma rede de arcos e nós que inclui os cursos de água e as suas sub-bacias hidrográficas, as infraestruturas de armazenamento e de adução de água (barragens, albufeiras e canais) e os locais de consumo de água (captações de água). Subjacente a cada sub-bacia hidrográfica pode existir uma unidade hidrogeológica, de uma ou duas camadas, com capacidade para armazenar água (Figura 5).

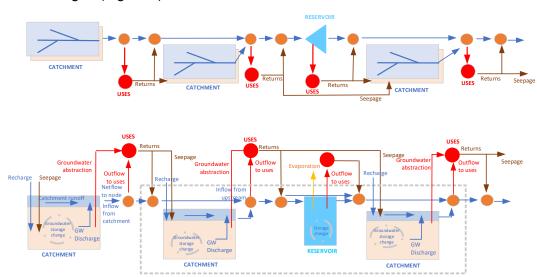


Figura 5 - Esquema do funcionamento do MIKE HYDRO Basin

Nas modelações realizadas, cada bacia hidrográfica de Portugal continental foi dividida nas suas principais sub-bacias (Figura 6 a Figura 18), tendo em conta os cursos de água, os aproveitamentos hidráulicos (Quadro 3) e os locais de consumo mais relevantes. A exigência do modelo em associar as unidades hidrogeológicas a uma determinada sub-bacia superficial obrigou à divisão das massas de água subterrâneas e à distribuição da sua recarga por essas sub-unidades subjacentes às sub-bacias superficiais.

Quadro 3 - Barragens consideradas no modelo MIKE HYDRO Basin

Nome da barragem	RH	Cota fundo (m)	Nme (m)	NPA (m)	NMC (m)	Cota Coroam (m)	Área inundada no Nme (km²)	Área inundada ao NPA (km²)	Volume em Nme (hm³)	Volume útil (hm³)	Volume total (hm³)	Curva Área inundada	Curva Volume Armaz.	Regime caudais ecológicos
Alto Lindoso	RH1	229	280	338	339	339	2.15	10.72	31.10	347.9	379	Não	Sim	sim
Touvedo	RH1	12.5	47.1	50	50	55		1.72	11.00	4.5	15.5	Não	Sim	sim
Salas	RH1	785.5	788	834	834	836		62.29			531.72			sim
Alto Rabagão	RH2	786	833	880	880.1	880.5	1.45	22.24	18.60	550.1	568.7	Não	Sim	sim
Caniçada	RH2	87	121	162	162.5	163	1.26	5.78	14.90	144.4	159.3	Não	Sim	sim
Guilhofrei	RH2	288	315	333.3	333.3	337	0.55	1.63	0.12	21.08	21.2	Sim	Sim	não
Paradela	RH2	632	668	740	741.6	744	0.59	3.96	6.22	158.2	164.4	Não	Sim	sim
Salamonde	RH2	205.3	242	280	280.5	281	0.60	2.36	10.00	55	65	Não	Sim	sim
Venda Nova	RH2	604	645	700	700.5	701	0.25	4	2.40	92.1	94.5	Não	Sim	sim
Vilarinho das Furnas	RH2	476	530	569.5	570	570	0.12	3.46	20.20	97.5	117.69	Não	Sim	sim
Alto Cávado (Rabagão)	RH2	879	894.9	901.5	905	906.5		0.5	1.3	2	3.4	Não	Sim	não
Azibo	RH3	550	575	602	603.65	606	0.00	4.1	7.80	46.67	54.47	Sim	Sim	não
Bemposta	RH3	321	397	402	406	408	3.65	4.05	108.80	20	128.8	Não	Sim	n.a.
Carrapatelo	RH3	0	45	46.5	47.5	55	8.56	9.52	134.56	15.6	150.2	Não	Sim	n.a
Crestuma- Lever	RH3	-3.5	11.5	13.2	21.5	25.5	9.20	12.98	87.50	22.5	110	Não	Sim	n.a
Feiticeiro	RH3	95	130	138	138	140	1.35	2	18.00	12	30	Sim	Sim	n.a
Foz do Tua	RH3	64	167	170	171	172	3.70	4.209	78.00	28	106.1	Sim	Sim	Sim
Miranda	RH3	455	522	528.05	533	535	0.94	1.22	21.60	6.4	28	Não	Sim	n.a.
Picote	RH3	380	465	471	478	480	2.07	2.44	49.35	13.4	62.7	Sim	Sim	n.a.
Pocinho	RH3	90	124	125.5	134.5	139	7.20	8.29	70.90	12	82.9	Não	Sim	n.a.
Régua	RH3	40.85	72	73.5	74.5	81.85	8.41	8.5	83.00	12	95	Não	Sim	n.a.
Sabugal	RH3	735.5	774	790	791.81	794	3.03	7.32	36.00	78.3	114.3	Sim	Sim	sim
Torrão	RH3	0	58	65	65	69	3.41	6.5	83.50	40.4	123.9	Sim	Sim	não
Valeira	RH3	65	103.5	105.2	106.2	113	7.59	7.95	85.50	13	98.5	Não	Sim	n.a.
Vilar-Tabuaço	RH3	497	525	552	553.6	555	0.89	6.7	4.50	95.5	100	Não	Sim	sim
Baixo Sabor	RH3	113	227.4	234	235	236	25.39	28.2	923.00	630	1095	Sim	Sim	não
Aldeadavila	RH3	193.5	204	327.83	327.83	333		3.68		56	114.87			não
Saucelhe	RH3	111.5	114	190	190	195		5.82			181.37			não
Aguieira	RH4	37.65	110	124.7	126	126.65	6.40	20	207.00	216	423	Não	Sim	sim
Fronhas	RH4	90	117	134.1	140	140	1.48	5.35	19.60	42.5	62.1	Sim	Sim	sim

Nome da barragem	RH	Cota fundo (m)	Nme (m)	NPA (m)	NMC (m)	Cota Coroam (m)	Área inundada no Nme (km²)	Área inundada ao NPA (km²)	Volume em Nme (hm³)	Volume útil (hm³)	Volume total (hm³)	Curva Área inundada	Curva Volume Armaz.	Regime caudais ecológicos
Raiva	RH4	28.5	55.8	61.5	62.5	64.5	1.60	2.3	12.40	12	24.4	Não	Sim	sim
Ribeiradio	RH4	37	100	110	112	113	4.20	5.61	87.40	49	136.4	Sim	Sim	não
Bouçã	RH5	117	171	175	179.8	180	1.82	5	40.50	7.9	48.4	Não	Sim	não
Cabril	RH5	165	240	296	296	297	4.84	19.65	105.00	615	720	Sim	Sim	não
Castelo de Bode	RH5	8	79	121.5	122	123	10.42	35	192.50	902.5	1095	Sim	Sim	sim
Fratel	RH5	30	71	74	76	78	6.01	7.5	72.00	21	93	Não	Sim	não
Idanha	RH5	208	228	255.5	258.5	259	0.30	6.78	0.80	77.3	78.1	Não	Sim	não
Maranhão	RH5	78	85.47	130	130.9	133	3.44	19.6	24.50	180.9	205.4	Sim	Sim	não
Meimoa	RH5	516	547	568.5	568.99	572	0.78	2.22	13.90	27	40.9	Sim	Sim	não
Minutos	RH5	231.5	245	264	265.54	267.5	0.66	5.3	2.10	50	52.1	Sim	Sim	estabelecido
Montargil	RH5	35	65	80	80.75	83	4.13	16.46	21.60	142.7	164.3	Sim	Sim	não
Pracana	RH5	55	97	114	115	115	3.22	5.47	42.60	69.3	111.9	Sim	Sim	sim
Póvoa	RH5	281.5	297.55	312	313	313.5	0.44	2.36	3.20	18.8	22	Sim	Sim	não
Sta. Luzia	RH5	580	615	655.6	655.88	656	0.33	2.46	2.70	51	53.7	Sim	Sim	não
Sta. Águeda (Marateca)	RH5	363	374.5	385	385.5	388	1.17	6.34	4.50	32.7	37.2	Sim	Sim	não
Monte Fidalgo (Cedillo)	RH5	54	65	115	115	120		10.95	260	261.2				não
Alcântara	RH5	146.8	148.5	218	223			104		2433	3162	Sim	Sim	Sim
Alvito	RH6	153.1	172	197.5	198.85	201.6	1.05	14.8	2.50	130	132.5	Sim	Sim	sim
Campilhas	RH6	76.5	92.53	108	109.15	111.5	0.30	3.33	1.00	26.15	27.15	Sim	Sim	não
Monte da Rocha	RH6	86.4	113.5	137	138.45	141.4	0.79	11	5.00	99.5	104.5	Sim	Sim	estabelecido
Morgavel	RH6	18	52	68.3	68.74	70	0.70	3.4	5.50	27	32.5	Não	Sim	não
Odivelas	RH6	51	91.3	103	104.55	106	2.93	9.73	26.00	70	96	Sim	Sim	estabelecido e libertado
Pêgo do Altar	RH6	12.5	15	52.26	52.26	56	0.20	6.55	0.40	93.6	94	Não	Sim	não
Roxo	RH6	90.5	124.5	136	137	139.5	2.23	13.78	6.80	89.511	96.311	Sim	Sim	não
Santa Clara	RH6	48	114.7	130	132	135	11.76	19.86	244.70	240.3	485	Sim	Sim	não
Vale do Gaio	RH6	11	11	40.5	42.5	45	0.00	5.5	8.00	55	63	Sim	Sim	não
Alqueva	RH7	58	135	152	152.8	154	100.00	250	1000.00	3150	4150	Sim	Sim	estabelecido e libertado
Beliche	RH7	0.3	27	52	53.94	54.3	0.63	2.92	0.40	47.6	48	Sim	Sim	estabelecido
Caia	RH7	183.2	192.4	233.5	233.9	235.2		19.7	10.70	192.3	203	Sim	Sim	não

Nome da barragem	RH	Cota fundo (m)	Nme (m)	NPA (m)	NMC (m)	Cota Coroam (m)	Área inundada no Nme (km²)	Área inundada ao NPA (km²)	Volume em Nme (hm³)	Volume útil (hm³)	Volume total (hm³)	Curva Área inundada	Curva Volume Armaz.	Regime caudais ecológicos
Odeleite	RH7	5	26	52	52.9	55	2.00	7.2	13.00	117	130	Não	Sim	estabelecido
Pedrogão	RH7	51.1	79	84.8	91.8	94.1	8.11	11.04	52.00	54	106	Sim	Sim	estabelecido e libertado
Abrilongo	RH7	225.7	241.2	252	253.7	254.7		2.95	1	18.9	19.9			estabelecido
Vigia	RH7	196.25	210	224	224.75	226.25	0.24	2.62	1.145	15.58	16.725	Sim	Sim	estabelecido
Monte Novo	RH7	169	183.5	196	196.8	199	0.19	2.77	0.5	14.78	15.28	Sim	Sim	estabelecido
Alamo I e II	RH7	225	225	227.5	228.11	230		1.95		4.4	17.6			estabelecido e libertado
Chança	RH7	-19	0.4	61	63	66		22.39		326	386	Sim	Sim	sim
Arade	RH8	15	34.5	61	62.5	65	0.28	1.82	1.64	26.74	28.38	Não	Sim	não
Bravura	RH8	45	61	84.1	85	86	0.37	2.85	2.57	32.26	34.825	Sim	Sim	não
Funcho	RH8	51	73	96	96.8	99.8	0.51	3.6	4.97	42.75	47.72	Sim	Sim	não
Odelouca	RH8	30	72	102	102.35	106	2.03	7.8	23.00	134	157	Sim	Sim	sim

Legenda – n.a. – não aplicável. Nos sistemas a fio-de-água e em cascata não são definidos caudais ecológicos por se considerar que existe sempre uma continuidade em termos de caudais para jusante e não existem troços a seco .

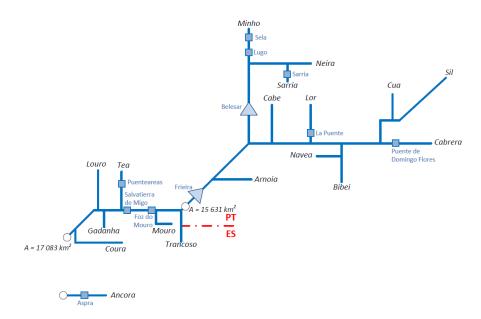


Figura 6 - Esquema hidrográfico das bacias hidrográficas do Minho e Âncora

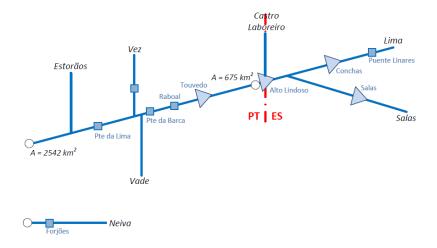


Figura 7 – Esquema hidrográfico das bacias hidrográficas do Lima e Neiva

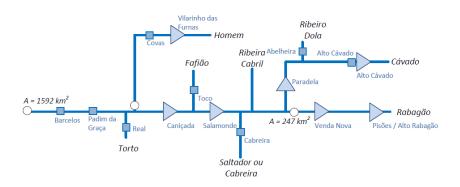


Figura 8 – Esquema hidrográfico da bacia hidrográfica do Cávado

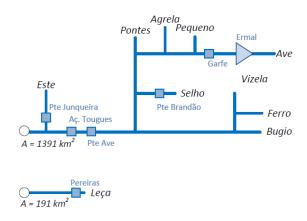


Figura 9 – Esquema hidrográfico da bacia hidrográfica do Ave e Leça

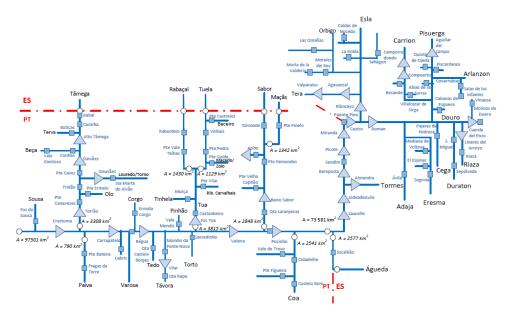


Figura 10 – Esquema hidrográfico da bacia hidrográfica do Douro

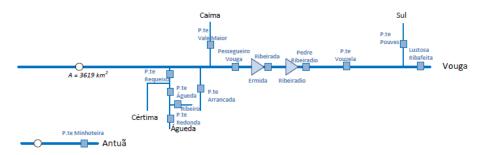


Figura 11 – Esquema hidrográfico da bacia hidrográfica do Vouga

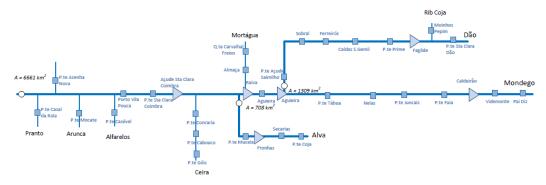


Figura 12 – Esquema hidrográfico da bacia hidrográfica do Mondego

Figura 13 - Esquema hidrográfico da bacia hidrográfica do Lis

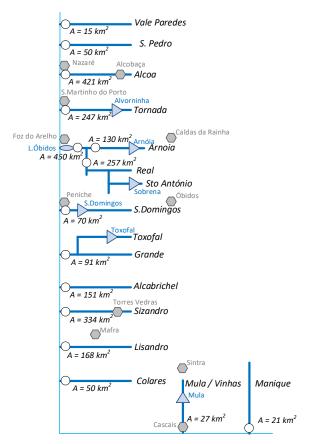


Figura 14 – Esquema hidrográfico da bacia hidrográfica das ribeiras do Oeste

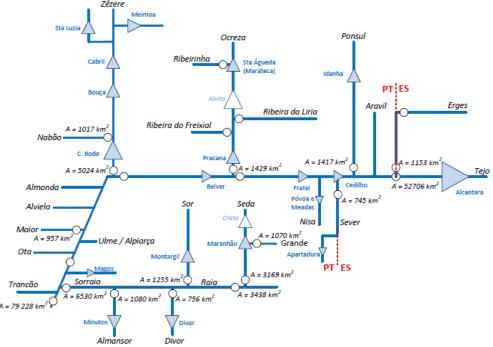


Figura 15 – Esquema hidrográfico da bacia hidrográfica do Tejo

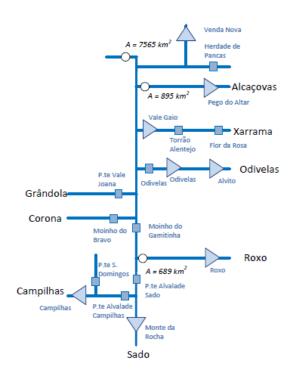


Figura 16 – Esquema hidrográfico da bacia hidrográfica do Sado

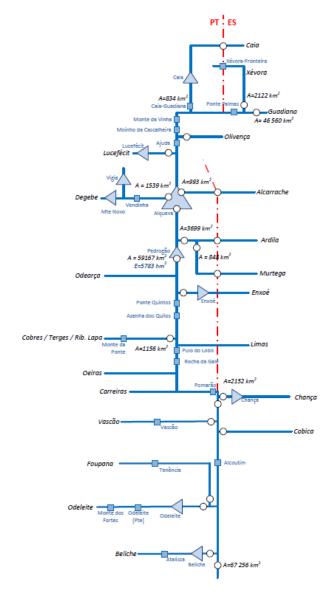


Figura 17 – Esquema hidrográfico da bacia hidrográfica do Guadiana

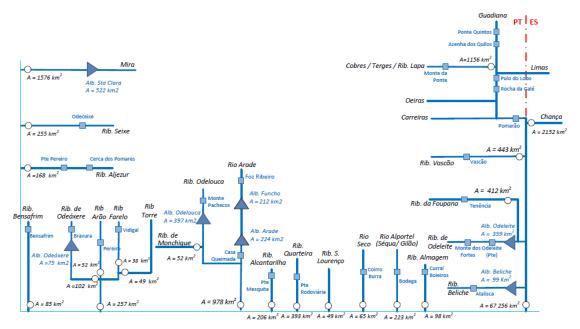


Figura 18 - Esquema hidrográfico das bacias hidrográficas do Mira e ribeiras do Algarve

Foram estabelecidas regras de operação das albufeiras incluídas nas figuras acima e regras de alocação de água aos vários usos associando a cada uso os seguintes parâmetros:

- Priority number: um valor inteiro que determina a alocação de água entre usos em função do nível da albufeira e da sua prioridade, atribuídos de forma crescente, em que o valor 1 tem maior prioridade;
- Reduction level: nível da albufeira abaixo do qual se aplicam restrições de fornecimento de água;
- Reduction factor: percentagem do objetivo de fornecimento que se procura satisfazer quando o nível da albufeira se encontra entre determinados valores.

Na definição das regras de operação das albufeiras, foram inicialmente atribuídos valores aos parâmetros acima indicados, que depois foram apurados, caso a caso, para conseguir um desempenho razoável de todo o sistema.

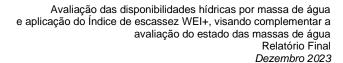
Para poder incluir os usos de água que são abastecidos por origens subterrâneas, foi necessário incluir na simulação da alocação da água aos vários usos a recarga das águas subterrâneas, a sua captação para satisfação das necessidades e a sua drenagem para os cursos de água superficiais. Assim, os dados de disponibilidade de água fornecidos ao modelo MIKE HYDRO Basin foram as séries de escoamento

superficial (X-R) e de recarga (R), sendo responsabilidade do modelo calcular a drenagem das camadas subterrâneas para os cursos de água.

O modelo MIKE HYDRO Basin considera a coluna litológica dividida em duas camadas. A água que se infiltra na bacia superficial flui para a camada superior da coluna litológica, onde pode ficar armazenada ou drenar para a rede hidrográfica ou para a camada inferior da coluna litológica. A água que atinge esta camada inferior pode também ficar armazenada ou drenar para o curso de água. Assumiu-se que a captação de água subterrânea para satisfação das necessidades de água é realizada nesta camada mais profunda.

A drenagem de água das duas camadas da coluna litológica é controlada por um parâmetro designado tempo de residência, em horas, que possui um papel semelhante ao parâmetro α do modelo de Temez (1977). Para procurar reproduzir os cálculos do modelo de Temez pelo modelo MIKE HYDRO Basin, assumiram-se valores baixos do tempo de residência entre as duas camadas de modo a facilitar a drenagem da água para a camadas inferior. Os valores do tempo de residência para a rede de drenagem (Quadro 4) foram determinados a partir dos valores de alfa de cada região hidrográfica pela seguinte fórmula:

$$T_r(h) = \frac{24 \cdot 30}{\alpha (mes^{-1})}$$


Quadro 4 - Valores assumidos para o tempo de residência

		1	empo de residência (h)	
RH	α (1/mês)	Camada superior -> Camada inferior	Camada superior -> Rede de drenagem	Camada inferior -> Rede de drenagem
1	0,5	100	1440	1440
2	0,3	100	2400	2400
3	0,3	100	2400	2400
4	0,2	100	3600	3600
5	0,5	100	1440	1440
6	0,6	100	1200	1200
7	0,3	100	2400	2400
8	0,8	100	900	900

Os valores determinados para as massas de água superficiais foram usados diretamente no modelo MIKE HYDRO Basin, mas foi necessário distribuir os valores determinados para as massas de água subterrâneas pelas unidades hidrogeológicas subjacentes a cada massa de água superficial. Essa distribuição foi realizada da seguinte forma: os consumos de água para uso urbano e industrial foram distribuídos de forma proporcional à população existente em cada massa de água superficial (INE, 2021). Os consumos de água da pecuária foram distribuídos de forma proporcional ao número de cabeças de gado equivalente. Finalmente, os consumos para rega e golfe foram distribuídos de acordo com a área regada.

Para validar os resultados do modelo, analisou-se a variação dos volumes armazenados nas albufeiras de Espanha e de Portugal. Trata-se de uma validação aproximada, uma vez que não é de esperar um ajustamento perfeito entre a evolução histórica dos volumes armazenados nas várias albufeiras e os correspondentes resultados da modelação e também por terem sido assumidos os volumes captados atuais. Estas possíveis diferenças podem também ser justificadas pela entrada em funcionamento de novos aproveitamentos ou pela variação da produção de eletricidade de origem hídrica, em função de condicionamentos externos ao domínio dos recursos hídricos. No entanto, esta comparação permite comprovar a solidez dos resultados.

Avaliação do grau de alteração dos escoamentos com base no indicador RCON

Para refletir as pressões hidrológicas nos sistemas naturais, a Comissão Europeia sugere a adoção do indicador "Relação dos escoamentos observados-naturais (RCON)", que se traduz na relação entre escoamentos observados e escoamentos naturais. Ao aplicar este indicador, é possível quantificar o desvio existente entre as disponibilidades atuais e as existentes no cenário de referência ou prévio à existência de alterações.

A avaliação do grau de escoamentos com base na "relação dos escoamentos observados-naturais (RCON)" foi realizada a partir dos resultados da modelação hidrológica e da modelação dos escoamentos modificados, obtidos através do modelo MIKE HYDRO Basin. Este cálculo foi realizado para cada massa de água e numa base anual e mensal.

2.7 Cálculo do WEI+

O índice de escassez WEI+ de uma bacia hidrográfica *i* é calculado pela seguinte equação:

$$WEI^{+i}_{t} = \frac{A_i^i - R_i^i}{RWR_t^i - Qenv_t^i} \tag{1}$$

em que A_t^i é o volume captado no mês t, R_t^i é o retorno desse uso, RWR_t^i são os recursos hídricos disponíveis ($renewable\ water\ resources$) e $Qenv_t^i$ é o volume exigido para fins ambientais.

O índice é calculado para todos os meses do período de simulação, sendo no final apresentados os valores médios anuais, de cada mês ou estação do ano.

Em cada mês, o valor de RWR inclui o escoamento total gerado na bacia hidrográfica, i.e., a diferença entre a precipitação (P) e a evapotranspiração (ET), os volumes armazenados em albufeiras ou aquíferos mobilizados para a satisfação das necessidades ($-\Delta S$) e o volume transferido de outras bacias hidrográficas (T), incluindo as de montante cujo escoamento aflui naturalmente à bacia em análise. O escoamento total gerado na bacia hidrográfica inclui o escoamento superficial direto e a recarga de aquíferos. O valor de ΔS corresponde à variação do volume armazenado nas albufeiras e sistemas aquíferos da bacia hidrográfica, e tem em conta as perdas por evaporação. É negativo quando estas reservas são utilizadas na satisfação das necessidades.

Para ilustrar o cálculo do valor de RWR, considerem-se as duas bacias hidrográficas apresentadas na Figura 19 e as entradas e saídas. A bacia hidrográfica 1 encontra-se a montante da bacia hidrográfica 2 e não possui nenhuma bacia hidrográfica a montante.

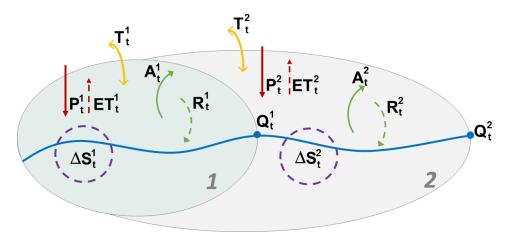


Figura 19 – Esquema de duas bacias hidrográficas, com a bacia 1 situada a montante da bacia 2

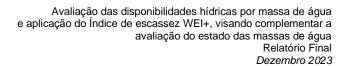
O RWR de cada bacia hidrográfica pode ser calculado por dois métodos. O primeiro faz uso da estimativa do escoamento total em regime natural (P-ET) e da variação do volume armazenado na bacia em albufeiras e aquíferos (Δ*S*). O segundo utiliza o escoamento em regime modificado registado na secção final de cada bacia hidrográfica (Q) e o consumo útil, i.e., a diferença entre o volume captado (A) e o volume que retorna ao meio hídrico após essa utilização (R). A disponibilidade de água de bacia hidrográfica é estimada pelo valor registado na secção de jusante, que não inclui o que já foi consumido, adicionado do consumo de água líquido na bacia hidrográfica.

$$RWR_t^1 = P_t^1 - ET_t^1 - \Delta S_t^1 + T_t^1 \qquad (2)$$

$$RWR_t^1 = Q_t^1 + (A_t^1 - R_t^1) + T_t^1 \qquad (3)$$

$$RWR_t^2 = P_t^1 - ET_t^1 - \Delta S_t^1 + T_t^1 - (A_t^1 - R_t^1) + P_t^2 - ET_t^2 - \Delta S_t^2 + T_t^2 \qquad (4)$$

$$RWR_t^2 = Q_t^2 + (A_t^2 - R_t^2) + T_t^2 \qquad (5)$$


A quantidade de água perdida por evaporação nas albufeiras, e que, por isso, não está disponível para uso, é incluída na variação do volume armazenado na bacia hidrográfica. Essa quantidade não está incluída nos valores de Q porque não atinge a secção final da bacia hidrográfica.

O WEI+ procura medir a escassez de água de uma bacia hidrográfica através da quantificação do grau de utilização dos recursos hídricos disponíveis, superficiais e subterrâneos. A noção que o RWR representa os recursos superficiais e subterrâneos é mais evidente nas equações 2 e 4, em que as diferenças P-ET constituem a totalidade os recursos hídricos superficiais e subterrâneos disponibilizados pela precipitação num dado mês, a que se devem somar os volumes disponibilizados por reservas existentes em albufeiras e aquíferos (ΔS), as afluências de bacias a montante e as transferências artificiais de outras bacias. Nos meses em que existe um aumento do volume armazenado em albufeiras e aquíferos, o valor de ΔS é positivo e o valor de P-ET disponibilizado no mês é deduzido da parte armazenada para uso futuro.

As equações 2 e 3 conduzem aos mesmos resultados das equações 4 e 5, assumindo a premissa que, num dado mês, o escoamento no curso de água, Q, é a soma do escoamento superficial direto desse mês e do escoamento de base, com origem subterrânea, que resulta da recarga ocorrida em meses anteriores. O modelo hidrológico utilizado assume que, em regime natural, toda a recarga a montante de uma dada secção de um curso de água aflui a essa secção, mais cedo ou mais tarde, o que pode não ser verdade, sobretudo nas secções de montante de bacias hidrográficas. Em

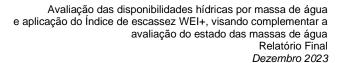
regime modificado, o valor de Q registado na secção final da bacia hidrográfica já está deduzido dos usos satisfeitos por origens subterrâneas.

O primeiro método (equações 3 e 5) exige a modelação hidrológica de cada bacia hidrográfica em regime natural, para obter estimativas da evapotranspiração real e variação do armazenamento em sistemas aquíferos. O segundo método (equações 2 e 4) exige o conhecimento do escoamento em regime regularizado na secção final de cada bacia hidrográfica, o que não sendo obtido numa estação hidrométrica terá de ser estimado por um modelo de quantificação de um conjunto de variáveis que, por regra, só é possível recorrendo à modelação matemática de alocação de água, como o MIKE HYDRO Basin.

No presente projeto, o WEI+ foi calculado por ambos os métodos para assegurar a consistência dos resultados e que não existiam erros nos cálculos. O Quadro 5 apresenta a relação entre as variáveis incluídas nas equações de cálculo do RWR e as variáveis dos modelos hidrológico e de alocação de água (MIKE HYDRO Basin).

Quadro 5 – Relação entre as variáveis incluídas nas equações de cálculo do RWR e as variáveis dos modelos hidrológico e de alocação de água (MIKE HYDRO Basin)

Variável da equação	Modelo	Variável do modelo
Precipitação, P	Hidrológico	Precipitação, P
Evapotranspiração real, ET	Hidrológico	Evapotranspiração real, ET
Variação do volume armazenado na bacia, ΔS	Alocação de água	Var. Vol.: Alb. e Aquif
Transferências de montante e transferências para outras bacias hidrográficas, T	Alocação de água	Montante: Transf. Consumos: Tranf.Out
Escoamentos de montante, na bacia própria e na secção final da bacia hidrográfica, Q	Hidrológico	Montante: Escoam. Bacia própria: Esc. Sup., Esc. Subt., Esc total Jus: FlowDown
Volumes captados de origem superficiais, A	Alocação de água	Consumos: Sup. Consumos: Subt. Consumos: Total
Caudal ecológico, Qenv	-	Consumos: Qeco
Retornos, R	Alocação de água	Consumos: Returns Jusante: Returns
Evaporação na albufeira	-	Evap
Infiltração	Alocação de água	Montante: Seepage Consumos: Seepage Jusante: Seepage


O caudal ecológico (Q_{env}) em cada mês foi estimado a partir do caudal médio mensal em regime natural em anos secos, médios e húmidos, assumindo-se que 10% destes valores estão reservados para assegurar ecossistemas saudáveis.

A aplicação da equação 1 para o cálculo do WEI+ está sujeita a algumas vicissitudes que convém ter presente.

O valor de WEI+ de uma dada bacia hidrográfica depende dos usos de água realizados nas bacias situadas a montante, o que significa que o seu uso para avaliar a sustentabilidade dos usos de água em bacias hidrográficas de jusante deve ser realizado com cautela. Um valor do WEI+ próximo de um pode não resultar de um uso excessivo de água nessa bacia, mas sim de usos elevados realizados a montante. Resulta desta constatação que não é útil proceder a uma excessiva discretização

espacial do cálculo do WEI+, uma vez que os valores calculados para bacias hidrográficas de pequena dimensão, situadas a jusante, não têm significado.

O facto do cálculo do WEI+ obrigar à quantificação de um conjunto de variáveis que só é possível alcançar por modelação matemática torna-o dependente da qualidade dos dados de entrada e da calibração e validação desses modelos. Quanto maior a incerteza nos resultados dos modelos, menor a confiança nos valores do WEI+.

O cálculo do WEI+ é realizado por bacia hidrográfica, o que obriga à divisão das massas de água subterrâneas pelos limites das bacias hidrográfica e à distribuição da sua recarga por essas subunidades subterrâneas, subjacentes às sub-bacias superficiais. Quando as trocas de água entre essas subunidades fictícias de massas de água subterrâneas são significativas, os valores do WEI+ podem não refletir as condições de escassez.

O valor do WEI+ é também muito sensível às premissas de cálculo sobre os regimes de caudais ecológicos e os retornos dos usos consumptivos. A comparação dos valores de WEI+ obtidos por estudos com autores distintos, que podem ter assumido diferentes premissas, deve ser realizada com cuidado. Acresce que, em meses muito secos, o valor de RWR pode ser inferior ao caudal ecológico, conduzindo a um denominador negativo e um valor de WEI+ negativo. Nesses casos, deve ser atribuído o valor de um ao WEI+, uma vez que nesses meses não existem recursos para satisfazer os consumos.

A forma de cálculo do WEI+ assume de forma implícita que os consumos de água correspondem às necessidades de água, isto é, que todos os usos são satisfeitos. No sul da Europa, tal não é necessariamente verdade e, em períodos de seca, é necessário impor restrições ao uso da água. Nesses casos, o valor unitário do indicador, indicando que todos os recursos disponíveis estão a ser utilizados para satisfazer os usos subestima a gravidade da situação. A avaliação dos valores do WEI+ deve ser acompanhada por uma análise dos valores da garantia de satisfação dos vários usos.

Finalmente, é de salientar que no cálculo do WEI+ apenas são considerados os usos consumptivos, não sendo considerados os usos não consumptivos que ocorrem nos cursos de água, como a produção de energia hidroelétrica, nem o cultivo de culturas em regime de sequeiro ou a atividade pecuária em que os animais dependem das pastagens de sequeiro e da água retida em pequenas charcas.

3. SÍNTESE DE RESULTADOS

3.1 Precipitação

Recolha e análise preliminar de dados

O conjunto de dados reunido inclui 1 694 409 valores de precipitação mensal do período entre outubro/1900 e setembro/2019, distribuídos por 4413 estações localizadas em Portugal e Espanha. O número de valores mensais por série variou entre 0 e 1420, o que correspondeu a uma percentagem de falhas entre 100% e 0,6%. Estas estações fazem parte das redes do SNIRH, IPMA e AEMET (Quadro 6).

Quadro 6 - Número de estações de medição da precipitação por rede de monitorização

Rede	N.º de estações com registos no período 10/1900-09/2019	N.º de estações com menos de 20% de falhas no período 10/1930-09/2016
SNIRH	775	188
IPMA	59	0
AEMET	3594	123
Total	4428	311

A distribuição dos valores de precipitação mensal por ano (Figura 20) permite concluir que os anos anteriores a 1930 e posteriores a 2015 possuem um número reduzido de dados, tendo-se restringido a análise ao período entre outubro de 1930 e setembro de 2016 (86 anos hidrológicos e 1032 meses).

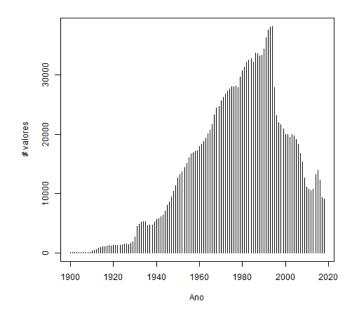


Figura 20 - Número de valores precipitação mensal disponíveis por ano hidrológico

A avaliação da fiabilidade dos valores de cada série de precipitação mensal não revelou qualquer valor anómalo que justificasse a exclusão de qualquer série. Os valores mínimos e máximos mensais de todas as 4428 séries recolhidas são plausíveis e, em particular, os das 3818 séries que foram objeto de controlo de qualidade (Figura 21).

A aplicação dos testes de homogeneidade aos registos de precipitação anual do período out/1930-set/2016 revelou que as 3818 séries não falharam quaisquer testes.

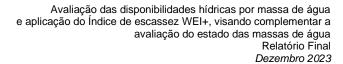


Figura 21 - Estações selecionadas

Preenchimento de falhas

Os registos das estações udométricas selecionadas reuniram 2 198 302 valores mensais, o que corresponde a uma percentagem de falhas próxima de 56%. Através dos modelos de regressão múltipla e simples, um total de 1 740 618 falhas mensais foi preenchido, ficando-se com 1256 falhas.

O resultado do preenchimento das falhas foi uma base de dados com as séries de precipitação mensal completa para o período entre outubro de 1930 e setembro de 2016.

Superfícies de precipitação

A comparação dos valores resultantes dos vários métodos de interpolação (Quadro 7 e Quadro 8) revela que o IDW apresenta valores maiores de precipitação para a maior parte das bacias hidrográficas, enquanto o *kriging* apresenta valores menores. Para as bacias costeiras, os valores obtidos pelo IDW são, em regra, mais baixos do que os obtidos pelos outros métodos de interpolação. O método IDW conduz também a valores no interior da gama das estimativas de trabalhos anteriores. Na calibração do modelo hidrológico, constatou-se também que as estimativas da precipitação por IDW conduziam aos melhores resultados de escoamento.

Uma possível explicação para os bons resultados deste método é o elevado número de estações utilizadas no cálculo das superfícies com os seus registos completos por regressão. As superfícies obtidas por kriging com deriva externa de diferentes variáveis independentes (altitude, distância à costa e latitude) apresentavam uma variabilidade espacial mais vincada e valores extremos mais acentuados. Parecendo ser mais realistas, conduziam, no entanto, a piores estimativas de escoamento nalgumas áreas da região em análise.

Quadro 7 – Comparação da precipitação anual média com superfícies de referência em todas as sub-bacias em território português

Bacia hidrográfica	Área		1	971-20	015			1931-1	1960			1	950-20	03			1	959-19	90	
Bacia filurografica	(km²)	IDW	Krig	TPS	Iberia	ERA5	IDW	Krig	TPS	AA	IDW	Krig	TPS	PT02	ERA5	IDW	Krig	TPS	RN	ERA5
Minho	817	1644	1587	1592	1674	1653	1855	1792	1777	1690	1875	1800	1804	1302	1710	1915	1832	1846	2030	1734
C Minho e Lima	123	1593	1532	1577	1609	1760	1841	1729	1763	1684	1804	1725	1758		1823	1836	1767	1784	1891	1852
Lima	1220	1755	1692	1752	1769	1734	2022	1941	1978	2034	2031	1957	2004	1182	1790	2076	2008	2059	2258	1815
Neiva e C Lima e Neiva	248	1568	1454	1599	1601	1722	1685	1618	1712	1835	1765	1653	1800	1427	1780	1841	1711	1888	1939	1808
C Neiva e Cavado	20	1427	1296	1216	1431	1426	1491	1448	1113	1388	1583	1461	1315		1481	1674	1521	1430	1652	1510
Cavado	1344	1670	1608	1690	1750	1651	1960	1866	1988	1857	1965	1882	1979	1567	1704	2018	1936	2034	2139	1732
C Cavado e Ave	68	1130	1173	1008	1274	1410	1211	1274	1040	1132	1264	1310	1125		1465	1320	1365	1192	1405	1494
Ave	1391	1444	1410	1464	1527	1629	1608	1564	1638	1465	1658	1610	1686	1344	1692	1720	1668	1750	1767	1716
C Ave e Leca	89	1052	1114	1057	1190	1164	1187	1236	1200	1100	1174	1244	1176		1216	1220	1291	1222	1286	1243
Leca	191	1172	1171	1217	1183	1263	1241	1282	1291	1345	1284	1305	1336	1050	1318	1320	1351	1370	1447	1343
C. entre Leca e Douro	12	1095	1128	1076	1155	1163	1076	1229	993	1100	1152	1237	1105		1215	1177	1280	1123	1228	1243
Douro	6004	898	917	915	971	968	973	997	988	946	991	1014	1009	889	1006	1014	1040	1033	1123	1028
Tâmega	2648	1292	1282	1257	1327	1188	1381	1388	1316	1204	1452	1443	1399	1240	1230	1485	1478	1439	1481	1254
Paiva	796	1350	1306	1422	1337	1242	1499	1434	1593	1579	1508	1452	1595	1095	1295	1557	1502	1642	1746	1322
Tua	1255	700	721	643	753	782	728	756	648	741	766	793	693	610	800	782	811	700	767	820
Tuela	921	853	817	838	901	887	914	866	909	972	955	901	948	745	903	982	923	984	971	922

Daala bidaa aaffiaa	Área		1	971-20	015			1931-1	1960			1	950-20	03			1	959-19	90	
Bacia hidrográfica	(km²)	IDW	Krig	TPS	Iberia	ERA5	IDW	Krig	TPS	AA	IDW	Krig	TPS	PT02	ERA5	IDW	Krig	TPS	RN	ERA5
Rabaçal	946	807	810	774	879	707	843	851	797	791	880	892	835	568	718	898	911	850	857	734
Sabor	2410	683	680	674	757	738	716	715	714	743	748	745	745	615	754	761	760	758	772	773
Macas	901	654	664	641	732	686	711	692	717	725	726	720	725	512	699	731	733	726	720	715
Coa	2522	663	684	626	725	613	700	730	647	704	747	768	706	777	634	770	790	728	742	652
Águeda	248	611	624	612	747	651	622	627	625	695	656	675	653		674	678	693	675	675	694
C Douro e Vouga	207	1313	1217	1291	1179	1268	1373	1304	1331	1218	1406	1316	1369	1013	1325	1454	1359	1417	1326	1355
Vouga	3685	1205	1183	1239	1195	1236	1301	1278	1327	1248	1309	1290	1337	1078	1293	1353	1332	1383	1388	1326
C Vouga e Mondego	138	838	962	816	880	919	907	1035	953	871	903	1043	888		966	951	1084	937	945	997
Mondego	4570	947	972	959	1011	992	1072	1085	1092	1060	1054	1080	1066	854	1042	1102	1126	1113	1101	1071
Alva	708	1062	1031	1140	1152	1088	1165	1158	1239	1363	1154	1139	1225	1151	1138	1207	1182	1289	1255	1167
Dão	1381	1084	1018	1090	1140	886	1233	1136	1254	1356	1217	1141	1230	989	925	1264	1184	1277	1306	949
C Mondego e Lis	145	818	859	789	837	893	905	951	879	750	890	943	842		941	933	986	875	907	972
Lis	850	842	863	844	902	805	991	995	982	977	961	975	962	724	846	1000	1014	1003	1007	870
Oeste 1	119	805	813	790	830	834	906	919	815	790	911	910	878	630	879	943	945	905	901	908
C. entre Oeste2 e Tejo	96	730	716	689	726	640	802	766	779	720	838	802	818		667	856	821	841	733	680
Oeste 2	2293	726	739	722	782	673	789	803	783	739	812	825	803	595	701	844	855	835	822	718
Tejo	7289	661	688	645	724	633	737	769	727	698	748	777	736	558	658	764	796	752	753	675

Bacia hidrográfica	Área		1	971-20)15			1931-1	1960			1	950-20	03			1	959-19	90	
Bacia filurografica	(km²)	IDW	Krig	TPS	Iberia	ERA5	IDW	Krig	TPS	AA	IDW	Krig	TPS	PT02	ERA5	IDW	Krig	TPS	RN	ERA5
Almansor	1080	580	602	580	639	589	655	671	660	658	669	685	672	556	614	689	702	692	717	629
Divor	756	550	579	550	610	603	621	646	642	672	633	658	640	613	630	654	677	658	667	647
Grande	1135	543	585	538	604	578	641	666	642	627	613	655	610	517	603	631	673	626	616	625
Maior	923	696	710	700	775	630	793	804	795	809	799	812	803	533	653	822	837	829	847	672
Zêzere	4007	1034	1000	1087	1058	947	1160	1126	1211	1227	1164	1125	1220	963	989	1201	1161	1259	1191	1011
Nabão	997	887	896	883	952	832	1023	1031	1017	1001	1020	1026	1011	788	872	1057	1063	1043	1046	893
Ocreza	1430	879	875	845	909	793	965	960	925	1077	973	968	936	768	829	981	979	939	1002	847
Sever	327	726	721	756	722	651	812	795	837	889	800	793	828	561	680	803	806	829	761	705
Ponsul	1495	739	745	712	765	633	825	813	812	778	801	808	777	582	662	813	817	792	771	679
Erges	595	713	737	677	756	694	781	798	729	757	780	802	745	568	725	794	815	764	666	744
Maciço Calcário	233	994	913	1050	971	787	1158	1063	1216	1256	1129	1046	1185		822	1154	1076	1218	1296	844
C. entre Tejo e Sado 1	163	656	716	523	690	580	662	749	589	633	723	790	628		607	723	803	611	715	617
C. entre Tejo e Sado 2	30	652	736	623	688	570	644	777	690	707	719	815	739		596	723	829	739	800	607
Sado	6149	559	579	563	594	534	605	641	612	631	625	652	630	478	557	638	667	644	650	566
Alcáçovas	895	549	560	551	618	601	641	645	659	720	650	652	670	518	631	665	666	688	714	647
Roxo	689	498	511	496	516	472	535	569	530	549	542	568	533	454	489	552	580	540	554	496
C Sado e Mira	595	599	676	597	620	604	658	734	666	713	649	745	641	622	635	659	765	644	687	647

Dezembro 2023

Dania kidaa aattiaa	Área		1	971-20)15			1931-1	960			1	950-20	03			1	959-19	90	
Bacia hidrográfica	(km²)	IDW	Krig	TPS	Iberia	ERA5	IDW	Krig	TPS	AA	IDW	Krig	TPS	PT02	ERA5	IDW	Krig	TPS	RN	ERA5
Mira	1576	615	632	595	645	533	685	701	654	703	693	711	668	569	551	708	727	685	720	559
C. Mira e Barlavento	152	691	683	571	636	550	758	740	622	598	772	760	632		570	795	784	667	604	580
Barlavento	1185	647	642	599	635	520	652	674	583	606	708	712	641	500	538	725	728	660	718	547
Arade	979	642	626	648	682	519	728	700	750	750	734	713	744	537	535	740	721	748	797	543
Sotavento	1583	601	581	593	622	524	639	628	626	572	681	659	669	552	540	688	666	675	665	548
Guadiana	6185	505	511	508	536	488	572	574	574	560	568	572	571	464	507	576	580	579	588	519
Chança	485	519	504	564	517	480	535	548	566	473	552	544	588	445	498	558	549	592	544	511
Cobres	1156	474	491	480	496	427	533	550	542	543	518	541	524	440	440	519	546	523	545	447
Ardila	855	519	497	501	553	512	555	563	539	490	564	547	548	388	537	584	559	574	554	556
Murtega	59	556	514	534	610	533	565	572	532	550	578	556	544		562	600	570	565	550	586
Degebe	1538	494	501	486	557	532	589	601	573	593	578	586	571	474	557	593	600	586	593	574
Alcarrache	207	512	484	468	508	489	586	553	530	515	568	540	525	385	513	580	555	537	543	531
Caia	816	553	584	558	610	556	623	635	641	619	613	637	625	432	582	633	653	650	633	602
Xévora	297	604	586	619	637	544	697	635	738	653	669	637	696	370	569	690	653	717	650	587
Sorraia	1200	598	619	577	647	546	636	679	606	622	676	696	657	564	565	699	717	681	690	579
Sor	1255	631	624	628	674	640	725	711	728	690	722	711	720	588	666	743	732	741	739	687
Rabagão	247	1578	1549	1582	1569	1400	1803	1769	1782	1712	1837	1789	1835	1552	1441	1879	1829	1893	1922	1468

Pasia hidrográfica	Área		1	971-20)15			1931-1	960			1	950-20	03			19	959-19	90	
Bacia hidrográfica	(km²)	IDW	Krig	TPS	Iberia	ERA5	IDW	Krig	TPS	AA	IDW	Krig	TPS	PT02	ERA5	IDW	Krig	TPS	RN	ERA5
Seda	2074	590	594	578	621	624	676	680	644	666	670	673	650	542	652	694	693	676	667	674
Raia	229	571	586	555	590	589	595	634	573	650	628	654	606		612	659	676	637	660	630

Legenda: AA – Atlas do Ambiente; IDW – interpolação por Inverse Distance Weighting; Krig – interpolação por kriging; TPS – interpolação por Thin Plate Spline; RN – Rita Nicolau.

Dezembro 2023

Quadro 8 - Comparação da precipitação anual média com superfícies de referência nas bacias internacionais em território espanhol

Bacia			1950-	2005			1	1951-20	015	
hidrográfica	IDW	Krig	TPS	МАРАМА	ERA5	IDW	Krig	TPS	ES02	ERA5
Douro Espanha	584	641	585	614	658	591	647	594	612	652
Guadiana Es	518	524	523	523	524	522	528	527	543	515
Minho Espanha	1198	1215	1232	1240	1177	1207	1224	1250	1136	1173
Tejo Espanha	618	610	628	648	649	618	610	628	648	636

A Figura 22 apresenta a superfície de precipitação anual média obtida por IDW para o período out-1930 a set-2016, calculada a partir das superfícies de precipitação média mensal (Figura 23) e o Quadro 9 apresenta os valores de precipitação mensal e anual.

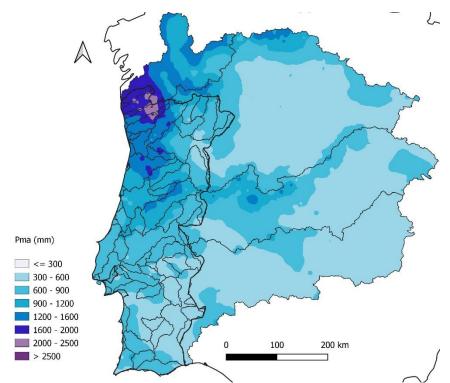


Figura 22 - Superfície de precipitação anual média obtida por IDW

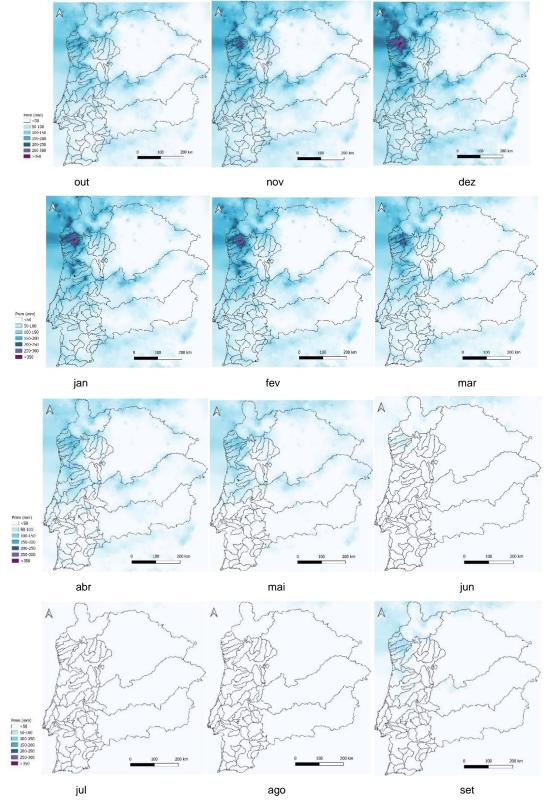


Figura 23 - Superfície de precipitação mensais obtidas por IDW

Quadro 9 – Precipitação anual e mensais médias por sub-bacia (período out-1930 a set-2016)

	<i>f</i>	_ ,, ,, ,,					Precip	itação m	ensal n	nédia				
Sub-bacia hidrográfica	Årea (km²)	Pméd anual (mm)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Minho	808	1633	165	196	230	231	183	176	127	117	59	27	34	87
C. Minho e Lima	130	1684	173	210	236	237	187	180	127	122	58	28	35	91
Lima	1217	1908	187	229	271	274	215	208	149	136	70	32	40	97
Neiva	241	1659	167	200	236	238	187	178	127	118	60	27	33	86
Cávado	1344	1838	180	218	260	266	208	203	144	131	68	30	37	92
C. Cávado e Ave	17	1198	119	146	172	173	134	130	94	87	45	18	22	58
Ave	1390	1527	150	182	218	219	175	166	123	109	57	24	29	74
C. Ave e Leça	47	1152	115	148	163	163	126	123	93	84	42	16	23	56
Leça	190	1185	120	148	169	170	131	126	97	85	42	17	22	57
Douro	6030	901	92	109	126	124	100	93	77	69	37	14	16	44
Tâmega	2644	1329	131	157	190	189	152	145	110	97	52	20	24	62
Paiva	790	1511	150	183	220	218	180	161	125	108	53	20	24	68
Tua	1255	744	79	89	102	98	80	77	64	59	33	12	13	38
Tuela	921	985	104	117	133	131	103	102	84	77	44	19	20	52
Rabaçal	946	977	104	115	132	131	103	101	82	76	42	18	20	52
Sabor	2394	745	79	89	100	96	77	74	65	61	35	14	15	40
Maçãs	901	718	76	85	95	91	72	71	64	61	36	15	15	39
Coa	2521	670	77	85	88	85	69	67	59	55	29	10	10	36
Águeda	248	669	79	85	85	80	64	66	60	58	30	11	12	39

	<i>5</i> 0.						Precip	itação m	ensal m	nédia				
Sub-bacia hidrográfica	Área (km²)	Pméd anual (mm)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
C. Douro e Vouga	207	1294	135	164	182	181	145	133	106	94	46	19	26	63
Vouga	3619	1291	131	160	184	185	151	136	108	95	45	16	21	60
Dão	1309	1177	119	144	168	170	139	124	99	85	43	15	17	54
C. Vouga e Mond.	119	902	97	116	127	129	103	93	77	68	30	9	13	42
Mondego	4644	1029	106	128	145	146	117	108	88	77	38	12	14	48
Alva	708	1194	125	150	169	168	133	125	102	89	44	15	17	55
Lis	903	931	101	118	135	135	109	100	79	65	30	8	11	41
C. Mondego e Lis	131	841	91	108	120	120	96	88	71	62	27	8	11	38
Oeste 1	65	861	94	112	125	121	101	91	73	62	27	8	10	39
C. Oeste 2 e Tejo	48	775	85	107	111	112	88	87	65	52	21	5	7	35
Oeste 2	2109	770	85	104	109	109	89	83	67	55	23	6	7	34
Тејо	7225	675	76	90	95	94	76	74	58	48	21	5	6	32
Almansor	1080	627	71	82	90	87	71	70	55	43	19	4	4	29
Divor	756	595	67	78	85	80	68	67	53	42	19	4	4	27
Grande	1070	592	67	77	83	80	68	68	52	42	20	4	5	28
Maior	957	760	82	101	107	109	88	83	66	53	24	6	7	35
Zêzere	4007	1118	121	146	159	161	127	121	93	80	37	11	12	52
Nabão	1017	924	98	118	132	134	106	99	78	66	31	8	9	44
Ocreza	1429	918	104	122	130	130	104	101	75	64	29	7	9	43
Sever	310	752	84	96	106	103	86	83	66	55	25	6	7	37
Ponsul	1417	754	91	101	102	102	81	81	63	55	25	7	7	38

	<i>t</i> 0.						Precip	itação m	ensal n	nédia				
Sub-bacia hidrográfica	Área (km²)	Pméd anual (mm)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Erges	592	823	100	109	113	111	88	87	69	61	28	8	8	42
C. Tejo e Sado	106	662	72	91	98	97	78	75	56	43	16	3	4	28
Sado	5981	586	65	78	88	82	68	67	53	39	15	3	3	25
Alcáçovas	895	653	71	84	95	92	77	75	59	44	19	4	4	29
Roxo	689	520	58	69	77	69	58	61	50	36	14	2	4	22
C. Sado e Mira	479	604	66	83	92	87	70	69	52	39	14	3	3	25
Mira	1576	634	70	88	100	87	73	75	58	39	13	2	3	25
C. Mira e Barl.	217	669	73	94	105	94	78	78	60	41	14	2	3	26
Barlavento	995	646	70	94	106	92	77	74	57	37	11	2	3	24
Arade	979	675	74	95	109	96	79	79	59	39	13	2	3	26
Sotavento	1314	607	67	86	105	87	73	70	50	32	11	2	3	22
Guadiana	6190	541	63	71	80	70	59	62	51	37	16	3	4	24
Chança	485	605	73	80	90	78	64	69	58	41	17	3	4	28
Cobres	1156	509	57	67	77	65	55	60	50	35	14	2	4	23
Murtega	59	755	88	96	107	99	83	83	71	55	25	5	7	36
Degebe	1538	553	62	70	78	72	63	64	52	40	19	4	5	25
Alcarrache	207	592	70	74	81	75	65	64	58	45	20	4	6	30
Ardila	841	561	66	71	77	71	61	62	55	42	20	4	5	28
Caia	816	595	68	78	82	79	67	67	54	42	21	4	5	28
Xévora	297	641	73	84	89	86	71	72	58	45	21	4	6	32
Sorraia	1117	624	72	83	87	86	71	68	54	43	20	4	5	29

	<i>5</i> 0.						Precipi	itação m	ensal m	nédia				
Sub-bacia hidrográfica	Área (km²)	Pméd anual (mm)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Sor	1255	684	76	89	95	94	79	76	59	49	23	5	5	33
Rabagão	247	1700	161	200	249	248	197	192	137	120	62	25	30	79
Seda	2099	642	72	83	89	87	74	72	56	47	22	5	5	30
Raia	270	595	67	77	83	82	69	66	53	42	20	5	4	27
Douro Espanha	74598	572	60	64	65	61	50	51	53	57	38	18	17	36
Guadiana Es	48572	497	56	59	64	55	51	51	51	44	24	6	8	28
Minho Espanha	16275	1163	119	141	160	154	125	119	94	86	50	25	28	62
Tejo Espanha	54733	614	69	75	76	68	60	60	59	56	32	11	12	37
Lima Espanha	1322	1524	153	183	214	211	169	163	122	111	60	27	33	77
Águeda Espanha	2349	670	79	85	84	78	64	66	62	58	30	12	12	40
Alcarrache Esp.	786	614	72	76	84	78	68	66	60	46	21	4	6	31
Ardila Espanha	2011	618	73	78	86	78	67	67	59	46	22	5	6	31
Caia Espanha	20	491	58	65	68	61	53	54	48	34	19	3	4	26
Chança Espanha	1667	666	81	87	100	86	70	74	63	45	19	3	5	30
Erges Espanha	561	903	109	120	126	122	96	96	76	67	30	8	9	46
Maçãs Espanha	441	766	82	90	101	98	77	75	68	64	37	16	16	42
Murtega Espanha	789	769	90	98	109	101	85	84	72	55	25	5	7	37
Rabaçal Espanha	483	1245	133	147	167	166	131	130	103	97	51	24	27	68
Sabor Espanha	112	1096	118	135	147	139	113	109	98	86	46	22	23	58
Sever Espanha	436	714	82	93	100	96	80	79	62	50	23	6	7	35
Tâmega Espanha	664	1239	129	148	168	168	134	131	103	95	51	23	26	62

	Á (1 2)	Precipitação mensal média												
Sub-bacia hidrográfica	Årea (km²)	Pméd anual (mm)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago 29	set
Tuela Espanha	208	1332	142	161	180	174	139	137	111	104	56	26	29	72
Xévora Espanha	1825	596	69	79	82	77	64	66	54	43	21	4	6	30

3.2 Temperatura e evapotranspiração

Recolha e análise preliminar de dados

A base de dados de temperatura média mensal incluiu 157 404 valores, distribuídos por 454 estações. O número de valores mensais por série varia entre 4 e 1421, o que corresponde a uma percentagem de falhas entre 99,6% e 0,5%. Estas estações fazem parte das redes do SNIRH, IPMA e AEMET (Quadro 10). Não foram consideradas as séries de temperatura de 46 estações da AEMET por estarem fora da área em estudo.

Quadro 10 – Número de estações de medição da temperatura por rede de monitorização

Rede	N.º de estações com registos no período 10/1900-09/2019	N.º de estações com menos de 20% de falhas no período 10/1930-09/2016
SNIRH	104	4
IPMA	39	0
AEMET	311	21
Total	454	25

A distribuição de valores por ano permite concluir que o período anterior a 1945 possui um número reduzido de dados (Figura 24).

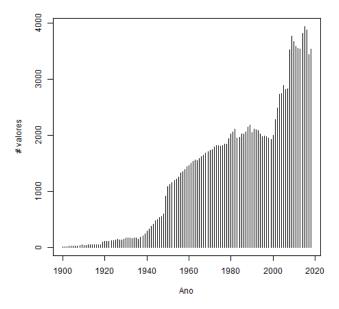


Figura 24 – Número de valores de temperatura média mensal disponíveis por ano hidrológico

A avaliação da fiabilidade dos valores de cada série de temperatura média mensal não revelou qualquer valor anómalo que justificasse a exclusão de nenhuma série (Figura 25). Os registos de temperatura das 438 estações selecionadas no período 10-1930 a 09-2016 reuniram 133 688 valores mensais, o que corresponde a uma percentagem de falhas próximo de 70%.

Figura 25 - Estações selecionadas

Preenchimento de falhas

Foram preenchidos 137 006 registos. Tendo em conta que a temperatura é uma variável com muito menos variação interanual e tendo em conta o menor número de estações, considerou-se este preenchimento de falhas aceitável.

O resultado do preenchimento das falhas foi uma base de dados com as séries de temperatura média mensal completa para o período entre outubro de 1930 e setembro de 2016.

Superfícies de temperatura

Comparando os valores obtidos com os das superfícies de temperatura utilizadas como referência, verifica-se que são muito próximos na maior parte das bacias hidrográficas, sendo os valores obtidos pelo IDW ligeiramente superiores aos obtidos pelo Atlas do Ambiente e ligeiramente inferiores aos obtidos pelo Iberia 01 (Herrera et al; 2019) (Quadro 11 e Quadro 12). As maiores diferenças (acima de 2°C, em valor absoluto) ocorrem nas bacias hidrográficas dos rios Rabagão (-3,2 °C), Alva (-3,1 °C), Sever (-3,1 °C), Paiva (-2,7 °C) e Zêzere (-2,3 °C) quando se compara os resultados da interpolação por IDW com os do Atlas do Ambiente.

Quadro 11 – Comparação da temperatura anual média com superfícies de referência

		19	71-2015		1931-1960
Bacia hidrográfica	Área (km²)	IDW	Iberia 01	IDW	Atlas do Ambiente
Minho	817	13.8	13.6	12.7	12.5
Costeiras entre o Minho e o Lima	123	14.6	14.1	13.2	13.8
Lima	1220	13.9	14.3	12.8	11.9
Neiva e Costeiras entre o Lima e o Neiva	248	14.7	14.9	13.4	13.2
Costeiras entre o Neiva e o Cavado	20	14.8		13.5	13.8
Cavado	1344	13.3	13.7	12.8	11.9
Costeiras entre o Cavado e o Ave	68	14.7		13.6	13.8
Ave	1391	14.2	14.6	13.4	13.3
Costeiras entre o Ave e o Leca	89	14.7	14.8	13.6	13.8
Leca	191	14.7	14.8	13.7	13.8
Costeiras entre o Leca e o Douro	12	14.8		13.8	13.8
Douro	6004	14.1	14.2	13.3	13.0
Tâmega	2648	12.9	13.1	12.7	11.8
Paiva	796	14.3	13.7	13.6	10.9
Tua	1255	13.2	14.3	12.6	13.9
Tuela	921	12.4	12.9	12.0	12.9
Rabaçal	946	12.7	13.0	12.1	11.6
Sabor	2410	12.8	14.0	12.2	13.4
Macas	901	12.1	12.5	11.9	11.5
Соа	2522	13.0	13.4	13.5	11.6
Águeda	248	12.8	13.3	13.4	11.9

	,	19	71-2015	1931-1960			
Bacia hidrográfica	Área (km²)	IDW	Iberia 01	IDW	Atlas do Ambiente		
Costeiras entre o Douro e o Vouga	207	14.7	14.5	13.9	14.4		
Vouga	3685	14.4	14.2	14.0	13.7		
Costeiras entre o Vouga e o Mondego	138	15.0	14.9	14.7	13.8		
Mondego	4570	14.0	14.1	14.0	13.3		
Alva	708	13.2	13.3	13.6	10.5		
Dão	1381	13.3	13.8	13.4	13.7		
Costeiras entre o Mondego e o Lis	145	15.0	15.1	14.8	13.8		
Lis	850	15.0	14.5	14.9	14.7		
Oeste 1	119	14.9	14.4	14.8	13.8		
Costeiras entre o Oeste2 e o Tejo	96	16.2		15.8	15.7		
Oeste 2	2293	15.1	15.5	15.1	14.2		
Tejo	7289	15.9	16.1	15.7	15.7		
Almansor	1080	16.0	16.1	16.0	15.5		
Divor	756	15.9	16.0	16.0	15.5		
Grande	1135	16.1	16.3	15.8	16.7		
Maior	923	15.5	16.0	15.6	16.0		
Zêzere	4007	14.1	13.4	14.4	12.1		
Nabão	997	15.1	14.9	15.0	15.8		
Ocreza	1430	15.2	15.0	15.0	13.3		
Sever	327	15.6	15.9	15.3	12.2		
Ponsul	1495	15.3	15.3	15.5	14.4		
Erges	595	15.3	14.7	15.3	13.9		
Maciço Calcário	233	15.4	13.7	15.1	16.5		
Costeiras entre o Tejo e o Sado 1	163	16.5	16.4	16.0	15.7		
Costeiras entre o Tejo e o Sado 2	30	16.4		15.9	15.5		
Sado	6149	16.2	16.2	16.2	16.0		
Alcáçovas	895	16.2	16.4	16.2	15.5		
Roxo	689	16.4	16.6	16.3	15.6		
Costeiras entre o Sado e o Mira	595	16.0	15.4	15.9	16.7		
Mira	1576	16.2	15.5	16.2	15.9		
Costeiras entre o Mira e o Barlavento	152	15.6	15.3	15.9	16.8		
Barlavento	1185	16.4	15.7	16.5	16.1		

		19	71-2015		1931-1960		
Bacia hidrográfica	Área (km²)	IDW	Iberia 01	IDW	Atlas do Ambiente		
Arade	979	16.7	16.3	16.6	16.7		
Sotavento	1583	17.3	17.4	16.7	17.4		
Guadiana	6185	16.9	16.9	16.6	16.3		
Chanca	485	16.9	17.1	16.8	17.9		
Cobres	1156	16.5	16.5	16.5	15.7		
Ardila	855	16.6	17.3	16.5	17.6		
Murtega	59	16.5	16.9	16.4	16.8		
Degebe	1538	16.3	16.8	16.3	16.2		
Alcarrache	207	16.8	17.4	16.4	16.8		
Caia	816	16.3	16.3	15.7	16.5		
Xévora	297	16.3	16.2	15.7	16.4		
Sorraia	1200	16.0	16.5	15.9	15.5		
Sor	1255	15.8	16.1	15.6	14.8		
Rabagão	247	11.2	11.6	12.0	8.8		
Seda	2074	15.9	16.3	15.7	15.7		
Raia	229	16.0	16.2	15.9	15.5		
Douro Espanha	78857	11.2	11.1				
Guadiana Espanha	55373	15.4	15.8				
Minho Espanha	17549	12.4	10.9				
Tejo Espanha	55767	13.7	13.8				

Quadro 12 – Comparação da temperatura anual média com superfície de referência nas bacias internacionais em território espanhol

Basis II las suríges	1940-2005						
Bacia hidrográfica	MAPAMA	IDW					
Douro Espanha	10.3	11.1					
Guadiana Espanha	14.7	15.0					
Minho Espanha	10.4	12.3					
Tejo Espanha	13.2	13.3					

A Figura 26 apresenta a superfície de temperatura anual média obtida para o período 10-1930 a 09-2016 e o Quadro 13 e a Figura 27 a temperatura mensal média por subbacia hidrográfica.



Figura 26 - Superfície de temperatura anual média

Quadro 13 – Temperatura anual e mensais médias por sub-bacia (período out-1930 a set-2016)

Sub basis	Tméd Temperatura média mensal													
hidrográfica	(km²)	anual (ºC)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Minho	808	13.2	14.3	10.5	8.3	7.7	8.5	10.5	11.9	14.0	17.2	19.1	19.2	17.5
C. Minho e Lima	130	14.1	15.3	11.5	9.1	8.6	9.3	11.3	12.8	14.9	18.1	20.0	20.0	18.4
Lima	1217	12.9	13.8	9.9	7.5	7.0	7.8	9.9	11.4	13.8	17.2	19.3	19.3	17.4
Neiva	241	14.2	15.3	11.5	9.0	8.5	9.2	11.3	12.9	15.1	18.4	20.3	20.3	18.6
Cávado	1344	13.1	14.2	10.2	7.7	7.1	7.9	10.1	11.7	14.1	17.6	19.8	19.7	17.8
C. Cávado e Ave	17	14.3	15.5	11.5	9.1	8.5	9.3	11.4	12.9	15.1	18.4	20.4	20.4	18.7
Ave	1390	13.9	15.0	11.0	8.5	7.9	8.7	10.9	12.5	14.8	18.3	20.4	20.4	18.5
C. Ave e Leça	47	14.3	15.7	11.9	9.4	8.7	9.4	11.4	13.0	15.1	18.2	19.9	20.0	18.6
Leça	190	14.3	15.7	11.8	9.2	8.5	9.3	11.4	13.0	15.1	18.3	20.2	20.2	18.8
Douro	6030	13.6	14.5	9.6	6.6	6.0	7.3	10.0	12.0	14.9	19.1	22.0	21.8	19.2
Tâmega	2644	12.8	13.7	9.2	6.4	5.8	6.9	9.4	11.2	14.0	17.9	20.6	20.5	18.0
Paiva	790	14.0	15.0	10.5	7.7	7.0	8.1	10.6	12.4	15.1	19.0	21.6	21.5	19.2
Tua	1255	12.9	13.8	8.8	5.7	5.1	6.4	9.2	11.3	14.3	18.7	21.8	21.5	18.7
Tuela	921	12.0	12.7	7.9	4.9	4.4	5.7	8.4	10.4	13.4	17.7	20.6	20.5	17.6
Rabaçal	946	12.3	13.0	8.2	5.3	4.8	6.0	8.7	10.7	13.6	17.8	20.7	20.6	17.7
Sabor	2394	12.5	13.3	8.2	5.1	4.6	6.0	8.8	10.9	14.0	18.5	21.5	21.3	18.4
Maçãs	901	11.9	12.6	7.5	4.5	4.0	5.3	8.1	10.1	13.4	17.8	20.8	20.6	17.6
Coa	2521	13.2	13.9	8.9	5.9	5.3	6.5	9.2	11.3	14.6	19.2	22.4	22.3	19.1

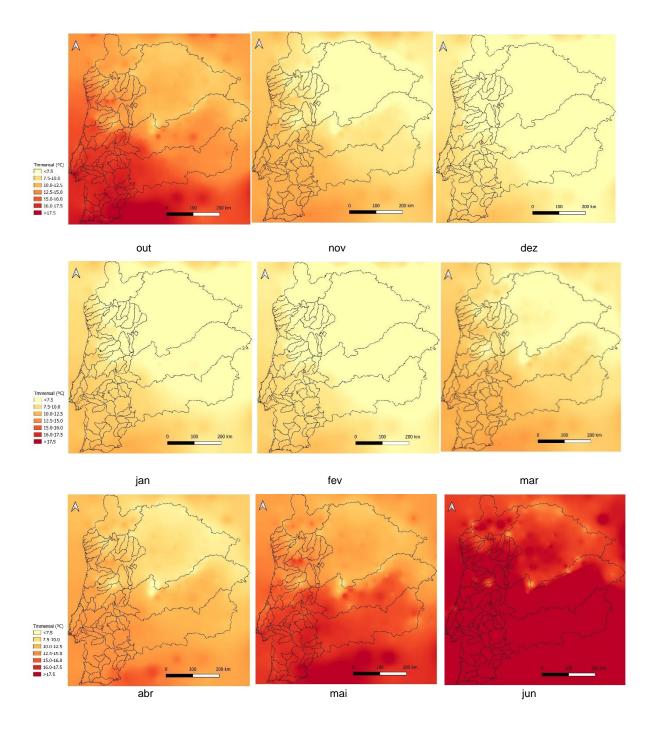
Dezembro 2023

Out basis	Á	Tméd					Temp	eratura ı	média m	ensal				
Sub-bacia hidrográfica	Área (km²)	anual (ºC)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Águeda	248	13.0	13.7	8.6	5.5	5.0	6.3	9.0	11.1	14.5	19.2	22.5	22.2	18.9
C Douro e Vouga	207	14.4	15.7	11.7	9.2	8.5	9.3	11.4	13.0	15.2	18.5	20.5	20.5	19.0
Vouga	3619	14.2	15.4	11.1	8.5	7.9	8.8	11.0	12.7	15.1	18.6	20.9	20.9	19.1
Dão	1309	13.2	14.2	9.6	6.9	6.2	7.2	9.6	11.5	14.3	18.5	21.3	21.2	18.7
C Vouga e Mond	119	14.8	16.2	12.1	9.5	8.9	9.8	11.9	13.5	15.8	18.8	20.6	20.7	19.3
Mondego	4644	14.0	15.2	10.8	8.1	7.5	8.4	10.6	12.4	14.9	18.6	21.0	21.1	19.1
Alva	708	13.3	14.4	9.8	7.1	6.4	7.3	9.6	11.4	14.3	18.4	21.2	21.2	18.8
Lis	903	14.9	16.4	12.2	9.6	9.1	9.9	12.0	13.6	15.8	18.9	20.8	21.0	19.5
C Mondego e Lis	131	14.9	16.3	12.3	9.7	9.2	10.0	12.1	13.7	15.8	18.9	20.7	20.8	19.4
Oeste 1	65	14.8	16.2	12.3	9.8	9.3	10.1	12.1	13.6	15.7	18.5	20.3	20.5	19.1
C Oeste 2 e Tejo	48	15.9	17.1	12.6	9.8	9.3	10.3	12.4	14.3	16.9	20.6	23.2	23.3	21.1
Oeste 2	2109	15.1	16.5	12.6	10.1	9.6	10.3	12.2	13.8	15.9	18.8	20.7	20.9	19.5
Tejo	7225	15.8	17.0	12.3	9.4	8.8	9.9	12.2	14.1	16.9	20.7	23.4	23.5	21.1
Almansor	1080	16.0	17.3	12.7	9.8	9.3	10.2	12.5	14.4	17.1	20.8	23.2	23.3	21.2
Divor	756	15.9	17.2	12.5	9.5	9.0	9.9	12.3	14.2	17.0	20.9	23.5	23.5	21.2
Grande	1070	16.0	17.2	12.2	9.1	8.5	9.6	12.0	14.1	17.1	21.4	24.3	24.3	21.7
Maior	957	15.5	17.0	12.7	9.9	9.4	10.3	12.4	14.1	16.5	19.7	21.8	22.1	20.4
Zêzere	4007	14.2	15.2	10.3	7.3	6.7	7.8	10.3	12.3	15.3	19.7	22.6	22.6	19.8
Nabão	1017	15.0	16.4	11.9	9.2	8.6	9.6	11.8	13.6	16.0	19.6	21.9	22.0	20.1
Ocreza	1429	15.0	16.2	11.3	8.3	7.7	8.8	11.2	13.2	16.2	20.4	23.2	23.2	20.7

Out basis	Á	Tméd					Temp	eratura ı	média me	ensal				
Sub-bacia hidrográfica	Área (km²)	anual (ºC)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Sever	310	15.4	16.5	11.6	8.6	8.0	9.0	11.4	13.4	16.5	20.9	24.0	24.0	21.2
Ponsul	1417	15.3	16.3	11.1	8.0	7.4	8.7	11.2	13.4	16.7	21.3	24.4	24.3	21.3
Erges	592	15.1	15.8	10.5	7.4	6.8	8.1	10.8	13.0	16.5	21.4	24.8	24.6	21.1
C. Tejo e Sado	106	16.3	17.7	13.4	10.6	10.0	11.0	13.0	14.7	17.1	20.5	22.7	23.0	21.2
Sado	5981	16.1	17.5	13.0	10.1	9.5	10.4	12.6	14.5	17.2	20.9	23.3	23.4	21.3
Alcáçovas	895	16.1	17.5	12.9	9.9	9.3	10.2	12.5	14.3	17.1	21.0	23.6	23.7	21.5
Roxo	689	16.4	17.8	13.1	10.2	9.5	10.4	12.7	14.6	17.4	21.2	23.7	23.9	21.7
C. Sado e Mira	479	16.0	17.5	13.3	10.4	9.9	10.7	12.8	14.5	16.9	20.2	22.3	22.5	20.8
Mira	1576	16.2	17.6	13.2	10.3	9.7	10.5	12.6	14.4	17.1	20.6	23.2	23.3	21.3
C. Mira e Barl.	217	15.8	17.3	13.1	10.3	9.7	10.5	12.5	14.2	16.7	20.0	22.3	22.4	20.7
Barlavento	995	16.5	17.9	13.9	11.3	10.5	11.2	13.0	14.6	17.2	20.5	23.0	23.2	21.3
Arade	979	16.7	18.0	13.9	11.2	10.4	11.2	13.1	14.8	17.4	21.0	23.6	23.7	21.7
Sotavento	1314	17.0	18.3	14.2	11.5	10.8	11.6	13.4	15.1	17.8	21.3	24.0	24.1	22.0
Guadiana	6190	16.7	18.0	13.3	10.2	9.5	10.5	12.8	14.8	17.8	21.9	24.8	24.8	22.3
Chança	485	16.8	18.2	13.3	10.2	9.5	10.5	12.8	14.8	17.8	22.0	24.9	24.9	22.4
Cobres	1156	16.5	17.9	13.2	10.2	9.6	10.5	12.7	14.6	17.5	21.5	24.1	24.2	22.0
Murtega	59	16.2	17.4	12.6	9.6	8.9	9.9	12.2	14.1	17.2	21.4	24.3	24.3	21.8
Degebe	1538	16.2	17.5	12.6	9.5	8.9	9.9	12.3	14.3	17.3	21.6	24.4	24.5	21.9
Alcarrache	207	16.4	17.7	12.8	9.7	9.0	10.0	12.4	14.4	17.6	21.9	24.8	24.8	22.2
Ardila	841	16.4	17.8	12.9	9.8	9.1	10.1	12.4	14.4	17.5	21.8	24.7	24.7	22.1

Out basis	Á	Tméd Temperatura média mensal												
Sub-bacia hidrográfica	(km²)	anual (ºC)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Caia	816	16.0	17.2	12.2	9.0	8.4	9.5	12.0	14.0	17.2	21.7	24.7	24.7	21.9
Xévora	297	15.9	17.0	11.9	8.7	8.2	9.3	11.8	13.9	17.2	21.8	24.9	24.8	21.9
Sorraia	1117	15.9	17.2	12.7	9.8	9.3	10.2	12.5	14.4	17.0	20.6	22.9	23.0	21.0
Sor	1255	15.7	16.9	12.2	9.2	8.6	9.6	12.0	14.0	16.8	20.8	23.4	23.5	21.1
Rabagão	247	11.5	12.4	8.1	5.6	5.0	5.8	8.2	9.8	12.5	16.4	19.1	18.9	16.6
Seda	2099	15.8	17.0	12.2	9.1	8.6	9.6	12.0	13.9	16.9	21.0	23.7	23.8	21.3
Raia	270	15.9	17.2	12.4	9.4	8.9	10.0	12.4	14.4	17.2	21.0	23.5	23.6	21.2
Douro Espanha	74598	11.2	11.9	7.0	4.0	3.5	4.7	7.4	9.4	12.7	17.0	20.0	19.8	16.7
Guadiana Esp	48572	14.9	15.6	10.2	7.0	6.4	7.8	10.5	12.9	16.6	21.5	25.0	24.7	21.0
Minho Espanha	16275	12.3	13.2	8.9	6.2	5.8	6.8	9.2	10.9	13.5	17.2	19.6	19.5	17.2
Tejo Espanha	54733	13.4	13.9	8.7	5.7	5.2	6.4	9.1	11.4	15.0	19.8	23.3	22.9	19.2
Lima Espanha	1322	12.0	12.9	8.8	6.3	5.8	6.6	8.9	10.5	13.1	16.7	19.0	19.0	16.8
Águeda Es	2349	12.9	13.5	8.4	5.4	4.9	6.1	8.8	10.9	14.4	19.1	22.4	22.1	18.7
Alcarrache Esp.	786	16.4	17.6	12.7	9.6	8.9	10.0	12.3	14.4	17.5	21.8	24.7	24.6	22.0
Ardila Espanha	2011	16.1	17.3	12.5	9.5	8.8	9.8	12.0	14.0	17.2	21.4	24.4	24.4	21.7
Caia Espanha	20	16.4	17.5	12.3	9.1	8.5	9.8	12.3	14.4	17.7	22.2	25.2	25.1	22.3
Chança Es	1667	16.8	18.2	13.4	10.3	9.6	10.6	12.8	14.8	17.9	22.1	24.9	24.9	22.5
Erges Espanha	561	14.9	15.5	10.3	7.1	6.6	7.8	10.6	12.8	16.3	21.3	24.7	24.5	20.9
Maçãs Espanha	441	11.6	12.3	7.4	4.3	3.8	5.1	7.9	9.8	13.0	17.4	20.3	20.1	17.2
Murtega Es	789	16.1	17.4	12.6	9.6	8.9	9.9	12.1	14.1	17.2	21.4	24.3	24.3	21.7

Sub-bacia	Áraa	Tméd Temperatura média								dia mensal							
hidrográfica	(km²)	anual (ºC)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set			
Rabaçal Es	483	11.9	12.6	8.0	5.2	4.7	5.8	8.4	10.3	13.2	17.2	20.0	19.9	17.2			
Sabor Espanha	112	10.9	11.5	7.1	4.3	3.8	5.0	7.5	9.4	12.2	16.2	18.8	18.7	16.0			
Sever Espanha	436	15.5	16.5	11.5	8.5	7.9	9.0	11.4	13.5	16.6	21.1	24.2	24.2	21.4			
Tâmega Es	664	12.4	13.1	8.6	5.9	5.4	6.5	9.1	10.9	13.7	17.6	20.1	20.0	17.4			
Tuela Espanha	208	11.3	12.0	7.4	4.6	4.1	5.3	7.9	9.8	12.6	16.7	19.4	19.3	16.6			
Xévora Espanha	1825	15.9	16.9	11.8	8.6	8.0	9.3	11.7	13.9	17.2	21.9	25.1	24.9	21.9			



Dezembro 2023

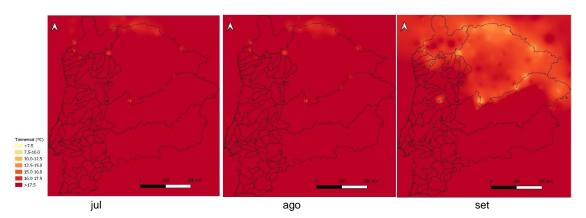


Figura 27 - Superfícies de temperatura mensal

Superfícies de evapotranspiração potencial

Comparando as superfícies de evapotranspiração potencial anual obtidas pelos métodos de Thornthwaite e Hargreaves, verifica-se que os valores estimados pelo primeiro método são inferiores aos estimados pelo segundo (Figura 28).

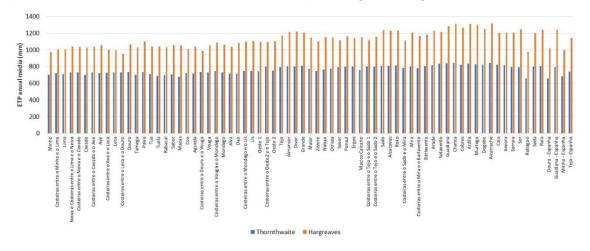


Figura 28 – Comparação da evapotranspiração potencial anual média por sub-bacia pelos métodos de Thornthwaite e Hargreaves

A Figura 29 apresenta a superfície de evapotranspiração potencial anual média obtida pelo método de Hargreaves e o Quadro 14 a evapotranspiração potencial mensal média.

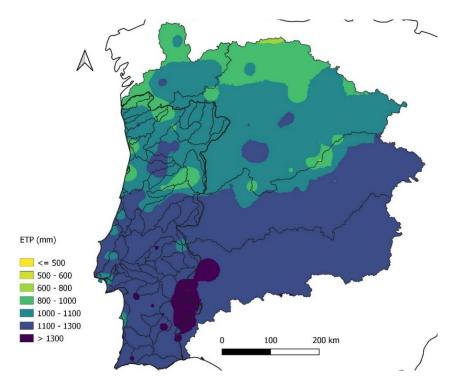


Figura 29 – Superfície de evapotranspiração potencial anual média obtida pelo método de Hargreaves

Quadro 14 – Evapotranspiração anual e mensais médias pelo método de Hargreaves por sub-bacia (período out-1930 a set-2016)

	Área	ETP anual					Evapotr	anspiraçã	ão média	mensal				
Sub-bacia hidrográfica	(km²)	(°C)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Minho	808	962	60	34	26	29	39	67	88	114	134	146	131	95
C. Minho e Lima	130	1010	65	39	29	33	42	72	91	116	138	149	136	100
Lima	1217	998	62	35	26	29	39	68	89	117	140	154	139	99
Neiva	241	1041	67	39	29	33	43	73	95	121	143	155	141	103
Cávado	1344	1029	65	37	27	31	40	70	92	120	143	158	143	103
C. Cávado e Ave	17	1042	68	39	29	33	44	74	96	122	142	155	139	102
Ave	1390	1057	68	39	29	33	42	73	95	122	145	161	145	106
C. Ave e Leça	47	1008	67	39	29	33	43	73	94	118	137	150	124	101
Leça	190	994	66	39	29	33	43	73	93	116	136	149	118	100
Douro	6030	1067	64	35	25	29	39	69	92	124	152	174	154	109
Tâmega	2644	1028	62	34	25	28	37	67	90	120	147	166	148	104
Paiva	790	1104	68	38	28	32	42	73	96	127	153	175	158	113
Tua	1255	1040	61	33	23	26	36	66	90	121	151	173	154	106
Tuela	921	1035	61	33	21	26	36	67	89	121	150	172	154	105
Rabaçal	946	1029	61	32	22	26	36	66	89	121	149	170	152	104
Sabor	2394	1056	63	33	22	26	37	68	90	123	153	176	158	108
Maçãs	901	1048	62	33	21	25	37	67	89	122	153	176	156	107
Coa	2521	1012	58	31	23	26	35	63	85	118	147	171	152	103
Águeda	248	1042	61	33	24	26	36	65	87	121	152	176	157	106

Dezembro 2023

	Área	ETP anual					Evapotr	anspiraç	ão média	mensal				
Sub-bacia hidrográfica	(km²)	(°C)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
C Douro e Vouga	207	994	66	39	29	33	42	72	92	116	136	149	120	100
Vouga	3619	1059	68	39	29	34	42	73	94	122	144	161	147	107
Dão	1309	1083	66	37	27	31	40	70	91	124	152	175	159	111
C Vouga e Mond	119	1070	71	42	32	36	45	76	96	123	142	157	143	108
Mondego	4644	1064	67	39	29	33	41	71	92	122	145	165	150	109
Alva	708	1035	63	35	27	29	37	67	87	120	144	167	151	109
Lis	903	1113	75	44	34	39	47	79	100	128	146	161	147	113
C Mondego e Lis	131	1101	74	44	33	38	47	78	100	127	145	159	145	112
Oeste 1	65	1103	74	44	34	39	47	79	100	127	144	158	145	112
C Oeste 2 e Tejo	48	1100	72	42	32	36	45	75	96	126	148	167	152	111
Oeste 2	2109	1106	74	44	34	39	47	79	99	127	145	160	147	112
Tejo	7225	1173	75	42	32	36	45	78	101	135	161	183	166	119
Almansor	1080	1219	79	46	35	39	48	81	105	139	166	188	171	124
Divor	756	1222	78	44	34	38	47	80	103	139	169	192	174	124
Grande	1070	1210	76	42	32	36	45	78	101	138	170	194	176	122
Maior	957	1151	76	44	34	39	48	80	102	132	153	170	156	117
Zêzere	4007	1105	68	38	29	32	40	71	93	127	155	178	161	114
Nabão	1017	1154	75	43	33	37	46	78	102	133	155	175	159	118
Ocreza	1429	1151	71	40	30	33	43	75	98	132	161	184	167	117
Sever	310	1123	68	38	28	31	41	72	94	129	159	183	166	113
Ponsul	1417	1164	70	38	29	32	42	74	98	134	166	191	172	118

	Área	ETP anual					Evapotr	anspiraçã	ão média	mensal				
Sub-bacia hidrográfica	(km²)	(°C)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Erges	592	1133	67	37	27	30	40	71	95	131	163	189	169	115
C. Tejo e Sado	106	1126	74	44	34	38	47	78	99	128	150	168	153	113
Sado	5981	1240	81	47	36	40	50	84	106	140	168	191	172	124
Alcáçovas	895	1230	79	46	35	39	48	81	104	139	168	193	174	124
Roxo	689	1236	79	46	34	39	49	84	107	138	171	195	174	121
C. Sado e Mira	479	1147	76	46	35	39	49	81	101	131	152	169	154	114
Mira	1576	1211	80	47	36	41	49	83	101	135	162	186	168	123
C. Mira e Barl.	217	1124	75	45	35	39	47	79	96	128	150	167	152	112
Barlavento	995	1184	81	49	38	43	51	85	94	133	156	175	159	120
Arade	979	1229	83	49	39	43	52	87	100	137	163	185	168	123
Sotavento	1314	1217	81	48	38	43	52	86	106	136	160	182	164	120
Guadiana	6190	1290	82	48	36	40	50	86	109	146	178	204	183	129
Chança	485	1310	84	49	37	41	51	87	112	149	179	205	185	130
Cobres	1156	1268	81	47	35	40	50	87	109	141	174	200	178	124
Murtega	59	1281	82	48	36	40	51	86	109	145	176	201	181	127
Degebe	1538	1254	80	45	34	38	48	82	104	141	175	200	180	126
Alcarrache	207	1304	83	48	36	40	50	86	108	147	182	207	186	130
Ardila	841	1305	84	48	36	40	51	87	110	148	180	206	186	130
Caia	816	1208	75	42	31	35	45	78	101	139	171	196	176	122
Xévora	297	1214	75	42	31	35	45	78	102	139	172	197	177	122
Sorraia	1117	1210	79	45	35	39	48	81	105	139	164	184	168	123

	Área	ETP anual					Evapotr	anspiraç	ão média	mensal				
Sub-bacia hidrográfica	(km²)	(°C)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Sor	1255	1245	81	45	35	39	48	83	104	142	170	194	178	127
Rabagão	247	978	60	32	24	27	36	64	85	114	140	157	141	99
Seda	2099	1203	76	43	32	36	45	78	100	137	167	191	174	122
Raia	270	1243	79	45	34	38	48	81	106	142	171	195	178	126
Douro Espanha	74598	1020	60	32	22	24	35	64	87	120	150	172	151	103
Guadiana Esp	48572	1241	76	42	31	34	46	79	105	144	177	203	180	124
Minho Espanha	16275	1001	60	32	23	26	37	67	89	121	144	159	143	100
Tejo Espanha	54733	1143	68	37	27	30	41	72	97	133	165	191	168	114
Lima Espanha	1322	1002	61	33	24	27	37	66	88	119	143	159	143	100
Águeda Es	2349	1052	61	33	24	27	36	65	88	122	153	178	158	107
Alcarrache Esp.	786	1297	83	47	35	40	50	85	108	147	181	206	186	130
Ardila Espanha	2011	1283	82	47	36	40	50	85	108	146	177	202	182	128
Caia Espanha	20	1306	81	46	34	38	50	86	110	150	184	209	187	131
Chança Es	1667	1298	84	49	37	41	51	87	111	147	177	202	182	129
Erges Espanha	561	1123	66	36	27	30	39	70	94	130	162	188	168	114
Maçãs Espanha	441	1038	62	33	20	25	36	67	89	121	151	174	154	106
Murtega Es	789	1279	82	48	36	40	51	86	108	145	175	200	180	127
Rabaçal Es	483	1020	61	32	22	26	36	66	88	120	148	167	150	103
Sabor Espanha	112	1003	60	32	20	25	36	66	87	117	145	166	148	102
Sever Espanha	436	1140	69	38	29	32	41	73	96	131	162	186	168	115
Tâmega Es	664	1025	61	33	23	26	37	67	90	122	148	166	149	103

	Área	ETP anual					Evapotr	anspiraç	ão média	mensal				
Sub-bacia hidrográfica	(km²) (°C)		out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Tuela Espanha	208	1014	60	32	21	25	36	66	88	119	147	167	150	103
Xévora Espanha	1825	1218	75	42	31	34	45	78	102	140	173	198	177	122

3.3 Escoamento em regime natural

Foram usadas 221 estações hidrométricas em Portugal e Espanha para calibrar e validar o modelo de Temez. A Figura 30 apresenta o erro médio do escoamento calculado pelo modelo em cada uma das estações hidrométricas. Os valores das áreas das bacias hidrográficas a montante de cada estação são muito diversos, pelo que a ponderação a dar a cada ponto deve ser distinta. Alguns registos hidrométricos são também afetados pela regulação proporcionada por albufeiras e por usos de água existentes. Apesar destas ressalvas, a figura apresenta um quadro geral do desempenho do modelo, verificando-se que há 61 pontos com erro médio entre -0.10 e 0.10, 99 com erro inferior a -0.10 e 61 com erro superior a 0.10. O escoamento é assim subestimado em 99 pontos e sobrestimado em 61 pontos.

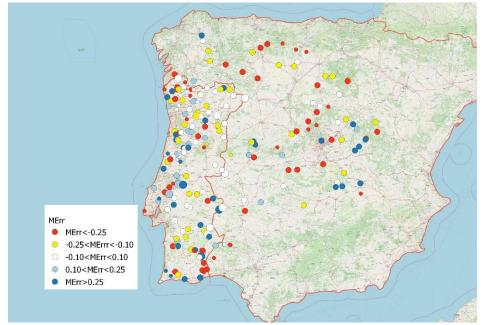


Figura 30 - Erro médio do modelo na estimativa do escoamento anual médio em cada estação hidrométrica

A Figura 31 apresenta alguns exemplos da comparação entre os valores observados e modelados para validação dos parâmetros modelo.

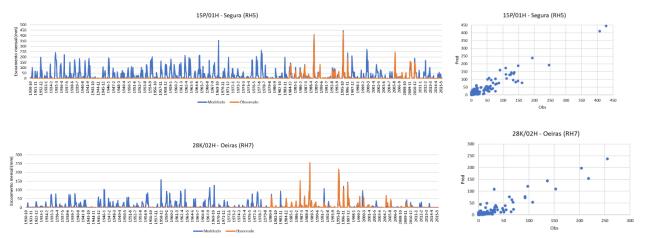


Figura 31 – Exemplos de comparação entre os valores observados e calculados do escoamento mensal

A comparação das recargas obtidas pelo modelo de Temez com as estimativas de recarga anual média também demonstra o bom desempenho do modelo (Figura 32).

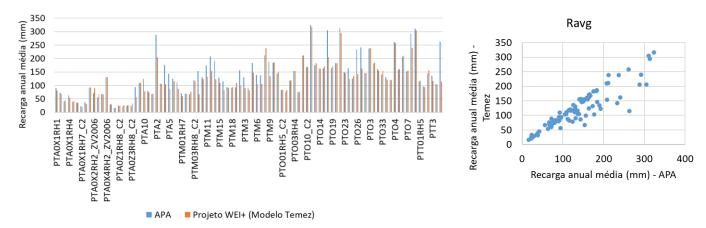


Figura 32 – Comparação das estimativas de recarga anual média

O Centro de Estudios y Experimentación de Obras Públicas (CEDEX) de Espanha tem vindo a realizar estudos semelhantes a estes, utilizando o modelo SIMPA (Monreal e Ripoll, 1996), também baseado na formulação de Temez. A última versão deste esforço está disponível para o período 1940/41-2017/18 em MITECO (2019).

Quando se comparam os resultados obtidos neste estudo com os obtidos pelo CEDEX para Espanha, os escoamentos anuais médios agora determinados são 12% superiores, em média, aos do CEDEX (Quadro 15). Esta sobrestimação do escoamento anual médio é corroborada pela Figura 33. Há duas sub-bacias em que o escoamento anual médio é muito semelhante: Sabor e Tejo. Nas outras, as diferenças variam entre -18%, na sub-bacia hidrográfica do rio Minho, e 42%, na do Caia.

Quadro 15 - Comparação do escoamento anual médio obtido pelo CEDEX e neste estudo

Sub basis (norte conombole)	Escoamento anu	al médio (mm)
Sub-bacia (parte espanhola)	CEDEX-SIMPA	APA-WEI
Minho	722	614
Lima	800	981
Águeda	204	261
Douro	146	169
Maçãs	228	351
Rabaçal	670	755
Sabor	645	641
Tâmega	568	739
Tuela	850	825
Tejo	170	165
Erges	372	442
Xévora	141	173
Ardila	140	151
Murtega	240	230
Alcarrache	130	143
Guadiana	68	87
Caia	63	109
Chança	148	179

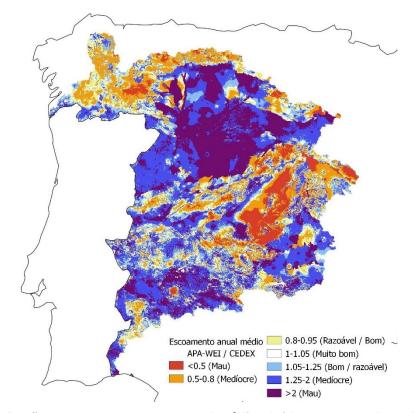


Figura 33 - Razão entre o escoamento anual médio obtido neste estudo e obtido pelo **CEDEX**

Os resultados do modelo de Temez incluem o escoamento em regime natural que flui em cada curso de água (Quadro 16).

Quadro 16 - Escoamentos em regime natural (hm³)

Sub-bacia hidrográfica	Secção	Escoamento (hm³)
Minho	Entrada PT	10241
Minho	Foz	11718
Lima	Entrada PT	397
Lima	Foz	2686
Costeiras entre o Minho e o Lima	Foz	158
Neiva	Foz	245
Rabagão	Foz	283
Cávado	Foz	1947
Ave	Foz	1318
Costeiras entre o Cávado e o Ave	Foz	11
Leça	Foz	125
Costeiras entre o Ave e o Leça	Foz	29
Costeiras entre o Neiva e o Douro	Foz	94
Douro	Foz	18179
Tâmega	Jusante	2154
Rabaçal	Jusante	615
Tuela	Jusante	483
Tua	Jusante	1391
Sabor	jusante	857
Maças	Jusante	279
Águeda	jusante	516
Coa	jusante	509
Paiva	jusante	613
Douro	Entrada PT	9734
Vouga	Foz	2426
Costeiras entre Douro e Vouga	Jusante	138
Alva	Jusante	427
Dão	Jusante	755
Mondego	Foz	3244
Costeiras do Mondego	Jusante	4
Costeiras entre o Vouga e o Mondego	Jusante	41
Lis	Jusante	324
Costeiras entre o Mondego e o Lis	Jusante	38
Costeiras entre o Lis e Oeste 2	Jusante	30
Oeste1	Jusante	17
Oeste2	Jusante	425
Costeiras do Oeste 2	Jusante	21
Costeiras entre o Oeste 2 e o Sado	Jusante	18
Costeiras entre o Oeste 2 e o Tejo	Jusante	11

Sub-bacia hidrográfica	Secção	Escoamento (hm³)
Tejo	Foz	14946
Maior	Jusante	194
Nabão	Jusante	312
Zêzere	Jusante	2224
Ocreza	Jusante	466
Pônsul	Jusante	302
Erges	Jusante	353
Sever	Jusante	150
Sorraia	Jusante	999
Sor	Jusante	193
Grande	Jusante	121
Seda	Jusante	416
Raia	Jusante	445
Divor	jusante	83
Almansor	Jusante	139
Tejo	entrada em PT	8757
Costeiras entre o Tejo e o Sado	Jusante	17
Alcáçovas	Jusante	148
Roxo	Jusante	67
Sado	Foz	965
Costeiras entre o Sado e o Mira	Jusante	69
Mira	Jusante	250
Guadiana	Foz	5256
Cobres	Jusante	122
Degebe	Jusante	157
Caia	Jusante	122
Xévora	Jusante	287
Alcarrache	Jusante	111
Ardila	Jusante	513
Murtega	Jusante	187
Chança	Jusante	321
Guadiana	Entrada PT	2746
Costeiras entre o Mira e o Barlavento	Jusante	42
Costeiras entre o Sotavento e o Guadiana	Jusante	2
Barlavento	Jusante	214
Costeiras do Barlavento	Jusante	19
Arade	Jusante	235
Sotavento	Jusante	247
Costeiras do Sotavento	Jusante	1
Costeiras entre o Barlavento e o Sotavento	Jusante	7
Ria Formosa	Jusante	21

A Figura 34 apresenta a altura de escoamento anual média em regime natural, em mm e o Quadro 17 e a Figura 35 os escoamentos mensais.

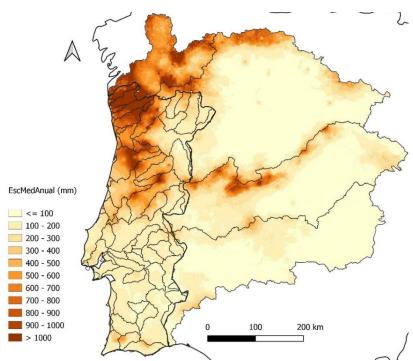


Figura 34 - Superfície de escoamento médio anual (mm)

Quadro 17 - Escoamento anual e mensais médios por sub-bacia considerando afluências de outras sub-bacias a montante quando aplicável (hm³)

Sub-bacia hidográfica	Área (km²)	anual	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Minho Es	15631	10240	692	1107	1615	1719	1434	1191	791	606	390	257	183	255
Minho	17083	11718	794	1272	1861	1990	1649	1377	898	686	426	276	197	290
C Minho e Lima	141	158	12	20	27	30	23	20	10	8	2	1	1	4
Lima Es	675	397	18	34	62	73	64	54	33	24	14	9	6	6
Lima	2542	2687	170	296	456	504	399	348	197	146	62	30	23	55
Neiva	241	245	18	29	43	48	36	30	16	12	4	2	1	6
C Neiva e Douro	149	94	7	12	17	18	14	11	6	4	2	1	1	2
Cávado	1592	1948	156	240	339	363	274	241	129	94	34	12	13	52
C. Cávado e Ave	17	11	1	1	2	2	2	1	1	0	0	0	0	0
Ave	1391	1318	101	159	234	250	192	162	87	60	24	11	9	31
C. Ave e Leça	47	29	2	4	5	6	4	4	2	1	1	0	0	1
Leça	191	125	9	16	23	25	18	15	8	5	2	1	1	3
Douro Espanha	73581	9734	536	852	1275	1498	1426	1250	940	754	494	307	196	206
Douro	97501	18179	884	1585	2751	3280	2904	2461	1564	1140	660	404	263	282
Tâmega	3308	2154	79	182	379	454	373	320	169	106	41	21	14	16
Paiva	790	612	25	56	113	132	109	86	45	28	8	4	3	4
Tua	3815	1391	70	125	237	287	234	194	99	63	31	19	13	18
Tuela	1129	483	26	45	82	98	78	66	35	23	11	7	5	7
Rabaçal	1430	615	34	57	103	124	100	84	44	30	15	9	6	9

Sub-bacia hidográfica	Área (km²)	anual	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Sabor	3848	857	35	71	150	185	153	121	61	35	18	12	8	8
Maçãs	1342	278	10	22	47	59	49	40	21	13	7	4	3	3
Coa	2541	509	24	50	89	106	89	72	34	21	9	6	5	5
Águeda	2577	516	31	52	80	87	78	69	44	32	19	11	6	8
C. Douro e Vouga	222	138	5	12	23	29	24	19	11	7	3	2	1	1
Vouga	3619	2426	134	252	423	484	393	308	172	113	49	33	27	38
C. Vouga e Mond.	119	41	2	3	6	8	6	5	3	2	2	1	1	1
Mondego	6661	3244	161	312	550	663	536	427	232	147	74	52	43	47
Alva	708	427	25	47	75	87	67	55	31	19	7	4	3	5
Dão	1309	755	39	75	137	161	131	100	50	29	11	7	6	8
C. Mondego	17	5	0	0	1	1	1	1	0	0	0	0	0	0
Lis	903	324	14	23	42	54	49	41	28	21	17	14	11	10
C. Mondego e Lis	131	38	2	3	5	7	6	5	3	2	2	2	1	1
Oeste 1	65	17	0	1	2	3	3	3	2	1	1	0	0	0
C. Oeste 2 e Tejo	48	11	0	1	1	2	2	2	1	1	0	0	0	0
Oeste 2	2109	425	10	27	58	82	82	67	40	25	15	9	6	4
C. Lis e Oeste 2	127	30	1	2	4	6	6	5	3	2	1	1	0	0
C. Oeste 2	122	21	1	1	3	4	4	3	2	1	1	0	0	0
C. Oeste 2 e Sado	104	18	0	1	2	3	3	3	2	1	1	0	0	0
Tejo Espanha	52706	8757	640	953	1354	1471	1276	1119	723	530	272	154	99	167
Tejo	79228	14946	848	1451	2309	2737	2406	2101	1226	839	424	243	153	210
Almansor	1080	139	4	9	19	26	27	23	13	8	5	3	2	1

Sub-bacia hidográfica	Área (km²)	anual	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Divor	756	83	2	5	12	15	16	14	8	5	3	2	1	1
Grande	1070	121	3	9	19	26	24	21	9	5	3	2	1	1
Maior	957	194	4	9	21	32	34	32	23	16	10	6	4	2
Zêzere	5024	2224	76	192	374	482	396	337	171	104	42	23	14	13
Nabão	1017	312	7	16	38	57	56	49	33	23	14	9	5	4
Ocreza	1429	466	18	41	82	104	86	75	29	16	6	3	2	2
Sever	745	150	6	13	25	33	29	25	10	5	2	1	1	1
Pônsul	1417	302	12	29	52	67	55	48	19	10	4	3	2	1
Erges	1153	353	23	40	62	73	57	50	23	14	5	2	1	4
C. Tejo e Sado	106	17	0	1	2	3	3	3	2	1	1	0	0	0
Sado	7565	965	32	76	158	194	183	152	77	44	24	13	7	5
Alcáçovas	895	148	5	13	26	33	29	23	9	5	2	1	1	0
Roxo	689	67	2	5	11	13	12	10	6	3	2	1	1	0
C. Sado e Mira	488	69	2	5	11	13	13	11	7	4	2	1	1	0
Mira	1576	250	11	25	52	53	46	38	14	6	3	1	1	1
C. Mira e Barl.	216	42	2	4	8	9	8	6	2	1	0	0	0	0
Barlavento	995	214	15	28	44	42	34	26	14	6	2	1	1	2
Arade	979	235	18	32	49	45	35	29	14	7	2	1	1	2
Sotavento	1314	270	12	26	51	50	45	37	23	13	7	3	2	2
Guadiana Es	46560	2746	164	240	484	517	499	407	215	114	50	24	12	20
Guadiana	67256	5255	324	508	978	1014	922	755	363	190	86	47	27	41
Chança	2152	321	25	37	68	62	50	42	21	9	4	2	1	2

Sub-bacia hidográfica	Área (km²)	anual	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Cobres	1156	122	8	14	27	23	19	16	6	3	2	1	1	1
Ardila	3699	513	37	56	95	100	88	70	33	17	7	4	2	4
Murtega	848	187	14	21	35	36	31	25	13	7	2	1	1	2
Degebe	1539	157	8	13	29	34	30	24	8	4	2	2	1	1
Alcarrache	993	111	7	11	21	22	21	16	6	3	1	1	0	1
Caia	834	122	5	11	20	25	22	19	8	5	2	2	1	1
Xévora	2122	287	15	30	50	59	51	46	19	9	4	2	1	2
Sorraia	1117	999	26	68	136	190	194	168	91	56	32	20	12	7
Sor	1255	193	5	13	24	35	36	32	20	13	8	5	3	2
Rabagão	247	283	21	34	51	53	41	36	19	13	4	2	2	6
Seda	3169	416	12	32	65	89	85	70	29	16	8	5	3	2
Raia	3438	445	13	34	68	94	91	75	32	18	10	6	4	2
C Sota. e Guad.	14	2	0	0	0	0	0	0	0	0	0	0	0	0
C. Sota.	8	1	0	0	0	0	0	0	0	0	0	0	0	0
C. Barl. e Sota.	85	7	0	0	1	1	1	1	1	0	0	0	0	0
C. Barl.	143	19	1	2	4	4	3	2	1	1	0	0	0	0
Ria Formosa	173													

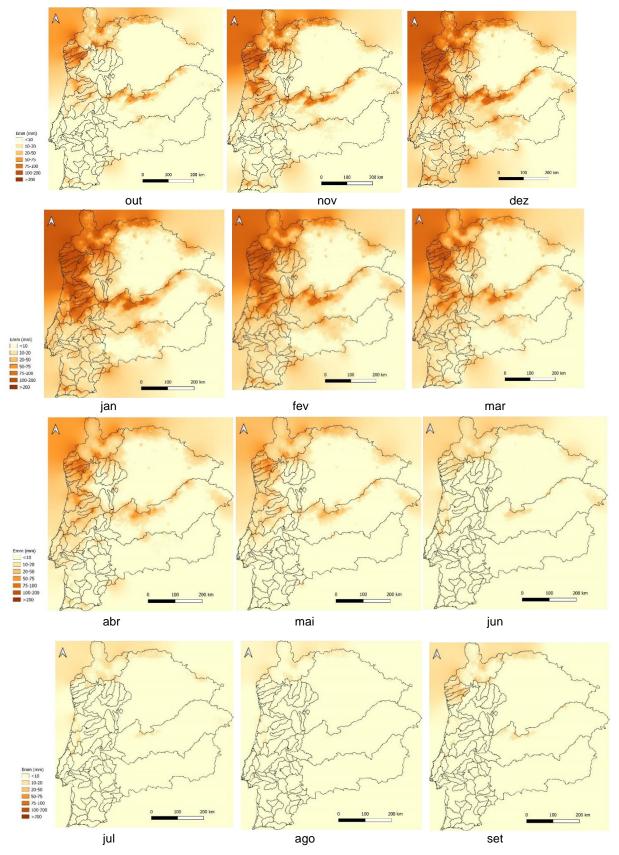
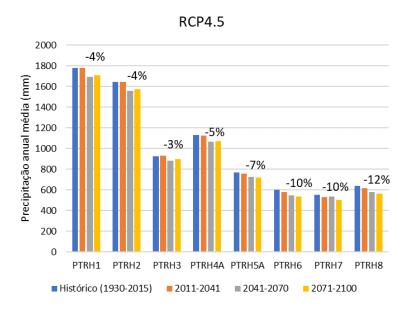


Figura 35 – Superfícies de escoamento mensal



3.4 Cenários de alterações climáticas

As projeções dos modelos preveem uma diminuição da precipitação anual média em todos os cenários, sendo a redução maior quando se considera o horizonte 2071-2100 e a trajetória RCP8.5. O interior da Península Ibérica e o sul de Portugal apresentarão diminuições mais acentuadas da precipitação média anual. Por região hidrográfica, estão projetadas reduções entre 3 e 12% e entre 14 e 29% da precipitação anual média no período 2071-2100 para RCP4.5 e 8.5, respetivamente (Figura seguinte).

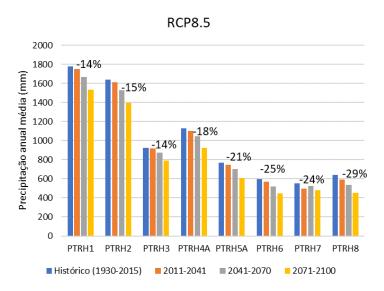
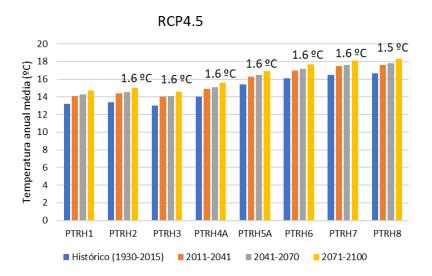
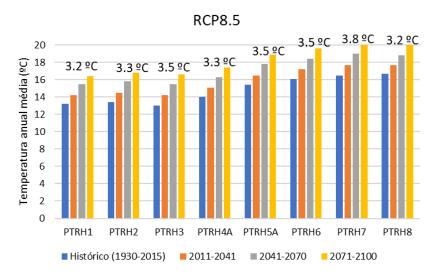
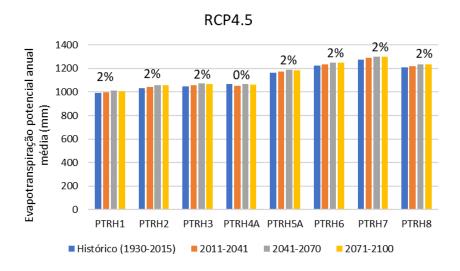


Figura 36 – Precipitação média anual para três horizontes temporais futuros e para RCP 4.5 (topo) e RCP 8.5 (base)



As projeções dos modelos para a temperatura média anual são o seu aumento em todos os cenários, com os maiores aumentos a ocorrerem nos últimos 30 anos do século, quando a anomalia da temperatura média anual pode ser superior a 3ºC. Por região hidrográfica, os aumentos são inferiores a 2ºC no RCP4.5 e acima dos 3ºC no RCP8.5 no final do século (Figura seguinte).




Figura 37 – Temperatura média anual para três horizontes temporais futuros e para RCP 4.5 (topo) e RCP 8.5 (base)

Com o aumento da temperatura, há também um aumento da evapotranspiração, que pode atingir os 11% quando se consideram as anomalias do período 2071-2100 no RCP 8.5 e que varia entre 0 e 2% no RCP4.5 e 8 e 11% no RCP8.5 no final do século (Figura seguinte).

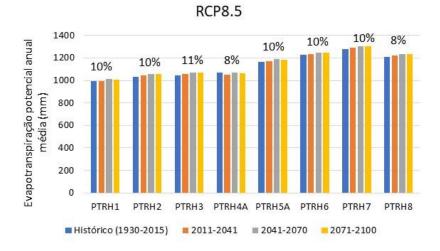
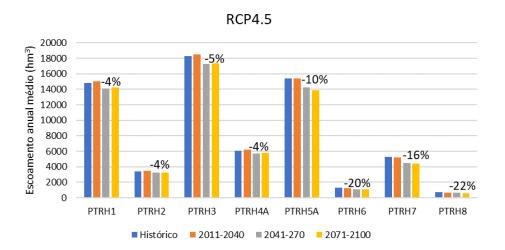


Figura 38 – Evapotranspiração média anual para três horizontes temporais futuros e para RCP 4.5 (topo) e RCP 8.5 (base)


A diminuição projetada da precipitação anual média traduzir-se-á numa diminuição do escoamento em todos os cenários, sendo a redução maior quando se considera a anomalia de 2071-2100 e RCP8.5. Por região hidrográfica, as reduções são entre 3 e 21% no RCP4.5 e entre 18 e 50% no RCP8.5 no final do século (Figura 39).

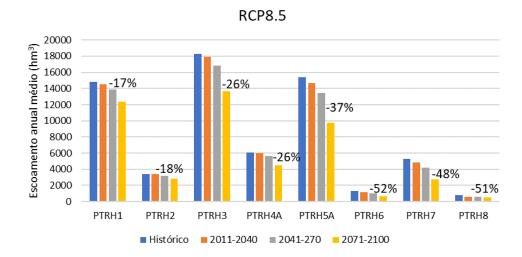


Figura 39 – Escoamento médio anual para três horizontes temporais futuros e para RCP 4.5 (topo) e RCP 8.5 (base)

3.5 Necessidades de água

Os volumes captados para os setores urbano, industrial, da pecuária e do golfe totalizam 1179 hm³/ano (Quadro 18).

Quadro 18 – Volumes captados pelos setores urbano, industrial, da pecuária e do golfe (hm³/ano)

RH	Urbano	Industrial	Pecuária	Golfe
1	15	20	0,7	0,1
2	63	26	3	0,3
3	145	3	4	0,7
4	103	72	6	0,7
5	363	178	19	9
6	16	7	7	0,2
7	49	0,5	7	5
8	41	1	0,3	12
Total	795	308	47	28

Os dados disponíveis de área regada e volume consumido por polígono de cálculo e de volume de cálculo por massa de água (superficial ou subterrânea) foram agregados por sub-bacia hidrográfica, bacia hidrográfica e por região hidrográfica. O Quadro 19 e o Quadro 20 apresentam alguns desses resultados e a Figura 40 apresenta a distribuição espacial da percentagem de área regada total.

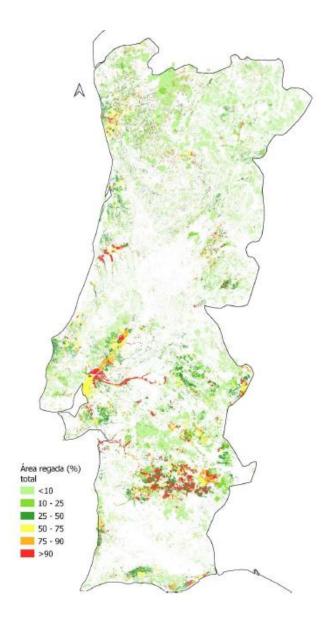


Figura 40 – Percentagem de área regada total, resultante da espacialização dos resultados do RA2019

Note-se que, devido à falta de coincidência entre os limites das massas de água subterrâneas e os limites das bacias hidrográficas e regiões hidrográfica, foi necessário impor uma associação artificial a algumas massas de água subterrâneas. Por exemplo, a massa de água subterrânea Tejo/Sado - Margem Esquerda está afeta à RH5 (Tejo), quando uma parte significativa da massa de água se situa dentro dos limites da RH6 (Sado). Esta necessidade pode dificultar a análise dos quadros apresentados.

Na análise do Quadro 20, em particular, é de realçar que a diferença de valores entre os volumes captados e os consumidos em cada região hidrográfica é devida à eficiência

do transporte e distribuição, às transferências de água entre RH e à afetação imposta das massas de água subterrâneas a determinadas regiões hidrográficas.

Quadro 19 - Área regadas (ha)

RH	Arroz	Abrigo	Vinha	Pomar	Olival	Pastagens perman.	Outras temp.	Total
1	0	129	3 286	626	22	3 336	5 786	13 185
2	0	1 642	2 923	2 137	23	8 138	30 496	45 360
3	0	837	9 229	15 909	5 949	15 839	18 499	66 262
4	6 337	1 847	911	4 618	1 614	3 857	32 304	51 488
5	17 440	8 510	12 778	24 773	16 574	10 595	81 918	172 589
6	7 631	1 714	5 780	10 240	33 756	4 086	21 200	84 408
7	131	227	11 988	11 574	61 253	2 686	19 752	107 611
8	199	1 057	643	16 961	253	866	1 373	21 352
Total	31 739	15 964	47 537	86 837	119 445	49 403	211 329	562 255

Quadro 20 - Volumes consumidos e captados (hm³/ano)

				Volum	es cons	umidos			
RH	Arroz	Abrigo	Vinha	Pomar	Olival	Pastagens perman.	Outras temp.	Total	Volumes captados
1	0	1	6	3	0	36	51	97	95
2	0	7	5	12	0	108	232	364	367
3	0	4	19	102	18	212	160	515	568
4	76	8	2	27	5	44	258	420	461
5	209	43	38	153	55	112	650	1261	1 386
6	92	11	19	71	118	49	181	539	456
7	2	1	37	79	214	29	155	516	709
8	2	7	2	121	1	11	12	157	123
Total	381	83	127	568	410	602	1699	3871	4 165

3.6 Escoamentos em regime modificado

Avaliação da disponibilidade hídrica garantida em regime modificado

O Quadro 21 apresenta as estimativas de disponibilidades de água em regime natural e regime modificado para vários valores de garantia de abastecimento.

Quadro 21 – Estimativas de disponibilidades de água em regime modificado para vários valores de garantia de abastecimento

Bacia hidrográfica	Secção	Escoam. anual médio (hm³)		mento anu egime nat	al garantid ural (hm³)	o em	Escoamento anual garantido em regime modificado (hm³)				
Bacia iliulogialica	Secção	Escoam. andai medio (mm)	80%	90%	95%	99%	80%	90%	95%	99%	
Minho	Entrada PT	10241	1288	1011	894	736	6623	6078	5864	5359	
Minho	Foz	11718	1410	1079	960	780	7338	6643	6291	5535	
Lima	Entrada PT	397	27	21	18	12	254	229	210	203	
Lima	Foz	2686	126	97	78	63	1375	1226	1066	712	
C Minho e Lima	Foz	158	3	2	2	2	3	2	2	2	
Neiva	Foz	245	6	4	4	3	6	4	4	3	
Rabagão	Foz	283	7	6	5	5	-	231	196	171	
Cávado	Foz	1947	58	44	38	33	1453	1039	919	831	
Ave	Foz	1318	59	47	38	32	155	136	121	104	
C Cávado e Ave	Foz	11	1	1	0	0	1	1	0	0	
Leça	Foz	125	6	4	4	3	6	4	4	3	
C Ave e Leça	Foz	29	2	1	1	1	2	1	1	1	
C Neiva e Douro	Foz	94	6	5	4	3	6	5	4	3	
Douro	Foz	18179	1527	1097	879	560	10878	9928	9549	8560	
Tâmega	Jusante	2154	73	54	38	26	325	276	250	212	
Rabaçal	Jusante	615	36	25	18	12	36	25	18	12	
Tuela	Jusante	483	28	18	14	11	28	18	14	11	
Tua	Jusante	1391	74	54	41	30	145	120	100	78	
Sabor	jusante	857	32	17	11	6	535	470	402	370	
Maças	Jusante	279	9	5	3	1	9	5	3	1	
Águeda	jusante	516	22	15	9	4	88	66	58	49	
Coa	jusante	509	13	7	4	2	13	7	4	2	
Paiva	jusante	613	18	15	10	5	18	15	10	5	
Douro	Entrada PT	9734	1075	840	663	449	7495	7086	6203	6028	

Dezembro 2023

Bacia hidrográfica	Secção	Escoam. anual médio (hm³)		mento anu regime nati	al garantid ural (hm³)	o em	Escoamen	to anual ga		n regime
Bacia ilidi Ografica	Secção	Liscoani. andai medio (iiii)	80%	90%	95%	99%	80%	90%	95%	99%
Vouga	Foz	2426	184	157	126	81	399	358	318	243
C Douro e Vouga	Jusante	138	7	5	4	3	7	5	4	3
Alva	Jusante	427	26	23	20	15	126	116	107	95
Dão	Jusante	755	42	35	32	21	42	35	32	21
Mondego	Foz	3244	266	203	170	114	930	803	732	591
C Mondego	Jusante	4	0	0	0	0	0	0	0	0
C Vouga e Mond	Jusante	41	5	3	3	1	5	3	3	1
Lis	Jusante	324	40	25	18	11	40	25	18	11
C Mondego e Lis	Jusante	38	4	3	2	1	4	3	2	1
C Lis e Oeste 2	Jusante	30	0	0	0	0	0	0	0	0
Oeste1	Jusante	17	0	0	0	0	0	0	0	0
Oeste2	Jusante	425	6	3	2	1	60	33	28	21
C Oeste 2	Jusante	21	0	0	0	0	0	0	0	0
C Oeste 2 e Sado	Jusante	18	0	0	0	0	0	0	0	0
C Oeste 2 e Tejo	Jusante	11	0	0	0	0	1	0	0	0
Tejo	Foz	14946	684	514	402	198	10723	9500	8523	7801
Maior	Jusante	194	3	2	1	0	3	2	1	0
Nabão	Jusante	312	8	4	2	1	8	4	2	1
Zêzere	Jusante	2224	39	22	14	7	1390	1177	1089	1020
Ocreza	Jusante	466	5	3	1	1	169	123	101	92
Pônsul	Jusante	302	3	1	1	0	88	68	58	51
Erges	Jusante	353	6	4	2	1	6	4	2	1
Sever	Jusante	150	1	1	0	0	1	1	0	0
Sorraia	Jusante	999	10	5	2	1	300	236	182	137
Sor	Jusante	193	2	1	1	0	92	74	64	46
Grande	Jusante	121	1	0	0	0	1	0	0	0

Bacia hidrográfica	Secção	Escoam. anual médio (hm³)		mento anu egime nati	al garantid ural (hm³)	o em	Escoamen	nto anual garantido em regime modificado (hm³)				
Bacia ilidi ografica	Jecçao	Lacoam. andar medio (min)	80%	90%	95%	99%	80%	90%	95%	99%		
Seda	Jusante	416	3	2	1	0	148	135	95	70		
Raia	Jusante	445	3	2	1	0	155	135	94	70		
Divor	jusante	83	1	0	0	0	1	0	0	0		
Almansor	Jusante	139	1	1	0	0	1	1	0	0		
Tejo	entrada PT	8757	484	378	325	187	7447	6447	6184	5457		
C Tejo e Sado	Jusante	17	0	0	0	0	0	0	0	0		
Alcáçovas	Jusante	148	1	0	0	0	64	49	45	40		
Roxo	Jusante	67	0	0	0	0	44	40	36	32		
Sado	Foz	965	8	4	2	1	440	344	311	276		
C Sado e Mira	Jusante	69	1	0	0	0	25	19	17	14		
Mira	Jusante	250	1	1	0	0	158	133	121	89		
Guadiana	Foz	5256	80	45	28	14	4609	3955	3540	2993		
Cobres	Jusante	122	2	1	1	0	2	1	1	0		
Degebe	Jusante	157	2	1	1	0	2	1	1	0		
Caia	Jusante	122	3	2	1	1	91	84	74	63		
Xévora	Jusante	287	3	2	1	1	115	100	85	71		
Alcarrache	Jusante	111	1	0	0	0	1	0	0	0		
Ardila	Jusante	513	6	4	2	1	6	4	2	1		
Múrtega	Jusante	187	2	1	1	0	2	1	1	0		
Chança	Jusante	321	3	1	1	0	290	277	259	185		
Guadiana	Entrada PT	2746	22	12	7	3	2437	2226	1876	1421		
C Mira e Barl.	Jusante	42	0	0	0	0	0	0	0	0		
C Sota. e o Guad.	Jusante	2	0	0	0	0	0	0	0	0		
Barlavento	Jusante	214	1	1	0	0	61	49	41	25		
C Barlavento	Jusante	19	0	0	0	0	0	0	0	0		
Arade	Jusante	235	2	1	0	0	153	141	123	73		

Bacia hidrográfica	Secção	Escoam. anual médio (hm³)		mento anu regime nat	al garantid ural (hm³)	o em	Escoamento anual garantido em regim modificado (hm³)					
Bacia ilidi ografica	Gecção	Lacoam. andar medio (iiii)	80%	90%	95%	99%	80%	90%	95%	99%		
Sotavento	Jusante	270	3	1	1	0	3	1	1	0		
C Sotavento	Jusante	1	0	0	0	0	0	0	0	0		
C o Barl. e o Sot.	Jusante	7	0	0	0	0	0	0	0	0		

Nota: O Sotavento inclui a Ria Formosa.

Em regime natural, a razão entre o volume disponibilizado com 95% de garantia e o escoamento anual médio varia com a variabilidade do escoamento. Assume um valor próximo de 0,03 no norte do país, cerca de 0,01 no centro do país e na bacia hidrográfica do rio Tejo e 0,003 no sul do país. Em regime modificado, esta razão depende também da capacidade de armazenamento instalada, concretamente do coeficiente de regularização, determinado pela razão entre esta capacidade e o escoamento anual médio.

A Figura 41 apresenta a relação do coeficiente de regularização com a razão entre o escoamento em regime modificado com garantia de 90% e o escoamento médio para várias regiões do país, confirmando, como seria de esperar, o aumento da razão entre escoamentos anuais garantidos com o aumento do coeficiente de regularização.

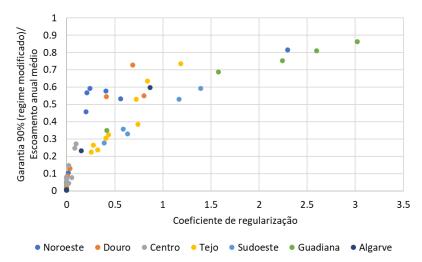
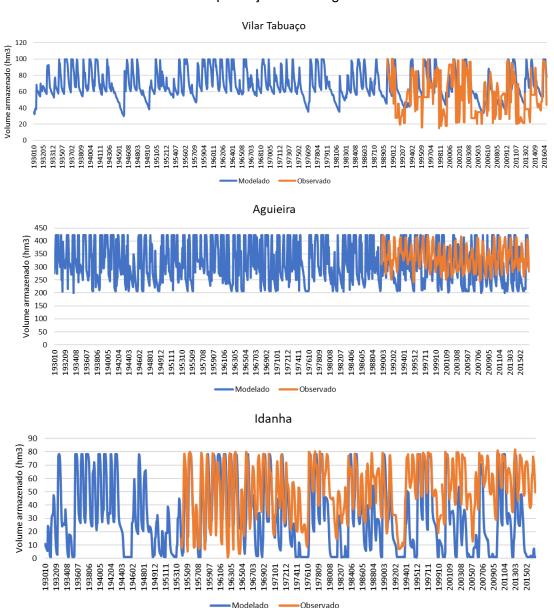


Figura 41 – Relação do coeficiente de regularização com a razão entre o escoamento com garantia de 90% e o escoamento médio



Modelação da gestão e alocação das disponibilidades de água em regime modificado

A comparação da variação dos volumes armazenados modelados e observados permitiu validar os resultados (Figura 42). As diferenças entre volumes observados e modelados devem-se sobretudo à produção de energia.

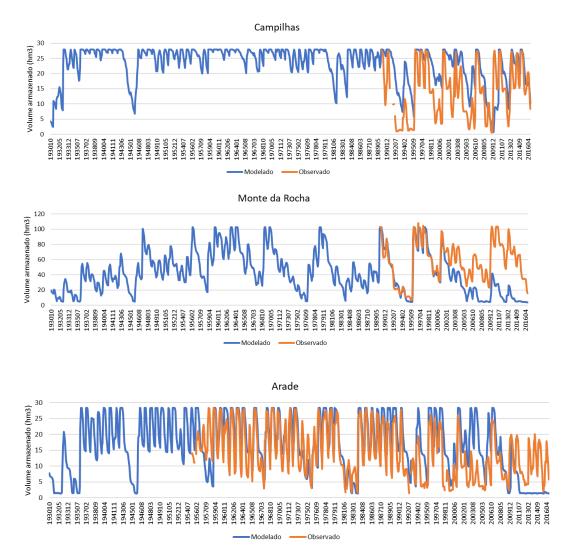


Figura 42 – Comparação dos volumes armazenados modelados e observados nas barragens de Vilar Tabuaço (RH3), Aguieira (RH4), Idanha (RH5), Campilhas e Monte da Rocha (RH6) e Arade (RH8)

Os resultados do MIKE incluem o escoamento em regime natural e modificado que flui em cada curso de água, respetivamente (Quadro 22). O MIKE permite também saber o volume armazenado nas albufeiras e os volumes de água fornecido a cada uso.

Quadro 22 – Escoamentos em regime natural e modificado

Bacia hidrográfica	Secção	Escoamento anual médio (hm³)			
	1	Natural	Modificado		
Minho	Entrada PT	10241	10164		
Minho	Foz	11718	11275		
Lima	Entrada PT	397	388		

Pania hidrográfica	Sacasa	Escoamento anual médio (hm³)			
Bacia hidrográfica	Secção	Natural	Modificado		
Lima	Foz	2686	2681		
Costeiras entre o Minho e o Lima	Foz	158	156		
Neiva	Foz	245	232		
Rabagão	Foz	283	238		
Cávado	Foz	1947	1798		
Ave	Foz	1318	1195		
Costeiras entre o Cávado e o Ave	Foz	11	10		
Leça	Foz	125	114		
Costeiras entre o Ave e o Leça	Foz	29	25		
Costeiras entre o Neiva e o Douro	Foz	94	83		
Douro	Foz	18179	13496		
Tâmega	Jusante	2154	2037		
Rabaçal	Jusante	615	598		
Tuela	Jusante	483	463		
Tua	Jusante	1391	1351		
Sabor	Jusante	857	803		
Maçãs	Jusante	279	269		
Águeda	Jusante	516	490		
Côa	Jusante	509	432		
Paiva	Jusante	613	592		
Douro	Entrada PT	9734	6630		
Vouga	Foz	2426	2329		
Costeiras entre o Douro e Vouga	Jusante	138	134		
Alva	Jusante	427	225		
Dão	Jusante	755	725		
Mondego	Foz	3244	2935		
Costeiras do Mondego	Jusante	4	3		
Costeiras entre o Vouga e o Mondego	Jusante	41	41		
Lis	Jusante	324	299		
Costeiras entre o Mondego e o Lis	Jusante	38	37		
Costeiras entre o Lis e Oeste 2	Jusante	30	29		
Oeste 1	Jusante	17	16		
Oeste 2	Jusante	425	359		
Costeiras do Oeste 2	Jusante	21	18		
Costeiras entre o Oeste 2 e o Sado	Jusante	18	15		
Costeiras entre o Oeste 2 e o Tejo	Jusante	11	9		
Tejo	Foz	14946	11272		
Maior	Jusante	194	162		
Nabão	Jusante	312	304		
Zêzere	Jusante	2224	2030		
Ocreza	Jusante	466	442		

Bacia hidrográfica	Secção	Escoamento an	ual médio (hm³)
Baola marogranica	Occçuo	Natural	Modificado
Pônsul	Jusante	302	252
Erges	Jusante	353	353
Sever	Jusante	150	149
Sorraia	Jusante	999	691
Sôr	Jusante	193	115
Grande	Jusante	121	104
Seda	Jusante	416	191
Raia	Jusante	445	290
Divor	jusante	83	73
Almansôr	Jusante	139	94
Tejo	Entrada em PT	8757	5867
Costeiras entre o Tejo e o Sado	Jusante	17	15
Alcáçovas	Jusante	148	102
Roxo	Jusante	67	48
Sado	Foz	965	730
Costeiras entre o Sado e o Mira	Jusante	69	63
Mira	Jusante	250	193
Guadiana	Foz	5256	2462
Cobres	Jusante	122	107
Degebe	Jusante	157	134
Caia	Jusante	122	52
Xévora	Jusante	287	270
Alcarrache	Jusante	111	105
Ardila	Jusante	513	492
Murtega	Jusante	187	187
Chança	Jusante	321	233
Guadiana	Entrada PT	2746	931
Costeiras entre o Mira e o Barlavento	Jusante	42	37
Cost entre o Sotavento e o Guadiana	Jusante	2	2
Barlavento	Jusante	214	193
Costeiras do Barlavento	Jusante	19	19
Arade	Jusante	235	194
Sotavento	Jusante	247	174
Costeiras do Sotavento	Jusante	1	1
Cost entre o Barlavento e o Sotavento	Jusante	7	6
Ria Formosa	Jusante	21	14

O Quadro 23 apresenta os déficits médios e as garantias médias ponderadas por secção. São apenas considerados os usos em Portugal.

As garantias mensais são, em geral, elevadas, uma vez que as garantias anuais assumem não existirem falhas em nenhum mês de cada ano. Apesar das garantias mensais serem mais elevadas que as garantias anuais, os déficits mensais médios são baixos, o que indica que, quando ocorre, a falha é pequena. Para usos urbanos, o máximo é inferior a 10%, para usos pecuários, é inferior a 29%, para uso industrial, o máximo é inferior a 23%, para agricultura é inferior a 26% e para o golfe é inferior a 28%.

Note-se também que o modelo assume que os volumes captados de origem subterrânea são sempre satisfeitos, não se verificando o mesmo para os volumes captados de origem superficial. Acresce que, quando os volumes captados de origem superficial não conseguem ser satisfeitos, o modelo não utiliza possíveis reservas subterrâneas.

Quadro 23 - Déficits e garantias por secção

Bacia hidrográfica	Indicadores	Urbano	Pecuária	Industrial	Agricultura	Golfe	Outros
	Necessidades (hm³/mês)	0.31	0.01	1.62	2.68		
Minho	Déficit mensal médio (%)	0.00	0.00	0.00	0.00		
	Garantia anual (%)	100.00	100.00	100.00	100.00		
	Necessidades (hm³/mês)	0.87	0.03	0.02	3.88	0.01	0.17
Lima	Déficit mensal médio (%)	0.10	0.02	0.00	0.00	0.00	0.00
	Garantia anual (%)	99.00	99.99	100.00	100.00	100.00	100.00
Costeiras	Necessidades (hm³/mês)	0.01	0.00	0.01	0.16		
entre o Minho e o	Déficit mensal médio (%)	8.93	1.49	1.39	8.44		
Lima	Garantia anual (%)	13.95	13.95	13.95	0.00		
	Necessidades (hm³/mês)	0.08	0.01	0.00	1.28		
Neiva	Déficit mensal médio (%)	0.00	0.08	0.00	0.30		
	Garantia anual (%)	100.00	91.86	100.00	79.07		
	Necessidades (hm³/mês)	0.34	0.01	0.01	4.13		
Rabagão	Déficit mensal médio (%)	0.00	0.00	0.00	0.06		
	Garantia anual (%)	100.00	88.39	99.89	15.94		

Bacia hidrográfica	Indicadores	Urbano	Pecuária	Industrial	Agricultura	Golfe	Outros
	Necessidades (hm³/mês)	3.75	0.07	0.33	9.83	0.00	
Cávado	Déficit mensal médio (%)	0.00	0.00	0.00	0.04	0.00	
	Garantia anual (%)	100.00	98.88	100.00	42.08	100.00	
	Necessidades (hm³/mês)	1.16	0.15	1.53	12.85	0.00	0.24
Ave	Déficit mensal médio (%)	0.03	0.01	0.02	0.11	0.00	0.00
	Garantia anual (%)	23.65	86.25	51.41	0.27	100.00	100.00
Costeiras	Necessidades (hm³/mês)	0.00	0.00	0.00	0.18		
entre o Cávado e o	Déficit mensal médio (%)	0.00	0.00	0.00	0.00		
Ave	Garantia anual (%)	47.67	4.65	47.67	47.67		
	Necessidades (hm³/mês)	0.00	0.01	0.17	1.21	0.01	
Leça	Déficit mensal médio (%)	0.00	0.01	0.04	0.13	0.00	
a	Garantia anual (%)	100.00	24.42	0.00	0.00	100.00	
Costeiras	Necessidades (hm³/mês)	0.00	0.01	0.02	0.99		
entre o Ave e o Leça	Déficit mensal médio (%)	0.19	0.19	0.19	0.21		
•	Garantia anual (%)	8.14	0.00	8.14	0.00		
Costeiras	Necessidades (hm³/mês)		0.01		1.27	0.01	
entre o Neiva e o	Déficit mensal médio (%)		0.01		0.01	0.00	
Douro	Garantia anual (%)		24.42		0.00	100.00	
	Necessidades (hm³/mês)	0.16	0.04	0.01	14.68	0.03	
Tâmega	Déficit mensal médio (%)	0.10	0.08	0.00	0.12	0.13	
	Garantia anual (%)	19.48	25.76	100.00	4.28	3.29	
	Necessidades (hm³/mês)	0.11	0.01	0.00	1.66		
médio (%)	Déficit mensal médio (%)	0.00	0.00	0.00	0.00		
	Garantia anual (%)	98.84	98.84	98.84	96.51		
	Necessidades (hm³/mês)	0.03	0.01	0.00	2.00		
Tuela	Déficit mensal médio (%)	0.00	0.00	0.00	0.00		
	Garantia anual (%)	93.02	93.02	93.02	86.05		

Bacia hidrográfica	Indicadores	Urbano	Pecuária	Industrial	Agricultura	Golfe	Outros
	Necessidades (hm³/mês)	0.03	0.01	0.01	1.33		
Tua	Déficit mensal médio (%)	0.00	0.00	0.00	0.01		
	Garantia anual (%)	100.00	99.72	100.00	98.99		
	Necessidades (hm³/mês)	0.74	0.03	0.01	3.19		
Sabor	Déficit mensal médio (%)	0.01	0.01	0.00	0.04		
	Garantia anual (%)	95.29	93.60	100.00	67.62		
	Necessidades (hm³/mês)	0.08	0.02	0.00	0.23		
Maçãs	Déficit mensal médio (%)	0.01	0.00	0.00	0.00		
	Garantia anual (%)	90.70	90.70	100.00	90.70		
	Necessidades (hm³/mês)	0.00	0.01	0.00	0.07		
Águeda	Déficit mensal médio (%)	0.00	0.00	0.00	0.00		
	Garantia anual (%)	100.00	100.00	100.00	100.00		
	Necessidades (hm³/mês)	0.37	0.06	0.02	6.23		
Coa	Déficit mensal médio (%)	0.10	0.10	0.00	0.16		
	Garantia anual (%)	17.47	74.06	73.69	18.89		
	Necessidades (hm³/mês)	0.46	0.03	0.00	1.95		
Paiva	Déficit mensal médio (%)	0.15	0.02	0.00	0.02		
	Garantia anual (%)	8.14	8.14	100.00	4.65		
	Necessidades (hm³/mês)	10.17	0.08	39.60	15.65	0.01	
Douro	Déficit mensal médio (%)	0.02	0.01	0.01	0.03	0.01	
	Garantia anual (%)	38.53	71.42	26.90	80.65	39.53	
	Necessidades (hm³/mês)	2.44	0.19	1.20	10.62	0.01	
Vouga	Déficit mensal médio (%)	0.00	0.00	0.00	0.01	0.00	
	Garantia anual (%)	88.50	76.23	99.92	75.68	100.00	
Contaires	Necessidades (hm³/mês)	0.00	0.00	0.17	0.32	0.03	
Costeiras entre Douro	Déficit mensal médio (%)	0.00	0.00	0.01	0.00	0.01	
e Vouga	Garantia anual (%)	100.00	100.00	69.77	72.09	69.77	

Bacia hidrográfica	Indicadores	Urbano	Pecuária	Industrial	Agricultura	Golfe	Outros
	Necessidades (hm³/mês)	0.41	0.00	0.01	1.27		
Alva	Déficit mensal médio (%)	0.00	0.00	0.00	0.00		
	Garantia anual (%)	93.02	98.26	100.00	98.26		
	Necessidades (hm³/mês)	1.15	0.05	0.02	2.69	0.03	
Dão	Déficit mensal médio (%)	0.05	0.01	0.00	0.01	0.00	
	Garantia anual (%)	43.02	43.02	100.00	39.53	100.00	
	Necessidades (hm³/mês)	3.39	0.12	4.68	21.91		
Mondego	Déficit mensal médio (%)	0.04	0.03	0.02	0.09		
	Garantia anual (%)	69.96	42.09	34.18	2.32		
	Necessidades (hm³/mês)		0.01		0.13		
Costeiras do Mondego	Déficit mensal médio (%)		0.02		0.00		
	Garantia anual (%)		2.33		100.00		
Costeiras	Necessidades (hm³/mês)	0.02	0.00	0.01	0.01		
entre o Vouga e o	Déficit mensal médio (%)	0.00	0.00	0.79	0.14		
Mondego	Garantia anual (%)	100.00	100.00	0.00	0.00		
	Necessidades (hm³/mês)	1.06	0.15	0.25	1.87	0.00	
Lis	Déficit mensal médio (%)	0.00	0.00	0.00	0.02	0.00	
	Garantia anual (%)	87.21	87.21	100.00	80.23	100.00	
Costeiras	Necessidades (hm³/mês)	0.12	0.00	0.08	0.03		
entre o Mondego e	Déficit mensal médio (%)	0.00	0.00	0.00	0.00		
o Lis	Garantia anual (%)	100.00	91.86	100.00	100.00		
Costeiras	Necessidades (hm³/mês)		0.00		0.07		
entre o Lis e Oeste 2	Déficit mensal médio (%)		0.01		0.00		
J0310 Z	Garantia anual (%)		45.35		100.00		
	Necessidades (hm³/mês)	0.09	0.00	0.00	0.01		
Oeste1	Déficit mensal médio (%)	0.08	0.01	0.00	0.00		
	Garantia anual (%)	34.88	34.88	100.00	100.00		

Bacia hidrográfica	Indicadores	Urbano	Pecuária	Industrial	Agricultura	Golfe	Outros
	Necessidades (hm³/mês)	0.73	0.24	0.15	8.16	0.13	
Oeste2	Déficit mensal médio (%)	0.04	0.02	0.00	0.24	0.00	
	Garantia anual (%)	0.00	0.00	0.00	0.00	100.00	
	Necessidades (hm³/mês)		0.00		0.26		
Costeiras do Oeste 2	Déficit mensal médio (%)		0.02		0.00		
	Garantia anual (%)		1.16		100.00		
Costeiras	Necessidades (hm³/mês)		0.00		0.07		
entre o Oeste 2 e o	Déficit mensal médio (%)		0.02		0.00	0.00	
Sado	Garantia anual (%)		1.16		100.00	100.00	
Costeiras	Necessidades (hm³/mês)	0.03	0.00	0.01	0.03		
entre o Oeste 2 e o	Déficit mensal médio (%)	0.24	0.02	0.00	0.00	0.00	
Tejo	Garantia anual (%)	0.00	0.00	100.00	100.00	100.00	
	Necessidades (hm³/mês)	0.34	0.18	0.25	5.12		0.11
Maior	Déficit mensal médio (%)	0.00	0.01	0.04	0.32		0.00
	Garantia anual (%)	100.00	19.77	13.95	0.00		100.00
	Necessidades (hm³/mês)	0.33	0.05	0.07	0.56		0.03
Nabão	Déficit mensal médio (%)	0.00	0.00	0.00	0.01		0.00
	Garantia anual (%)	100.00	69.77	100.00	65.12		100.00
	Necessidades (hm³/mês)	15.17	0.05	0.04	6.87	0.00	
Zêzere	Déficit mensal médio (%)	0.00	0.01	0.00	0.01	0.00	
	Garantia anual (%)	99.79	98.24	94.25	84.73	100.00	
	Necessidades (hm³/mês)	0.56	0.02	0.01	0.95		
Ocreza	Déficit mensal médio (%)	0.00	0.02	0.00	0.05		
Ocieza	Garantia mensal (%)	99.63	96.14	100.00	81.39		
	Garantia anual (%)	98.24	87.44	100.00	49.81		
	Necessidades (hm³/mês)	0.14	0.05	0.01	7.31		
Pônsul	Déficit mensal médio (%)	0.13	0.07	0.00	0.13		
	Garantia anual (%)	35.38	71.26	100.00	1.49		

Bacia hidrográfica	Indicadores	Urbano	Pecuária	Industrial	Agricultura	Golfe	Outros
	Necessidades (hm³/mês)	0.01	0.01	0.00	0.06		
Erges	Déficit mensal médio (%)	0.00	0.00	0.00	0.00		
	Garantia anual (%)	98.84	98.84	100.00	100.00		
	Necessidades (hm³/mês)	0.32	0.01	0.00	0.23		
Sever	Déficit mensal médio (%)	0.16	0.01	0.00	0.07		
	Garantia anual (%)	13.95	13.95	100.00	10.47		
	Necessidades (hm³/mês)	0.17	0.08	0.12	4.94		
Sorraia	Déficit mensal médio (%)	0.00	0.00	0.00	0.00	0.00	0.00
	Garantia anual (%)	100.00	100.00	100.00	100.00	100.00	100.00
	Necessidades (hm³/mês)	0.07	0.05	0.02	9.93		
Sor	Déficit mensal médio (%)	0.00	0.07	0.00	0.14		
	Garantia anual (%)	100.00	33.09	100.00	1.12		
	Necessidades (hm³/mês)	0.04	0.09	0.01	4.45		
Grande	Déficit mensal médio (%)	0.00	0.02	0.00	0.33		
	Garantia anual (%)	100.00	0.00	100.00	0.00		
	Necessidades (hm³/mês)	0.05	0.09	0.01	8.43		
Seda	Déficit mensal médio (%)	0.00	0.01	0.00	0.03		
	Garantia anual (%)	70.41	99.94	100.00	48.12		
	Necessidades (hm³/mês)	0.15	0.09	0.01	4.30		
Raia	Déficit mensal médio (%)	0.00	0.00	0.00	0.05		
	Garantia anual (%)	100.00	100.00	100.00	0.00		
	Necessidades (hm³/mês)	0.02	0.04	0.00	1.23		
Divor	Déficit mensal médio (%)	0.00	0.02	0.00	0.15		
	Garantia anual (%)	100.00	4.65	100.00	2.33		
	Necessidades (hm³/mês)	0.17	0.16	0.10	5.03	0.01	0.01
Almansor	Déficit mensal médio (%)	0.00	0.12	0.00	0.27	0.00	0.00
	Garantia anual (%)	100.00	56.34	100.00	0.00	100.00	100.00

Bacia hidrográfica	Indicadores	Urbano	Pecuária	Industrial	Agricultura	Golfe	Outros
	Necessidades (hm³/mês)	10.48	0.24	4.51	44.69	0.23	5.00*
Tejo	Déficit mensal médio (%)	0.00	0.00	0.00	0.00	0.00	0.00
	Garantia anual (%)	100.00	92.65	99.32	94.17	100.00	100.00
Costeiras	Necessidades (hm³/mês)	0.01	0.00	0.01	0.13		
entre o Tejo e o Sado	Déficit mensal médio (%)	0.00	0.01	0.00	0.00		
	Garantia anual (%)	100.00	15.12	100.00	12.79		
	Necessidades (hm³/mês)	0.00	0.27	0.00	6.07		
Alcáçovas	Déficit mensal médio (%)	0.00	5.62	0.00	5.87		
	Garantia anual (%)	100.00	5.52	100.00	31.96		
	Necessidades (hm³/mês)	0.37	0.02	0.17	5.56		
Roxo	Déficit mensal médio (%)	1.88	13.00	13.79	9.31		0.00
	Garantia anual (%)	81.93	7.98	50.30	11.88		100.00
	Necessidades (hm³/mês)	1.73	0.39	0.66	20.03	0.03	2.40
Sado	Déficit mensal médio (%)	0.89	2.84	0.00	3.39	0.00	0.00
	Garantia anual (%)	96.47	47.01	100.00	57.34	100.00	44.78
Costeiras	Necessidades (hm³/mês)	0.35	0.01	0.07	0.57	0.01	
entre o Sado e o Mira	Déficit mensal médio (%)	0.00	0.07	0.05	0.00	0.33	
	Garantia anual (%)	100.00	5.05	0.10	6.54	0.00	
	Necessidades (hm³/mês) Déficit mensal	0.21	0.03	7.19	0.00		0.34
Mira	médio (%) Garantia	0.08	0.10	0.00	0.16		0.11
	anual (%) Necessidades	42.65	65.73	100.00	9.55		65.12
	(hm³/mês)	0.05	0.06	0.00	1.83		
Cobres	Déficit mensal médio (%)	6.31	4.04	0.00	12.46		
	Garantia anual (%) Necessidades	0.00	0.00	100.00	0.00		
	(hm³/mês)	0.57	0.11	0.00	4.18		
Degebe	Déficit mensal médio (%)	7.12	18.14	5.25	25.34		
	Garantia anual (%)	3.88	55.29	96.44	0.72		

Bacia hidrográfica	Indicadores	Urbano	Pecuária	Industrial	Agricultura	Golfe	Outros
	Necessidades (hm³/mês)	0.23	0.07	0.01	5.85		
Caia	Déficit mensal médio (%)	0.25	0.74	0.00	6.67		
	Garantia anual (%)	95.55	58.58	100.00	68.85		
	Necessidades (hm³/mês)	0.00	0.02	0.00	1.21		
Xévora	Déficit mensal médio (%)	0.00	6.23	0.00	12.18		
	Garantia anual (%)	100.00	48.46	100.00	7.68		
	Necessidades (hm³/mês)	0.00	0.01	0.00	0.37		
Alcarrache	Déficit mensal médio (%)	0.00	0.00	0.00	0.00		
	Garantia anual (%)	100.00	100.00	100.00	100.00		
	Necessidades (hm³/mês)	0.16	0.04	0.00	1.11		
Ardila	Déficit mensal médio (%)	0.00	0.00	0.00	0.22		
	Garantia anual (%)	100.00	100.00	100.00	69.77		
	Necessidades (hm³/mês)	0.02	0.01	0.00	0.01		
Murtega	Déficit mensal médio (%)	0.42	0.06	0.00	0.00		
	Garantia anual (%)	95.35	95.35	100.00	100.00		
	Necessidades (hm³/mês)	0.01	0.02	0.27	0.02		
Chança	Déficit mensal médio (%)	0.00	28.90	0.00	0.00		
	Garantia anual (%)	100.00	93.02	100.00	100.00		
	Necessidades (hm³/mês)	3.24	0.23	0.02	43.17	0.22	
Guadiana	Déficit mensal médio (%)	1.08	1.57	1.21	7.15	27.50	
	Garantia anual (%)	57.79	84.96	95.31	21.33	42.25	
Costeiras	Necessidades (hm³/mês)	0.00	0.08	0.00	0.35		
entre o Mira e o	Déficit mensal médio (%)	0.30	0.10	0.78	0.00		
Barlavento	Garantia anual (%)	0.00	0.00	0.00	100.00		
Costeiras	Necessidades (hm³/mês)		0.00		0.01		
entre o Sotavento e	Déficit mensal médio (%)		3.16		0.00		
o Guadiana	Garantia anual (%)		0.00		100.00		

Bacia hidrográfica	Indicadores	Urbano	Pecuária	Industrial	Agricultura	Golfe	Outros
	Necessidades (hm³/mês)	0.42	0.01	0.45	1.11	0.28	
Barlavento	Déficit mensal médio (%)	0.42	1.49	5.20	1.89	2.98	
	Garantia anual (%)	93.66	23.74	0.56	48.01	33.21	
	Necessidades (hm³/mês)	0.00	0.00	0.00	0.04	0.00	
Costeiras do Barlavento	Déficit mensal médio (%)		1.44	22.45	0.00	0.00	
	Garantia anual (%)		15.12	0.00	100.00	100.00	
	Necessidades (hm³/mês)	2.75	0.01	0.03	2.02	0.20	
Arade	Déficit mensal médio (%)	0.55	1.75	0.49	4.71	10.88	
	Garantia anual (%)	96.99	60.93	98.79	34.17	59.90	
	Necessidades (hm³/mês)	0.23	0.01	0.08	6.80	0.46	
Sotavento	Déficit mensal médio (%)	0.00	1.80	6.54	0.00	0.00	
	Garantia anual (%)	100.00	4.65	0.00	0.00	100.00	
	Necessidades (hm³/mês)		0.00		0.01		
Costeiras do Sotavento	Déficit mensal médio (%)		3.01		0.00		
	Garantia anual (%)		0.00		100.00		
Costeiras	Necessidades (hm³/mês)		0.00		0.06	0.11	
entre o Barlavento e	Déficit mensal médio (%)		3.73		0.00	0.00	
o Sotavento	Garantia anual (%)		0.00		100.00	100.00	

Notas: *Inclui usos ilegais ao longo do troço principal do rio Tejo, no valor de 50 hm³/ano; O Sotavento inclui a Ria Formosa.

Avaliação do grau de alteração dos escoamentos com base no indicador RCON

O Quadro 24 apresenta a razão entre os escoamentos anuais médios em regime modificado e em regime natural (RCON) para cada. O RCON varia entre 0.19, no Chança, e 1.00 nas bacias hidrográficas sem alterações significativas, como é o caso das bacias Costeiras entre Vouga e Mondego, Erges, Murtega, Costeiras entre Sotavento e Guadiana, Costeiras do Barlavento e Costeiras do Sotavento. A média nacional do RCON é 0.84.

Quadro 24 - Indicador RCON

2		Área a	Cap. de armazenamento	Usos totais a montante	Escoamento anu	Door	
Bacia hidrográfica	Secção	montante (km²)	a montante (hm³)	(hm³)	Natural	Modificado	RCON
Minho	Entrada PT	15631	2452	619	10 241	10 164	0.99
Minho	Foz	17083	2452	674	11 718	11 275	0.96
Lima	Entrada PT	675	162	35	397	388	0.98
Lima	Foz	2542	541	93	2686	2681	1.00
C. entre Minho e Lima	Foz	141		2	158	156	0.99
Neiva	Foz	241		17	245	232	0.95
Rabagão	Foz	247	651	54	283	238	0.84
Cávado	Foz	1592	1093	224	1947	1798	0.92
Ave	Foz	1391	21	188	1318	1195	0.91
C. entre Cávado e Ave	Foz	17		2	11	10	0.91
Leça	Foz	191		17	125	114	0.91
C. entre Ave e Leça	Foz	47		12	29	25	0.86
C. entre Neiva e Douro	Foz	149		15	94	83	0.88
Douro	Foz	97501	7464	4615	18 179	13 496	0.74
Tâmega	Jusante	3308	77	179	2154	2037	0.95
Rabaçal	Jusante	1430		21	615	598	0.97
Tuela	Jusante	1129		24	483	463	0.96
Tua	Jusante	3815	10	62	1391	1351	0.97
Sabor	jusante	2548	689	66	857	803	0.94
Maças	Jusante	1342		18	279	269	0.97
Águeda	jusante	2577	16	31	516	490	0.95
Coa	jusante	2541	78	80	509	432	0.85
Paiva	jusante	790		29	613	592	0.97
Douro	Entrada PT	73581	6673	3364	9734	6630	0.68

Dezembro 2023

,	Área a	Cap. de armazenamento	Usos totais a montante	Escoamento anu				
Bacia hidrográfica	Secção	montante (km²)	a montante (hm³)	(hm³)	Natural	Modificado	RCON	
Vouga	Foz	3619	49	174	2426	2329	0.96	
C. entre Douro e Vouga	Jusante	222		6	138	134	0.97	
Alva	Jusante	708	42	20	427	225	0.53	
Dão	Jusante	1309		47	755	725	0.96	
Mondego	Foz	6661	270	428	3244	2935	0.90	
Costeiras do Mondego	Jusante	17		2	4	3	0.60	
C. Vouga e Mondego	Jusante	121		0	41	41	1.00	
Lis	Jusante	903		40	324	299	0.92	
C. entre Mondego e Lis	Jusante	131		3	38	37	0.97	
C. entre o Lis e Oeste 2	Jusante	128		1	30	29	0.97	
Oeste1	Jusante	65		1	17	16	0.94	
Oeste2	Jusante	2109	22	113	425	359	0.84	
Costeiras do Oeste 2	Jusante	122		3	21	18	0.86	
C. Oeste 2 e Sado	Jusante	104		3	18	15	0.83	
C. Oeste 2 e Tejo	Jusante	48	0	2	11	9	0.82	
Tejo	Foz	79228	12574	5439	14 946	11 272	0.75	
Maior	Jusante	957		71	194	162	0.84	
Nabão	Jusante	1017		12	312	304	0.97	
Zêzere	Jusante	5024	1610	277	2224	2030	0.91	
Ocreza	Jusante	1429	129	18	466	442	0.95	
Pônsul	Jusante	1417	77	90	302	252	0.83	
Erges	Jusante	1153		1	353	353	1.00	
Sever	Jusante	745		7	150	149	0.99	
Sorraia	Jusante	6530	324	479	999	691	0.69	
Sor	Jusante	1255	143	121	193	115	0.60	

		Área a	Cap. de Usos totais a armazenamento montante		Escoamento anu		
Bacia hidrográfica	Secção	montante (km²)	a montante (hm³)	(hm³)	Natural	Modificado	RCON
Grande	Jusante	1070		55	121	104	0.86
Seda	Jusante	3169	181	212	416	191	0.46
Raia	Jusante	3438	181	228	445	290	0.65
Divor	jusante	756		15	83	73	0.88
Almansor	Jusante	1080	0	66	139	94	0.68
Tejo	entrada em PT	52706	10394	3611	8757	5867	0.70
C. entre o Tejo e o Sado	Jusante	106		2	17	15	0.88
Alcáçovas	Jusante	895	94	77	148	102	0.69
Roxo	Jusante	689	93	52	67	48	0.72
Sado	Foz	7565	565	429	965	730	0.76
C. entre o Sado e o Mira	Jusante	488	27	30	69	63	0.91
Mira	Jusante	1576	292	89	250	193	0.77
Guadiana	Foz	67256	11789	2762	5256	2462	0.47
Cobres	Jusante	1156		23	122	107	0.88
Degebe	Jusante	1539		58	157	134	0.85
Caia	Jusante	834	192	74	122	52	0.43
Xévora	Jusante	2122	120	36	287	270	0.94
Alcarrache	Jusante	993		5	111	105	0.95
Ardila	Jusante	3699		18	513	492	0.96
Murtega	Jusante	848		0	187	187	1.00
Chança	Jusante	2152	970	194	321	233	0.72
Guadiana	Entrada PT	46560	7128	1791	2746	931	0.34
C. Mira e Barlavento	Jusante	216		5	42	37	0.88
C. Sotavento e Guadiana	Jusante	14		0	2	2	1.00
Barlavento	Jusante	995	32	27	214	193	0.90

Dezembro 2023

Destruit in the second	Área a		Cap. de armazenamento	Usos totais a montante	Escoamento anu	DOON		
Bacia hidrográfica	3	montante (km²)	a montante (hm³)	(hm³)	Natural	Modificado	RCON	
Costeiras do Barlavento	Jusante	143		1	19	19	1.00	
Arade	Jusante	979	204	61	235	194	0.83	
Sotavento	Jusante	1487		91	270	191	0.71	
Costeiras do Sotavento	Jusante	8		0	1	1	1.00	
C. Barl. e Sotavento	Jusante	85		2	7	6	0.86	

Nota: O Sotavento inclui a Ria Formosa.

A Figura 43 apresenta a relação entre o RCON e a razão entre os usos e o escoamento anual médio em regime natural, verificando-se que quanto maior é esta razão, menor é o RCON. Os dois pontos fora da tendência na Figura 43 correspondem às secções de Alva e Roxo: a primeira transfere água para o Mondego (188 hm³/ano) e o segundo recebe água de Alqueva (via Sado) e transfere água para Morgavel e para o Sado, não estando estes valores incluídos nos usos nem nos escoamentos médios anuais.

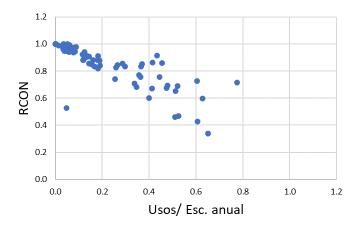


Figura 43 – Relação do RCON com a razão entre os usos e o escoamento anual médio em regime natural

3.7 Índice WEI+

Os Quadro 25 e Quadro 26 apresentam os resultados do cálculo do índice WEI+ para cada região hidrográfica e respetivas bacias, e por sub-bacias hidrográficas, respetivamente. As Figura 44 e Figura 45 apresentam a distribuição espacial dos valores médios deste índice por região hidrográfica e por sub-bacia hidrográfica de planeamento, tal como definido no Artigo 13.º da Diretiva Quadro da Água.

Quadro 25 - Valores médios do índice de escassez WEI+ por RH e bacia

RH	1930-2015	1989-2015	Bacia hidrográfica	1930-2015	1989-2015
D.14	0.00	0.00	Minho	0.02	0.02
RH1	0.03	0.03	Lima	0.07	0.09
			Cávado	0.33	0.44
RH2	0.37	0.44	Ave	0.52	0.56
			Leça	0.52	0.54
RH3	0.36	0.39	Douro	0.36	0.39
		N	Mondego	0.48	0.53
RH4	0.38	0.42	Vouga	0.35	0.37
			Lis	0.32	0.46
Due	0.40	0.40	Tejo	0.43	0. 47
RH5	0.43	0.48	Rib. do Oeste	0.56	0.65
5110	0.70		Sado	0.63	0.66
RH6	0.70	0.74	Mira	0.68	0.74
RH7	0.51	0.51	Guadiana	0.51	0.51
RH8	0.62	0.66	Rib. do Algarve	0.62	0.66

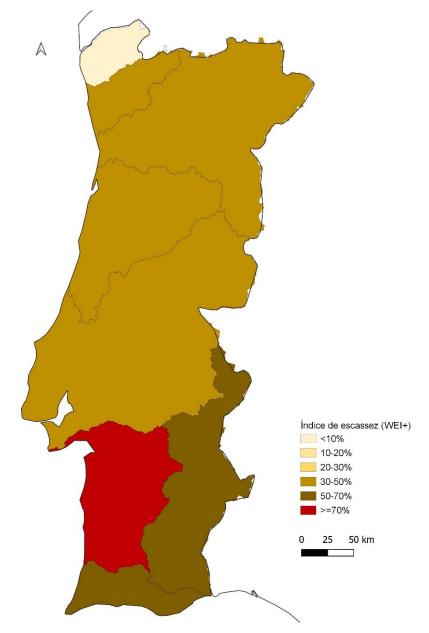


Figura 44 – WEI+ por região hidrográfica (período 1930-2015)

Quadro 26 - Valores médios do índice de escassez WEI+ por sub-bacia

	Sub-bacia		1930-2015					
RH		1989-2015	Ano	Out-Dez	Jan-Mar	Abr-Jun	Jul-Set	
RH1	Minho	0.02	0.02	0.01	0.00	0.01	0.04	
	Lima	0.09	0.07	0.01	0.01	0.09	0.17	
	Neiva	0.46	0.43	0.16	0.14	0.52	0.87	
	Cost Minho e Lima	0.27	0.24	0.10	0.08	0.20	0.58	

			1930-2015					
RH	Sub-bacia	1989-2015	Ano	Out-Dez	Jan-Mar	Abr-Jun	Jul-Set	
	Cávado	0.34	0.27	0.10	0.05	0.33	0.61	
	Rabagão	0.35	0.29	0.31	0.09	0.34	0.43	
	Ave	0.56	0.52	0.23	0.22	0.70	0.92	
RH2	Leça	0.54	0.52	0.23	0.22	0.70	0.91	
	Cost Ave e Leça	0.63	0.60	0.29	0.27	0.89	0.97	
	Cost Cávado e Ave	0.60	0.54	0.25	0.22	0.77	0.93	
	Cost Neiva e Douro*							
	Águeda	0.01	0.01	0.01	0.01	0.01	0.02	
	Coa	0.59	0.54	0.48	0.24	0.56	0.90	
	Douro	0.36	0.33	0.27	0.10	0.26	0.69	
	Maçãs	0.18	0.16	0.23	0.10	0.09	0.24	
	Paiva	0.51	0.47	0.38	0.19	0.40	0.90	
RH3	Rabaçal	0.19	0.19	0.18	0.04	0.14	0.38	
	Sabor	0.39	0.40	0.39	0.19	0.37	0.65	
	Tâmega	0.50	0.45	0.37	0.11	0.40	0.92	
	Tua	0.12	0.13	0.13	0.04	0.07	0.26	
	Tuela	0.27	0.28	0.24	0.10	0.22	0.56	
	Cost Douro e Vouga	0.37	0.35	0.42	0.12	0.22	0.63	
	Dão	0.49	0.45	0.36	0.20	0.43	0.82	
	Alva	0.35	0.33	0.28	0.15	0.19	0.68	
	Mondego	0.46	0.41	0.28	0.08	0.46	0.80	
D. 14	Vouga	0.37	0.35	0.22	0.10	0.38	0.72	
RH4	Lis	0.46	0.32	0.30	0.14	0.33	0.53	
	C Vouga e Mondego	0.06	0.05	0.09	0.02	0.03	0.05	
	Cost Mondego*							
	Cost Mondego e Lis	0.32	0.25	0.34	0.15	0.19	0.32	

^{*} As sub-bacias costeiras apenas com massas de água da categoria "Costeiras", não têm o valor de WEI+ porque não se considera haver escassez nesta categoria de águas.

D.	0.1.1	4000 0045	1930-2015					
RH	Sub-bacia	1989-2015	Ano	Out-Dez	Jan-Mar	Abr-Jun	Jul-Set	
	Almansor	0.81	0.74	0.72	0.44	0.79	1.00	
	Divor	0.74	0.66	0.70	0.36	0.60	0.98	
	Grande	0.85	0.79	0.76	0.52	0.89	1.00	
	Raia	0.31	0.25	0.22	0.09	0.27	0.42	
	Seda	0.78	0.75	0.73	0.40	0.86	1.00	
	Sôr	0.77	0.74	0.69	0.50	0.84	0.93	
	Sorraia	0.45	0.40	0.42	0.17	0.39	0.62	
	Maior	0.74	0.66	0.70	0.32	0.64	1.00	
	Erges	0.12	0.13	0.19	0.11	0.04	0.16	
	Nabão	0.42	0.31	0.45	0.12	0.17	0.48	
5.15	Ocreza	0.43	0.38	0.27	0.14	0.42	0.70	
RH5	Pônsul	0.69	0.68	0.60	0.36	0.76	1.00	
	Sever	0.56	0.54	0.57	0.31	0.39	0.88	
	Tejo	0.39	0.34	0.15	0.06	0.38	0.77	
	Zêzere	0.46	0.35	0.41	0.19	0.31	0.51	
	Oeste 1	0.56	0.42	0.61	0.25	0.26	0.58	
	Oeste 2	0.66	0.57	0.63	0.28	0.45	0.93	
	Cost Oeste 2*							
	C entre Lis e Oeste 2*							
	Cost Oeste 2 e Sado*							
	Cost Oestes 2 e Tejo	0.71	0.62	0.67	0.34	0.51	0.95	
	Cost Tejo e Sado	0.62	0.55	0.69	0.33	0.39	0.80	
	Alcáçovas	0.79	0.78	0.68	0.52	0.89	1.00	
	Roxo	0.80	0.77	0.78	0.51	0.83	0.99	
DI IC	Sado	0.70	0.67	0.65	0.39	0.63	0.99	
RH6	Mira	0.74	0.68	0.56	0.37	0.77	1.00	
	C Mira e Barlavento	0.71	0.65	0.55	0.35	0.72	0.99	
	Cost Sado e Mira	0.75	0.69	0.72	0.46	0.62	0.97	

			1930-2015					
RH	Sub-bacia	1989-2015	Ano	Out-Dez	Jan-Mar	Abr-Jun	Jul-Set	
	Alcarrache	0.61	0.57	0.50	0.34	0.50	0.95	
	Ardila	0.44	0.42	0.33	0.21	0.32	0.81	
	Chança	0.57	0.58	0.66	0.45	0.58	0.64	
	Cobres	0.80	0.74	0.61	0.50	0.85	0.99	
D. 17	Degebe	0.81	0.77	0.69	0.51	0.89	1.00	
RH7	Guadiana	0.48	0.47	0.35	0.09	0.56	0.88	
	Murtega	0.15	0.15	0.22	0.10	0.04	0.22	
	Caia	0.83	0.81	0.77	0.55	0.94	1.00	
	Xévora	0.38	0.35	0.30	0.12	0.32	0.68	
	Cost Guadiana*							
	Arade	0.71	0.68	0.50	0.43	0.82	0.97	
	Barlavento	0.60	0.57	0.42	0.26	0.64	0.97	
	Sotavento	0.73	0.68	0.58	0.38	0.77	0.99	
DUIG	Cost Barlavento*							
RH8	C Barl. e Sotavento*							
	Cost Sotavento*							
	C Sotav. e Guadiana*							
	Ria Formosa*							

^{*} As sub-bacias costeiras apenas com massas de água da categoria "Costeiras", não têm o valor de WEI+ porque não se considera haver escassez nesta categoria de águas.

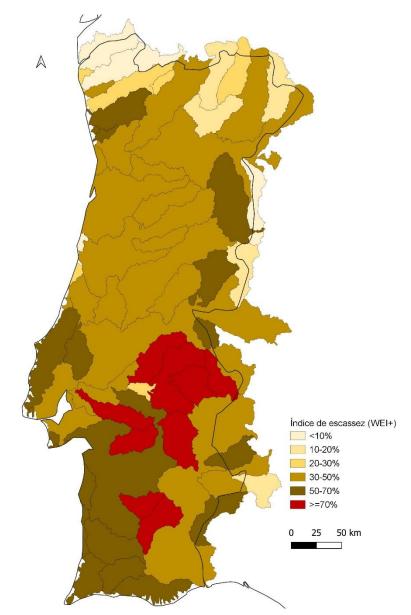


Figura 45 – WEI+ por sub-bacia hidrográfica de planeamento (período 1930-2015)

4. CONSIDERAÇÕES FINAIS

No âmbito deste estudo, procurou-se reunir a melhor informação disponível e testar metodologias para a avaliação das disponibilidades hídricas existentes e futuras, bem como dos usos da água. O estudo foi realizado em articulação com diferentes entidades e de forma integrada com outros estudos realizados pela APA, nomeadamente o Roteiro Nacional para a Adaptação 2100. Os resultados deste estudo foram integrados nos planos de gestão de região hidrográfica do 3.º ciclo e vão suportar as atividades de licenciamento no próximo ciclo.

O estudo produziu um conjunto consistente de estimativas de disponibilidades e necessidades de água, cobrindo Portugal e Espanha, com uma resolução especial adequada para a gestão da água.

Constatou-se que, nos últimos 26 anos (1989/90-2015/16), e comparativamente ao período 1930/31-1988/89, houve uma diminuição da precipitação anual de cerca de 15%, sendo que, em determinadas regiões, se atingiram valores superiores a 20%. Esta redução da precipitação conduz a uma diminuição das disponibilidades de cerca de 30%, em média, para os mesmos períodos. Os cenários de alterações climáticas sugerem que esta tendência vai agravar-se.

Os volumes captados em média em Portugal rondam os 5344 hm³, dos quais 70% são para satisfação das necessidades de rega³. O índice WEI+ com valores superiores a 50% nas regiões hidrográficas 6 – Sado, 7 – Guadiana e 8 – Ribeiras do Algarve revela situações de escassez hídrica e a urgência de adotar medidas de compatibilização das necessidades setoriais às disponibilidades hídricas existentes.

Na execução dos trabalhos foram reconhecidas e caracterizadas diversas lacunas de informação e fragilidades metodológicas. A discussão pública muito alargada que se lhe sucedeu também permitiu identificar áreas em que é possível melhorar os resultados e aperfeiçoar as conclusões.

Entre as lacunas e incertezas identificadas, destacam-se a escassez de dados sobre o uso da água, nomeadamente sobre dotações efetivas de rega para as várias culturas, eficiências no uso de água para rega (desde a captação ao pé da planta) e volumes captados em massas de água superficiais e subterrâneas para utilização na rega (não apenas dos perímetros públicos) e na atividade pecuária. Na avaliação das

³ Estes volumes captados não consideram a energia termoelétrica e outros usos. Considerando estes usos, o valor ascende a 5927 hm³/ano.

bluefocus

Avaliação das disponibilidades hídricas por massa de água e aplicação do Índice de escassez WEI+, visando complementar a avaliação do estado das massas de água Relatório Final Dezembro 2023

disponibilidades é de referir a fragilidade da monitorização em certas regiões, sobretudo nos anos mais recentes, o que afeta as estimativas da disponibilidade de água.

O vasto acervo de dados reunido e a plataforma de informação e de modelação operacional desenvolvida permite o rápido aprofundamento dos trabalhos realizados e o aperfeiçoamento das estimativas apresentadas.

5. REFERÊNCIAS

Alcamo, J., Henrichs, T., Rösch, T., 2000. World Water in 2025 Global modeling and scenario analysis for the World Commission on Water for the 21st Century. Kassel, Germany.

Alexandersson, H.; 1986. A homogeneity test applied to precipitation data, *Journal of Climatology*, 6, 661-675.

APA; 2019. Desenvolvimento de métodos específicos para a avaliação da recarga das Massas de Água Subterrânea, para melhorar a avaliação do estado quantitativo, APA / ISEP.

APA; 1982. Precipitação - quantidade total, valores médios anuais (mm), período 1931-1960. Atlas do Ambiente, https://sniambgeoportal.apambiente.pt

APA; 1982. Temperatura - temperatura média diária do ar, valores médios anuais (graus centígrados), período 1931-1960. Atlas do Ambiente, https://sniambgeoportal.apambiente.pt

APA/DGADR, 2020. Bases do Plano Regional de Eficiência Hídrica - Região do Algarve. Volume I – Memória Descritiva.

Belo-Pereira, M., E. Dutra, and P. Viterbo, 2011: Evaluation of global precipitation data sets over the Iberian Peninsula, *J. Geophys. Res.*, 116, D20101, doi:10.1029/2010JD015481.

Buishand, T.A.; 1982. Some methods for testing the homogeneity of rainfall records, *Journal of Hydrology*, 58, 11-17.

Buishand, T.A.; 1984. Tests for detecting a shift in the mean of hydrological time series, *Journal of Hydrology*, 73, 51-69.

Childs, C.; 2004. *Interpolating surfaces in ArcGIS spatial analyst, ESRI Education Services*, July-September,

https://www.esri.com/news/arcuser/0704/files/interpolating.pdf

Damkjaer, S., Taylor, R., 2017. The measurement of water scarcity: Defining a meaningful indicator. *Ambio A J. Hum. Environ.* 46, 513–531. https://doi.org/10.1007/s13280-017-0912-z.

DGADR, 2018. Dotações de referência para rega em Portugal Continental. Maio.

DGAV, 2014. Água de Qualidade Adequada para Alimentação Animal. Guia de Boas Práticas

DGAV, 2020. Número de animais por exploração (aves, bovinos, caprinos, ovinos e suínos)

DGT, 2018. Carta de Ocupação do Solo (COS) 2018, Direção Geral do Território.

DHI; 2017. MIKE HYDRO Basin, User guide.

EEA, 2010. Water exploitation index (WEI). — European Environment Agency [WWW Document]. URL https://www.eea.europa.eu/data-and-maps/figures/water-exploitation-index-wei-3 (accessed 9.17.21).

Gross, P.; Hartwiger, C. (2016). How to develop a water budget for your golf course, a science-based approach for estimating landscape water requirements. United States Golf Association

Hargreaves, G.H., Samani, S.; 1982. Estimating potential evapotranspiration. *Journal of Irrigation and Drainage Division*, 108, 3, 225–230.

Hersbach, H., Bell, B., Berrisford, P., et al.; 2020. The ERA5 global reanalysis. *Q. J. Roy. Meteorol. Soc.*, 146, 1999–2049. https://doi.org/10.1002/qj.3803.

Herrera, S., Gutiérrez, J. M., Ancell, R., Pons, M. R., Frías, M., and Fernandez, J.; 2012. Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02), *Int. J. Climatol.*, 36, 74–85

Herrera, H., Cardoso, R., Soares, P., Espírito-Santo, F., Viterbo, P., Gutiérrez, J.; 2019. Iberia01: A new gridded dataset of daily precipitation and temperatures over Iberia, *Earth System Science Data*, june

Hipel, K. W.; McLeod, A.I.; 1994. *Time series modeling of water resources and environmental systems*, New York, Elsevier Science.

IHERA, 2001. Estimativa das necessidades globais de água para o regadio no continente (contributo do IHERA para o Plano Nacional da Água). Instituto de Hidráulica, Engenharia Rural e Ambiente. Lisboa.

INE, 2021. *Grid 1000mx1000m*, https://mapas.ine.pt/download/index2021Grid.phtml

INE, 2019. Recenseamento Agrícola 2019, Instituto Nacional de Estatística.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O., Bouwer, L., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kroner, N.,

Kotlarski, S., Kriegsmann, A., Martin, E., Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J., Teichmann, C., Valentini, R., Vautard, R., Weber, B., Yiou, P. (2014), EURO-CORDEX: new high-resolution climate change projections for European impact research, *Reg Environ Change* 14,563–578, DOI: I 10.1007/s10113-013-0499-2.

Libiseller, C.; Grimvall, A.; 2002. Performance of partial Mann-Kendal test for trend detection in the presence of covariate, *Environmetrics*, 13, 71-84.

Madaleno, C.; 2015. Uso sustentável da água na cultura do arroz. Comunicação apresentada pela Associação de Beneficiários da Lezíria Grande de Vila Franca de Xira.

MAPAMA; 2017. Evaluación del impacto del cambio climático en los recursos hídricos y sequias en España. Informe Final. Tomo único. Centro de Estudios Hidrográficos. Madrid

MITECO; 2019. Escorrentía total e Infiltración. Disponível em https://www.miteco.gob.es/es/agua/temas/evaluacion-de-los-recursos-hidricos/evaluacion-recursos-hidricos-regimen-natural/default.aspx

MITECO; 2015. *Precipitación total annual (Media período 1940/41-2005/06)*, https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/simpa.html

Monreal, T.; 1986. Formulacion Teorica del Modelo de Temez. Curso sobre Modelos Hidrologicos de Simulacion Continua de la Cuenca

Monreal, T.; Ripoll, L.; 1996. El sistema integrado de modelización Precipitación-Aportación SIMPA. *Revista Digital Del Cedex*, (104), 43. Recuperado a partir de https://ingenieriacivil.cedex.es/index.php/ingenieria-civil/article/view/1153

Nicolau, R.; 2010. Modelação e Mapeamento da Distribuição Espacial da Precipitação - Uma Aplicação a Portugal Continental (Modeling and mapping the spatial distribution of rainfall - An application to Portugal). Tese de Doutoramento em Eng do Amb, FCT/UNL

Oliveira, R.; Simões, J.; 2022. Acerca dos modelos de balanço hídrico propostos por Thornthwaite e Mather, Temez e Soil Conservation Service. *Recursos Hídricos*, 43, 1, 57-78.

Pettit, A.N.; 1979. A non-parametric approach to the change point problem. Journal of the Royal Statistical Society Series C. *Applied Statistics*, 28, 126-135.

Raskin, P., Gleick, P., Kirshen, P., Pontius, G., Strzepek, K., 1997. *Comprehensive Assessment of the Freshwater Resources on the World. Water Futures: Assessment of Long-range Patterns and Problems*. Stockholm Environment Institute, Sweden.

Rijsberman, F.R., 2006. Water scarcity: Fact or fiction? *Agric. Water Manag.* 80, 5–22. https://doi.org/10.1016/j.agwat.2005.07.001

Rosa, A.; 2019. Rega das culturas / uso eficiente da água. Direção Regional de Agricultura e Pescas do Algarve. Faro.

Sen, P.K.; 1968. Estimates of the regression coefficient based on Kendall's tau, *Journal of the American Statistical Association*, 63, 1379-1389.

Temez, J.R.; 1977. *Modelo matemático de transformación "precipitación-aportación"*, Asociación de Investigación Industrial Eléctrica (Madrid).

Thornthwaite, C.W.; 1948. An approach toward a rational classification of climate, *Geographical Review*, Vol. 38, No 1 (Jan), pp. 55-94

Thornthwaite, C.W.; Mather, J.R.; 1955. *The water balance*. Publications in Climatology, New Jersey, Drexel Institute of Technology, 104p.

Turismo de Portugal, I.P. (2020). Plataforma de Dados Abertos Georreferenciados do Turismo de Portugal

