

PLANO DE GESTÃO DE REGIÃO HIDROGRÁFICA

Parte 2 - Caracterização e Diagnóstico ANEXOS

REGIÃO HIDROGRÁFICA DO MINHO E LIMA (RH1)

Maio 2016

Índice

ANEXO I – LISTA DAS MASSAS DE ÁGUA DELIMITADAS PARA O 2º CICLO DE PLANEAMENTO NA RH1	3
ANEXO II — CRITÉRIOS DE IDENTIFICAÇÃO E DESIGNAÇÃO DE MASSAS DE ÁGUA FORTEMENTE MODIFICADAS O ARTIFICIAIS	
ANEXO III – FICHAS DAS MASSAS DE ÁGUA FORTEMENTE MODIFICADAS1	L3
Código: PT01MIN00191	L5
Código: PT01LIM00281	L9
Código: PT01LIM00322	23
Código: PT01LIM0036	27
Código: PT01LIM00413	31
Código: PT01LIM00463	35
Código: PT01LIM00573	39
Código: PT01LIM00594	13
Código: PT01LIM00604	17
Código: PT01MIN000615	51
ANEXO IV - CRITÉRIOS DE CLASSIFICAÇÃO DO ESTADO/POTENCIAL ECOLÓGICO DAS MASSAS DE ÁGUA SUPERFICIA	
ANEXO V — LIMIARES ESTABELECIDOS PARA AVALIAÇÃO DO ESTADO QUÍMICO DAS MASSAS DE ÁGU	JΑ

ANEXO I – Lista (das massas de água	ı delimitadas para	o 2º ciclo de plane	amento na RH1

Tabela I.1 - Massas de água superficial da categoria rios delimitadas na RH1

Código	Designação	Tipologia	Natureza	Comprimento (km)
PT01LIM0024I	Rio Castro Laboreiro	Rios Montanhosos do Norte	Natural	8,610
PT01LIM0024N	Rio Castro Laboreiro	Rios Montanhosos do Norte	Natural	14,275
PT01LIM0025	Rio da Peneda	Rios Montanhosos do Norte	Natural	13,600
PT01LIM0026	Rio Vez	Rios Montanhosos do Norte	Natural	35,443
PT01LIM0029	Rio Ázere	Rios Montanhosos do Norte	Natural	10,394
PT01LIM0030	Rio Adrão	Rios Montanhosos do Norte	Natural	6,145
PT01LIM0031	afluente do Rio Vez	Rios Montanhosos do Norte	Natural	4,919
PT01LIM0033	Rio de Froufe	Rios Montanhosos do Norte	Natural	7,859
PT01LIM0034	Rio Tamente	Rios Montanhosos do Norte	Natural	5,913
PT01LIM0035	Rio Tora	Rios Montanhosos do Norte	Natural	4,124
PT01LIM0037	Rio Vade	Rios do Norte de Pequena Dimensão	Natural	14,329
PT01LIM0038	Rio Vez	Rios do Norte de Média-Grande Dimensão	Natural	16,523
PT01LIM0039	Rio de Germil	Rios Montanhosos do Norte	Natural	3,831
PT01LIM0040	Rio Estorãos	Rios Montanhosos do Norte	Natural	4,188
PT01LIM0042	Rio Cabrão	Rios Montanhosos do Norte	Natural	5,633
PT01LIM0043	Ribeiro do Couto	Rios Montanhosos do Norte	Natural	2,261
PT01LIM0044	Rio Estorãos	Rios Montanhosos do Norte	Natural	3,959
PT01LIM0045	Rio Labruja	Rios do Norte de Pequena Dimensão	Natural	11,687
PT01LIM0047	Rio Trovela	Rios do Norte de Pequena Dimensão	Natural	5,400
PT01LIM0048	Rio Estorãos	Rios do Norte de Pequena Dimensão	Natural	4,004
PT01LIM0049	Rio de Pontido	Rios do Norte de Pequena Dimensão	Natural	3,945
PT01LIM0050	Ribeira da Silvareira	Rios Montanhosos do Norte	Natural	6,323
PT01LIM0051	Rio Trovela	Rios Montanhosos do Norte	Natural	5,829
PT01LIM0052	Ribeira de Lourinhal	Rios do Norte de Pequena Dimensão	Natural	2,447
PT01LIM0053	Rio Seixo	Rios do Norte de Pequena Dimensão	Natural	2,719
PT01LIM0054	Ribeira de Nogueira	Rios do Norte de Pequena Dimensão	Natural	3,437
PT01LIM0055	Ribeira de Portuzelo	Rios do Norte de Pequena Dimensão	Natural	6,137
PT01LIM0058	Ribeira de Anha	Rios do Norte de Pequena Dimensão	Natural	4,301
PT01MIN0001I	Rio Trancoso	Rios do Norte de Pequena Dimensão	Natural	9,622
PT01MIN0002	Ribeiro de São Lourenço	Rios do Norte de Pequena Dimensão	Natural	4,586
PT01MIN0003	Ribeiro do Ameal	Rios do Norte de Pequena Dimensão	Natural	4,163
PT01MIN0004	Rio Mouro	Rios do Norte de Média-Grande Dimensão	Natural	3,892
PT01MIN0005	Rio da Gadanha	Rios do Norte de Pequena Dimensão	Natural	16,157
PT01MIN0007	Rio Mouro	Rios do Norte de Média-Grande Dimensão	Natural	4,581
PT01MIN0008A	Rio Manco	Rios do Norte de Pequena Dimensão	Natural	4,874
PT01MIN0009	Rio Mouro	Rios Montanhosos do Norte	Natural	8,263
PT01MIN0010	Rio Mouro	Rios Montanhosos do Norte	Natural	11,131
PT01MIN0011	Rio Mouro	Rios Montanhosos do Norte	Natural	8,030
PT01MIN0012A	Ribeira de Veiga de Mira	Rios do Norte de Pequena Dimensão	Natural	9,171
PT01MIN0013A	Ribeira das Insuas	Rios do Norte de Pequena Dimensão	Natural	5,324
PT01MIN0014I	Rio Minho	Grandes Rios do Norte (Rios Minho e Douro)	Natural	15,926
PT01MIN0015	Rio Coura	Rios Montanhosos do Norte	Natural	10,920
PT01MIN0016I	Rio Minho	Grandes Rios do Norte (Rios Minho e	Natural	12,595

Código	Designação	Tipologia	Natureza	Comprimento (km)
		Douro)		
PT01MIN0017	Rio Coura	Rios do Norte de Pequena Dimensão	Natural	8,866
PT01MIN0020	Ribeiro de São João	Rios Montanhosos do Norte	Natural	6,528
PT01MIN0021	Rio Coura	Rios do Norte de Média-Grande Dimensão	Natural	31,194
PT01MIN0022	Rio Tinto	Rios do Norte de Pequena Dimensão	Natural	4,344
PT01NOR0716	Rio Âncora	Rios do Norte de Pequena Dimensão	Natural	17,913
PT01NOR0717	Rio de Cabanas	Rios do Norte de Pequena Dimensão	Natural	2,032
PT01NOR0718	Ribeira do Pego	Rios do Norte de Pequena Dimensão	Natural	2,180
PT01NOR0719	Rio Neiva	Rios do Norte de Pequena Dimensão	Natural	28,416
PT01NOR0720	Ribeira dos Reis Magnos	Rios do Norte de Pequena Dimensão	Natural	2,626
PT01NOR0721	Rio Neiva	Rios do Norte de Média-Grande Dimensão	Natural	9,229
PT01NOR0722	Ribeira da Aldeia	Rios do Norte de Pequena Dimensão	Natural	2,939
PT01NOR0723	Ribeira de São Vicente	Rios do Norte de Pequena Dimensão	Natural	2,706
PT01LIM0032	Rio Lima (HMWB - Jusante B. Alto Lindoso)	Rios do Norte de Média-Grande Dimensão	Fortemente modificada	10,381
PT01LIM0041	Rio Lima (HMWB - Jusante B. Touvedo)	Rios do Norte de Média-Grande Dimensão	Fortemente modificada	12,342
PT01MIN0006I	Rio Minho (HMWB - Jusante B. Frieira)	Grandes Rios do Norte (Rios Minho e Douro)	Fortemente modificada	40,898

Tabela I.2 - Massas de água superficial da categoria rios (albufeiras) delimitadas na RH1

Código	Designação	Tipologia	Natureza	Área (km²)
PT01LIM0028	Albufeira Alto Lindoso	Norte	Fortemente modificada	9,94
PT01LIM0036	Albufeira Touvedo	Norte	Fortemente modificada	1,40
PT01LIM0060	Albufeira de Salas	Norte	Fortemente modificada	4,69

A tabela I.3 apresenta as massas de água superficial da categoria águas de transição delimitadas na RH1.

Tabela I.3 - Massas de água superficial da categoria águas de transição delimitadas na RH1

Código	Designação	Tipologia	Natureza	Comprimento (km)
PT01LIM0056	Lima-WB3	Estuário mesotidal estratificado	Natural	41,533
PT01MIN0018	Minho-WB2	Estuário mesotidal estratificado	Natural	17,682
PT01MIN0023	Minho-WB1	Estuário mesotidal estratificado	Natural	16,425
PT01NOR0724	Neiva	Estuário mesotidal estratificado	Natural	27,820
PT01LIM0046	Lima-WB4	Estuário mesotidal estratificado	Fortemente modificada	23,146
PT01LIM0057	Lima-WB2	Estuário mesotidal estratificado	Fortemente modificada	35,526
PT01LIM0059	Lima-WB1	Estuário mesotidal estratificado	Fortemente modificada	18,112
PT01MIN0019	Minho-WB5	Estuário mesotidal estratificado	Fortemente modificada	11,946

A tabela I.4 apresenta as massas de água superficial da categoria águas costeiras delimitadas na RH1.

Tabela I.4 - Massas de água superficial da categoria águas costeiras delimitadas na RH1

Código	Designação	Tipologia	Natureza	Área (km²)
PTCOST1N	CWB-I-1A	Costa Atlântica mesotidal exposta	Natural	52,69
PTCOST20	Internacional-Minho	Costa Atlântica mesotidal exposta	Natural	5,53

A tabela I.5 apresenta as massas de água subterrânea delimitadas na RH1.

Tabela I.5 - Massas de água subterrânea delimitadas na RH1

Código	Designação	Área (km²)
PTA0x1RH1	Maciço antigo indiferenciado da bacia do Minho	939,12
PTA0x2RH1_ZV2006	Maciço antigo indiferenciado da bacia do Lima	1445,58

		. 100
ANEXO II – Critérios de identificação e o	designação de massas de água fortemer ou artificiais	ite modificadas

A identificação das HMWB e a descrição das consequentes alterações hidromorfológicas significativas é parte do processo de caracterização das águas superficiais requerida pelo Artigo 5.1 da DQA e inclui a descrição:

- a) Das utilizações da massa de água navegação e recreio incluindo portos; abastecimento às populações, rega e hidroeletricidade; proteção contra cheias;
- b) Das pressões antropogénicas significativas [Anexo II n.º 1.4] alterações físicas como barragens e diques que interrompem o *continuum* do rio e alteram os regimes hidrológico e hidráulico; canalização ou estreitamento do rio para navegação ou outros usos;
- c) Dos impactes significativos das pressões na hidromorfologia [Anexo II n.º 1.5] técnicas qualitativas ou quantitativas podem ser usadas para analisar elementos como continuidade do rio, regime hidrológico (incluindo regime de marés) e condições morfológicas.

Importa ainda efetuar uma avaliação sócio e económica sobre a importância em manter estas alterações hidromorfológicas significativas atendendo aos usos específicos associados, por exemplo, ao nível da proteção contra inundações, de recreio ou de navegação, produção de energia hidroelétrica, rega ou abastecimento público.

A implementação prática destes critérios foi feita da seguinte forma:

- 1 A identificação de todas as massas de água definidas por barragens e açudes foi efetuada tendo por base a informação cartográfica digital existente à escala 1:25 000 para Portugal recorrendo, sempre que necessário, à cobertura nacional de ortofotomapas em formato digital.
 - Com utilização das ferramentas de análise do Sistema de Informação Geográfica (SIG) ArcGis foram identificadas todas as massas de água com área superior a 0,4 km², para englobar massas de água importantes para a definição do Potencial Ecológico.
 - Estas massas de água são caracterizadas em termos de localização geográfica e de aspetos físicos e hidrológicos da albufeira e da bacia.
- 2 Foram também incluídas as albufeiras com captação de água para abastecimento, independentemente da sua área mas desde que exista uma alteração substancial do carácter da massa de água.
- 3 Para a identificação do comprimento das massas de água fortemente modificadas a jusante de barragens considerou-se os troços de rio com redução significativa do escoamento afluente a esses locais, com base nos dados hidrológicos existentes no Sistema Nacional de Recursos Hídricos (SNIRH), nomeadamente nas curvas de duração de caudais. No caso de estes dados não existirem recorreu à modelação e/ou opinião pericial.
- 4 e 5 A identificação dos troços de rio urbanizados e de canais de navegação e portos, será iniciada numa fase posterior, após recolha da informação de base necessária.

A determinação das alterações hidromorfológicas passa por diversas etapas dependendo dos dados existentes, nomeadamente:

- 1º verificar a existência de dados hidrométricos, anteriores e posteriores à construção da barragem;
- 2º completar os dados hidrométricos existentes com volumes armazenados e utilizados nas albufeiras;
- 3º completar os dados referidos nas primeiras 2 etapas hidrométricos e de armazenamento e utilização das albufeiras com dados de escoamento em regime natural gerados por um modelo de distribuição de balanço hídrico mensal (Pimenta, M.T., 1999 "Water Balances using GIS", EGS XXIV, Haia, Holanda).

O esquema da Figura II.1 apresenta o processo iterativo de identificação e designação de massas de água fortemente modificadas e artificiais.

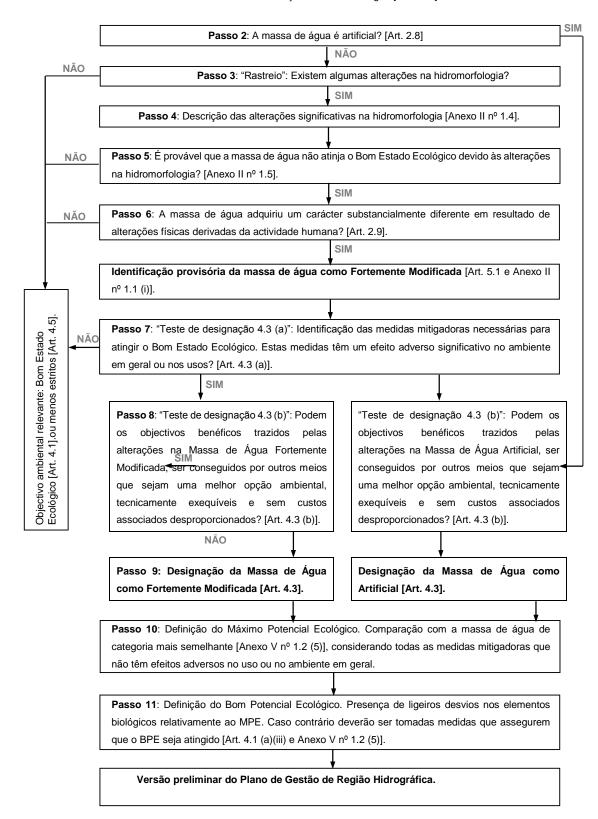


Figura II.1 - Processo iterativo de identificação e designação de Massas de Água Fortemente Modificadas e Artificiais (HMWB e AWB)

ANEXO III – Fichas das massas de água fortemente modificadas

Código: PT01MIN0019

Categoria: Transição

Natureza (1.º ciclo): Fortemente Modificada

Tipologia: Estuario mesotidal estratificado

Internacional: Não

Nome: Minho-WB5

Comprimento longitudinal do troço do rio (km): 3,39

Sub-bacia hidrográfica: Minho

Bacia hidrográfica: Minho

Tipo de alteração hidromorfológica: Morfológica e do

regime hidrológico

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Sim

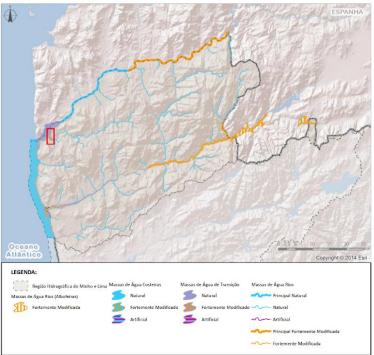
Zona vulnerável: Não

Zona sensível em termos de nutrientes: Não

Zona de captação de água para a produção de água para consumo humano: Não

Zona designada como águas de recreio (águas balneares):

Zona designada para a proteção de espécies aquáticas de interesse económico


Águas piscícolas: Não

• Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763))

	X (m)	Y (m)	Concelho(s)	Distrito
Montante	tante -56728,422 244913	Caminha	Viana do Castelo	
Jusante	-58351	245919	Caminha	Viana do Castelo

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia e do regime de escoamento natural e estão associadas às seguintes infraestruturas: pontes rodoviária e ferroviária. Estas destinam-se a vias de comunicação e têm uma importância socioecomómica relevante, nomeadamente no que se refere ao suporte ao desenvolvimento das atividades económicas da região hidrográfica.

Avaliação do estado

A massa de água não atinje o Bom Estado Ecológico devido às alterações hidromorfológicas significativas.

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção das pontes, nomeadamente alterações nas suas características morfológicas e alteração do regime hidrológico e do transporte sólido, devido ao efeito barreira provocado pelo troço das pontes que foi construído em aterro, tendo sido identificada como fortemente modificada no 1.º ciclo.

A magnitude da alteração hidromorfológica é tal que se prescinde da verificação da identificação preliminar.

Teste de designação

Análise das medidas de restauro necessárias para atingir o bom estado ecológico

Medidas

- Retirar as pontes
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água

Efeitos adversos das medidas sobre o ambiente e os usos

A eliminação das pontes, e consequentemente a alteração das vias de comunicação, coloca em causa a economia local, regional e nacional.

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja não existe uma opção que possa realizar as funções com o mesmo nível de garantia e que resulte numa opção ambientalmente melhor, nomeadamente não é possível transferir as pontes, dado que a construção de novas infraestruturas necessárias para esta deslocalização tem custos incomportáveis.

Assim, face às alternativas a massa de água fica sujeita a um programa de medidas e a um programa de monitorização, dirigido a avaliar o estado da massa de água, podendo a sua identificação como massa de água fortemente modificada ser revista em 2021.

Consequências socioeconómicas e ambientais

Não se encontrando alternativas viáveis não se pode analisar as suas consequências.

Designação definitiva

Com base na análise efetuada a massa de água é designada como fortemente modificada.

Código: PT01LIM0028

Categoria: Rio (albufeira)

Natureza (1.º ciclo): Fortemente Modificada

Tipologia: Norte

Internacional: Sim (Transfronteiriça)

Nome: Albufeira Alto Lindoso

Comprimento longitudinal do troço do rio (km): 12,45

Área do Plano de Água (NPA) (ha): 994,34

Sub-bacia hidrográfica: Lima

Bacia hidrográfica: Lima

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Sim

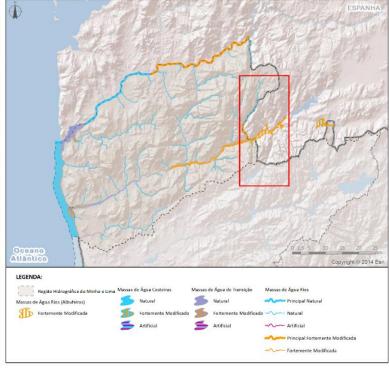
Zona vulnerável: Não

Zona sensível em termos de nutrientes: Não

Zona de captação de água para a produção de água para consumo humano: Não

Zona designada como águas de recreio (águas balneares): Não

Zona designada para a proteção de espécies aquáticas de interesse económico


Águas piscícolas: Não

Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763))

X (m)	Y (m)	Concelho(s)	Distrito
-388,849	247427,694	Arcos de Valdevez, Melgaço, Ponte da Barca	Viana do Castelo

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia e do regime de escoamento natural e estão associadas à barragem de Alto Lindoso, cujo início de exploração data de 1992, que se destina a produção de energia e tem uma importância sócioecomómica relevante, nomeadamente no que se refere ao fornecimento de energia para as diversas atividades económicas da região hidrográfica.

Barragem associada

Altura (m)	Desenvolvimento do coroamento (m) Volume útil (hm²		ume útil (hm³) Índice de regularização	
110	297	347,91	0,26	Início: 1992

Usos da água

Rega (ha)	Abastecimento Público (n.º habitantes)	Produção de energia hidroelétrica – Potência Instalada (MW)	Atividade industrial (hm³)	Atividades recreativas e/ou de lazer
0	0	630	0	

Dispositivo de transposição para peixes

Instalado	Funcionamento	Tipo	Monitorização
Não			

Regime de caudais ecológicos (RCE)

Em projeto	Implementado	Método de definição	Monitorização
	Início: 2000	ICN-INAG-CPPE (1999)	Início: 2009

ICN-INAG-CPPE (1999): O RCE foi determinado com base no "Estudo experimental para a definição do caudal ecológico do rio Lima" (Convénio relativo ao programa de optimização ambiental das condições de exploração dos aproveitamentos hidroeléctricos do Alto Lindoso e Touvedo, 1999, ICN-INAG-CPPE) e nas conclusões da reunião de 20/03/2004 (EDP, ICN e INAG). Este RCE foi iincluído no contrato de concessão assinado em 2008.

Caudais (m³/s)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
RCE	1,5	3,5	5,3	6,8	7,6	6,8	4,1	2,9	1,6	0,8	0,5	0,7
Regime natural	21,43	50,0	75,71	97,14	108,57	97,14	58,57	41,43	22,86	11,43	7,14	10,0

Avaliação do estado

A massa de água não atinje o Bom Estado Ecológico devido às alterações hidromorfológicas significativas.

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção da barragem, nomeadamente as alterações na morfologia (profundidade, largura, substrato), com quebra do *continuum fluvial*, e alteração do regime de escoamento natural. A massa de água assemelha-se a um lago, tendo sido identificada no 1.º ciclo como fortemente modificada.

Teste de designação

Análise de medidas de restauro necessárias para atingir o bom estado ecológico

Medidas

- Eliminar a barragem e todos os seus órgãos
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água

Efeitos adversos das medidas sobre o ambiente e os usos

A eliminação da barragem e consequentemente do plano de água,

- colocaria em causa a produção média anual de 933,8 GWh de energia hidroelétrica;
- eliminaria uma reserva estratégica de água;
- provocaria impactes ambientais negativos devido ao desaparecimento do ecossistema lêntico artificial e o desaparecimento do reservatório de água, com a consequente perda de valor paisagístico.

Com a eliminação da barragem desapareceria também a capacidade de regularização de cheias a jusante, com afetação das respetivas povoações, estradas e terrenos agrícolas.

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja não existe uma opção que possa realizar as funções com o mesmo nível de garantia e que resulte numa opção ambientalmente melhor, nomeadamente:

- Não é possível imputar estes consumos de água para a albufeira de Touvedo, que é o reservatório de água mais próximo, dado que a indisponibilidade deste volume útil para satisfazer os usos tem custos incomportáveis;
- ii) Atingir as metas das energias renováveis para Portugal.

A implementação do regime de caudais ecológicos definido no âmbito do contrato de concessão para captação de água superficial destinada à produção de energia poderá minimizar os efeitos adversos para jusante.

Consequências socioeconómicas e ambientais

A eliminação da barragem e consequente reservatório de água tem como principal consequência a redução da disponibilidade de água para as diversas atividades económicas da região hidrográfica, o que em termos socioeconómicos tem impactes muito negativos numa região, em que a variabilidade intra e inter-anual da precipitação é um fator determinante na vida das populações. A albufeira para além de constituir uma reserva estratégica de água é também importante no controle de cheias que se verificam na bacia do Lima.

Os custos ambientais de manter a barragem estão associados ao ajustamento do RCE, substituição de dispositivo de libertação de caudais ecológicos, instalação de dispositivo de transposição para peixes e custos de monitorização e de implementação de outras medidas complementares.

Designação definitiva

Com base na análise efetuada a massa de água é designada como massa de água fortemente modificada.

Código: PT01LIM0032

Nome: Rio Lima (HMWB - Jusante B. Alto Lindoso)

Categoria: Rio

Natureza (1.º ciclo): Fortemente Modificada

Tipologia: Rios do Norte de Média-Grande

Dimensão

Internacional: Não

Comprimento longitudinal do troço do rio (km): 10,38

Bacia hidrográfica: Lima

Sub-bacia hidrográfica: Lima

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Sim

Zona vulnerável: Não

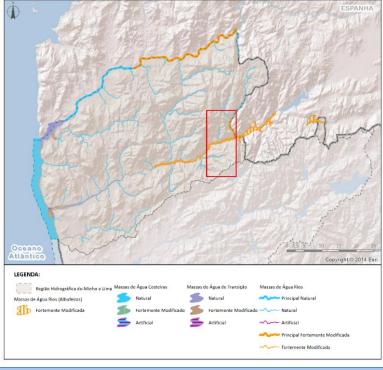
Zona sensível em termos de nutrientes: Não

Zona de captação de água para a produção de

água para consumo humano: Não

Zona designada como águas de recreio (águas balneares):

Zona designada para a proteção de espécies aquáticas de interesse económico


Águas piscícolas: Não

• Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763))

	X (m)	Y (m)	Concelho(s)	Distrito
Montante	-5750,7706	244744,431	Arcos de Valdevez, Ponte da Barca	Viana do Castelo
Jusante	-12913,94	241771,1	Arcos de Valdevez, Ponte da Barca	Viana do Castelo

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia, do regime de escoamento natural e do transporte sólido e estão associadas à barragem de Alto Lindoso existente na massa de água a montante, com entrada em exploração em 1992, que se destina a produção de energia, com um regime de exploração de albufeira e que tem uma importância socioecomómica relevante, nomeadamente no que se refere ao fornecimento de energia para as diversas atividades económicas da região hidrográfica.

Dispositivo de transposição para peixes associado à barragem a montante

Instalado	Funcionamento	Tipo	Monitorização
Não			

Regime de caudais ecológicos (RCE) associado à barragem a montante

Em projeto	Implementado	Método de definição	Monitorização	
	Início: 2000	ICN-INAG-CPPE (1999)	Início: 2009	

ICN-INAG-CPPE (1999): O RCE foi determinado com base no "Estudo experimental para a definição do caudal ecológico do rio Lima" (Convénio relativo ao programa de optimização ambiental das condições de exploração dos aproveitamentos hidroeléctricos do Alto Lindoso e Touvedo, 1999, ICN-INAG-CPPE) e nas conclusões da reunião de 20/03/2004 (EDP, ICN e INAG). Este RCE foi iincluído no contrato de concessão assinado em 2008.

Caudais (m³/s)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
RCE	1,5	3,5	5,3	6,8	7,6	6,8	4,1	2,9	1,6	0,8	0,5	0,7
Regime natural	21,43	50,00	75,71	97,14	108,57	97,14	58,57	41,43	22,86	11,43	7,14	10,00

Avaliação do estado

A massa de água não atinje o Bom Estado Ecológico devido às alterações hidromorfológicas significativas.

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção da barragem na massa de água a montante, nomeadamente alterações nas suas características morfológicas (profundidade e largura do rio) e substrato do leito devido à alteração do regime hidrológico e do transporte sólido, com quebra do *continuum fluvial*, tendo sido identificada como fortemente modificada no 1.º ciclo.

A magnitude da alteração hidromorfológica é tal, que se prescinde da verificação da identificação preliminar.

Teste de designação

Análise de medidas de restauro necessárias para atingir o bom estado ecológico

Medidas

- Eliminar a barragem a montante e todos os seus órgãos
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água
- Ajustamento progressivo do RCE estabelecido para atingir o Bom Estado.

O cumprimento do RCE estabelecido para a Barragem de Alto Lindoso, cujo lançamento se iniciou em 2000, necessita que sejam efetuadas adaptações das condições técnicas para libertação de caudais, no sentido de permitir o lançamento do valor máximo previsto de 7,6 m³/s. Este contexto conduz a que a identificação no 2.º ciclo de planeamento ficará sujeita a confirmação no 3.º ciclo, sendo que até lá será dado continuidade ao programa de monitorização para aferir a evolução desta massa de água em termos ecológicos.

Assim, face às alternativas a massa de água fica sujeita a um programa de medidas que inclui a avaliação do lançamento de RCE da Barragem de Alto Lindoso e a um programa de monitorização dirigido a avaliar o estado da massa de água (definidos no contrato de concessão em vigor), podendo a sua identificação como massa de água fortemente modificada ser revista em 2021.

Efeitos adversos das medidas sobre o ambiente e os usos

Os efeitos adversos da eliminação da barragem e do plano de água associado foi avaliado no âmbito da designação da massa de água a montante (PT01LIM0028 - Albufeira Alto Lindoso).

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja a existência da barragem de Alto Lindoso, cujos benefícios e alternativas foram avaliadas no processo de designação da massa de água PT01LIM0028 - Albufeira Alto Lindoso.

O cumprimento do regime de caudais ecológicos definido no âmbito do contrato de concessão para captação de água superficial destinada à produção de energia poderá minimizar os efeitos adversos para iusante.

Assim, a massa de água PT01LIM0032 - Rio Lima (HMWB - Jusante B. Alto Lindoso) fica sujeita a um programa de medidas que inclui a avaliação da eficácia do RCE definido para a Barragem do Alto Lindoso através da monitorização, podendo a sua identificação como massa de água fortemente modificada ser revista em 2021.

Consequências socioeconómicas e ambientais

Não se encontrando alternativas viáveis não se pode analisar as suas consequências.

Designação definitiva

Com base na análise efetuada, a massa de água é designada como massa de água fortemente modificada.

Código: PT01LIM0036

Categoria: Rio (albufeira)

Natureza (1.º ciclo): Fortemente Modificada

Tipologia: Norte Internacional: Não

Nome: Albufeira Touvedo

Comprimento longitudinal do troço do rio (km): 9,61

Área do Plano de Água (NPA) (ha): 139,83

Sub-bacia hidrográfica: Lima Bacia hidrográfica: Lima

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Sim

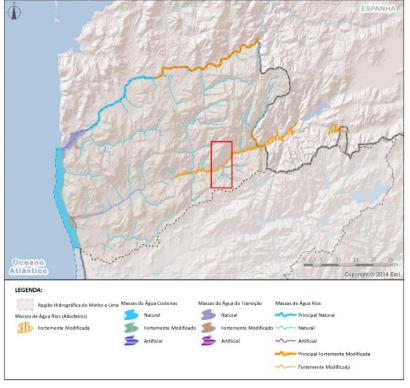
Zona vulnerável: Não

Zona sensível em termos de nutrientes: Não

Zona de captação de água para a produção de água para consumo humano: Sim

Zona designada como águas de recreio (águas balneares): Não

Zona designada para a proteção de espécies aquáticas de interesse económico


Águas piscícolas: Não

Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763)

X (m)	Y (m)	Concelho(s)	Distrito	
-14247,045	240348,28	Arcos de Valdevez, Ponte da Barca	Viana do Castelo	

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia e do regime de escoamento natural e estão associadas à barragem de Touvedo, cujo início de exploração data de 1993, que se destina a fins múltiplos e tem uma importância sócioecomómica relevante, nomeadamente no que se refere ao fornecimento de energia e à disponibilidade de água para as diversas atividades económicas da região hidrográfica.

Barragem associada

Altura (m)	Desenvolvimento do coroamento (m)	Volume útil (hm³)	Índice de regularização	Exploração	
42,5	133,5	4,5	0,23	Início: 1993	

Usos da água

Rega (ha)	Abastecimento Público (n.º habitantes)			Atividades recreativas e/ou de lazer
0	190 294	22	0	

Dispositivo de transposição para peixes

Instalado	Funcionamento	Tipo	Monitorização
Sim	Início: 1993	Elevador	Início: 2009

Regime de caudais ecológicos (RCE)

Em projeto	Implementado	Método de definição	Monitorização		
	Início: 2000	ICN-INAG-CPPE (1999)	Início: 2009		

ICN-INAG-CPPE (1999): O RCE foi determinado com base no "Estudo experimental para a definição do caudal ecológico do rio Lima" (Convénio relativo ao programa de optimização ambiental das condições de exploração dos aproveitamentos hidroeléctricos do Alto Lindoso e Touvedo, 1999, ICN-INAG-CPPE) e nas conclusões da reunião de 20/03/2004 (EDP, ICN e INAG). Este RCE foi incluído no contrato de concessão assinado em 2008.

Caudais (m³/s)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
RCE	1,5	3,5	5,3	6,8	7,6	6,8	4,1	2,9	1,6	0,8	0,5	0,7
Regime natural	21,43	50,00	75,71	97,14	108,57	97,14	58,57	41,43	22,86	11,43	7,14	10,00

Avaliação do estado

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção da barragem, nomeadamente as alterações na morfologia (profundidade, largura, substrato), com quebra do *continuum fluvial*, e alteração do regime de escoamento natural. A massa de água assemelha-se a um lago, tendo sido identificada no 1.º ciclo como fortemente modificada.

Teste de designação

Análise de medidas de restauro necessárias para atingir o bom estado ecológico

Medidas

- Eliminar a barragem e todos os seus órgãos
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água

Efeitos adversos das medidas sobre o ambiente e os usos

A eliminação da barragem e consequentemente do plano de água,

- colocaria em causa a satisfação das necessidades de água para consumo humano de 190 294 habitantes e a produção média anual de 66,8 GWh de energia hidroelétrica;
- acarretaria ainda como impacte negativo o aumento do número de captações subterrâneas, e, por acréscimo, a sobreexploração dos aquíferos; e,
- provocaria impactes ambientais negativos devido ao desaparecimento do ecossistema lêntico artificial e o desaparecimento do reservatório de água, com a consequente perda de valor paisagístico.

Com a eliminação da barragem desapareceria também a capacidade de regularização de cheias a jusante, com afetação das respetivas povoações, estradas e terrenos agrícolas.

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja não existe uma opção que possa realizar as funções com o mesmo nível de garantia e que resulte numa opção ambientalmente melhor, nomeadamente:

- Não é possível transferir estes consumos de água para a albufeira de Alto Lindoso, que é o reservatório de água mais próximo, dado que a construção das necessárias infraestruturas de derivação da água tem custos incomportáveis;
- ii) A necessidade de garantir uma regularização interanual para garantir com segurança o abastecimento não torna possível a construção de uma barragem de menores dimensões;
- iii) Atingir as metas das energias renováveis para Portugal.

A implementação do regime de caudais ecológicos, definidos no âmbito do contrato de concessão para captação de água superficial destinada à produção de energia poderá minimizar os efeitos adversos para jusante .

O dispositivo de transposição para os peixes existentes permite minimizar a perda do continuum fluvial.

Consequências socioeconómicas e ambientais

A eliminação da barragem e consequente reservatório de água tem como principal consequência a redução da disponibilidade de água para as diversas atividades económicas da região hidrográfica, o que em termos socioeconómicos tem impactes muito negativos numa região, em que a variabilidade intra e inter-anual da precipitação é um fator determinante na vida das populações.

Os custos ambientais de manter a barragem estão associados ao ajustamento do RCE, adaptação do dispositivo de libertação de caudais ecológicos e custos de monitorização e de implementação de outras medidas complementares.

Designação definitiva

Com base na análise efetuada a massa de água é designada como massa de água fortemente modificada.

Código: PT01LIM0041

Nome: Rio Lima (HMWB - Jusante B. Touvedo)

Categoria: Rio

Categoria. Nio

Natureza (1.º ciclo): Fortemente Modificada

Tipologia: Rios do Norte de Média-Grande

Dimensão

Internacional: Não

Comprimento longitudinal do troço do rio (km): 12,34

Bacia hidrográfica: Lima

Sub-bacia hidrográfica: Lima

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Não

Zona vulnerável: Não

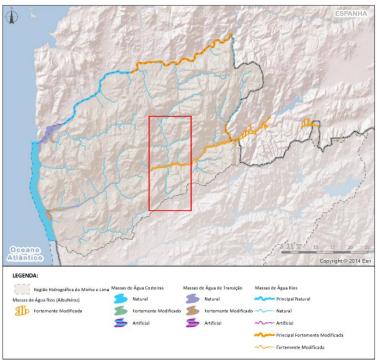
Zona sensível em termos de nutrientes: Não

Zona de captação de água para a produção de

água para consumo humano: Não

Zona designada como águas de recreio (águas balneares): Sim

Zona designada para a proteção de espécies aquáticas de interesse económico


Águas piscícolas: Sim

Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763)

	X (m) Y (m)		Concelho(s)	Distrito		
Montante	-18326,8536	238155,868	Arcos de Valdevez, Ponte da Barca	Viana do Castelo		
Jusante	-28451,42	236492,4	Arcos de Valdevez, Ponte da Barca	Viana do Castelo		

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia, do regime de escoamento natural e do transporte sólido e estão associadas à barragem de Touvedo existente na massa de água a montante, com entrada em exploração em 1993, que se destina a fins múltiplos, com um regime de exploração de albufeira e que tem uma importância socioecomómica relevante, nomeadamente no que se refere ao fornecimento de energia e à disponibilidade de água para as diversas atividades económicas da região hidrográfica.

Dispositivo de transposição para peixes associado à barragem a montante

Instalado	Funcionamento	Tipo	Monitorização		
Sim	Início: 1993	Elevador	Início: 2009		

Regime de caudais ecológicos (RCE) associado à barragem a montante

Em projeto	Implementado	Método de definição	Monitorização		
	Início: 2000	ICN-INAG-CPPE (1999)	Início: 2009		

ICN-INAG-CPPE (1999): O RCE foi determinado com base no "Estudo experimental para a definição do caudal ecológico do rio Lima" (Convénio relativo ao programa de optimização ambiental das condições de exploração dos aproveitamentos hidroeléctricos do Alto Lindoso e Touvedo, 1999, ICN-INAG-CPPE) e nas conclusões da reunião de 20/03/2004 (EDP, ICN e INAG). Este RCE foi incorporado no contrato de concessão assinado em 2008.

Caudais (m³/s)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
RCE	1,5	3,5	5,3	6,8	7,6	6,8	4,1	2,9	1,6	0,8	0,5	0,7
Regime natural	21,43	50,00	75,71	97,14	108,57	97,14	58,57	41,43	22,86	11,43	7,14	10,00

Avaliação do estado

A massa de água não atinje o Bom Estado Ecológico devido às alterações hidromorfológicas significativas.

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção da barragem na massa de água a montante, nomeadamente alterações nas suas características morfológicas (profundidade e largura do rio) e substrato do leito devido à alteração do regime hidrológico e do transporte sólido, com quebra do *continuum fluvial*, tendo sido identificada como fortemente modificada no 1.º ciclo.

A magnitude da alteração hidromorfológica é tal, que se prescinde da verificação da identificação preliminar.

Teste de designação

Análise de medidas de restauro necessárias para atingir o bom estado ecológico

do Minho e Lima

Medidas

- Eliminar a barragem a montante e todos os seus órgãos
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água
- Ajustamento progressivo do RCE estabelecido para atingir o Bom Estado.

O cumprimento do RCE estabelecido para a Barragem de Touvedo, cujo lançamento se iniciou em 2000, necessita que sejam efetuadas adaptações das condições técnicas para libertação de caudais, no sentido de permitir o lançamento do valor máximo previsto de 7,6 m³/s. Este contexto conduz a que a identificação no 2.º ciclo de planeamento ficará sujeita a confirmação no 3.º ciclo, sendo que até lá será dada continuidade ao programa de monitorização que permita aferir a evolução desta massa de água em termos ecológicos.

Assim, face às alternativas a massa de água fica sujeita a um programa de medidas que inclui a avaliação do lançamento do RCE da Barragem de Touvedo e a um programa de monitorização dirigido a avaliar o estado da massa de água (definidos no contrato de concessão em vigor), podendo a sua identificação como massa de água fortemente modificada ser revista em 2021.

Efeitos adversos das medidas sobre o ambiente e os usos

Os efeitos adversos da eliminação da barragem e do plano de água associado foi avaliado no âmbito da designação da massa de água a montante (PT01LIM0036 - Albufeira Touvedo).

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja a existência da barragem de Touvedo, cujos benefícios e alternativas foram avaliadas no processo de designação da massa de água PT01LIM0036 - Albufeira Touvedo.

O cumprimento do regime de caudais ecológicos definido no âmbito do contrato de concessão para captação de água superficial destinada à produção de energia poderá minimizar os efeitos adversos para jusante.

Assim, a massa de água PT01LIM0041 - Rio Lima (HMWB - Jusante B. Touvedo) fica sujeita a um programa de medidas que inclui a avaliação da eficácia do RCE definido para a Barragem de Touvedo através da monitorização, podendo a sua identificação como massa de água fortemente modificada ser revista em 2021.

O dispositivo de transposição para os peixes existentes permite minimizar a perda do continuum fluvial.

Consequências socioeconómicas e ambientais

Não se encontrando alternativas viáveis não se pode analisar as suas consequências.

Designação definitiva

Com base na análise efetuada, a massa de água é designada como massa de água fortemente modificada.

Identificação e designação de Massas de Água Fortemente Modificadas

Código: PT01LIM0046

Categoria: Transição

Natureza (1.º ciclo): Fortemente Modificada

Tipologia: Estuario mesotidal estratificado

Internacional: Não

Nome: Lima-WB4

Comprimento longitudinal do troço do rio (km): 11,69

Sub-bacia hidrográfica: Lima

Bacia hidrográfica: Lima

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Não

Zona vulnerável: Não

Zona sensível em termos de nutrientes: Não

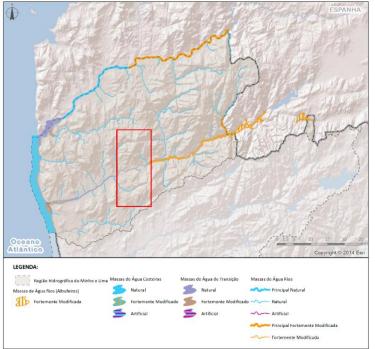
Zona de captação de água para a produção de

água para consumo humano: Não

Zona designada como águas de recreio (águas

balneares): Não

Zona designada para a proteção de espécies aquáticas de interesse económico


Águas piscícolas: Não

• Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763))

	X (m)	Y (m)	Concelho(s)	Distrito
Montante	-28451,419	236492	Arcos de Valdevez, Ponte da Barca, Ponte de Lima	Viana do Castelo
Jusante	-37663	233667	Arcos de Valdevez, Ponte da	Viana do Castelo

Descrição

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia, do regime de escoamento natural e do transporte sólido e estão associadas à barragem de Touvedo existente em massa de água a montante, com entrada em exploração em 1993, que se destina a fins múltiplos, com um regime de exploração de albufeira e que tem uma importância socioecomómica relevante, nomeadamente no que se refere ao fornecimento de energia e à disponibilidade de água para as diversas atividades económicas da região hidrográfica.

Dispositivo de transposição para peixes associado à barragem a montante

Instalado Funcionamento		Tipo	Monitorização	
Sim	Início: 1993	Elevador	Início: 2009	

Regime de caudais ecológicos (RCE) associado à barragem a montante

Em projeto Implementado		Método de definição	Monitorização	
	Início: 2000	ICN-INAG-CPPE (1999)	Início: 2009	

ICN-INAG-CPPE (1999): O RCE foi determinado com base no "Estudo experimental para a definição do caudal ecológico do rio Lima" (Convénio relativo ao programa de optimização ambiental das condições de exploração dos aproveitamentos hidroeléctricos do Alto Lindoso e Touvedo, 1999, ICN-INAG-CPPE) e nas conclusões da reunião de 20/03/2004 (EDP, ICN e INAG). Este RCE foi incluído no contrato de concessão assinado em 2008.

Caudais (m³/s)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
RCE	1,5	3,5	5,3	6,8	7,6	6,8	4,1	2,9	1,6	0,8	0,5	0,7
Regime natural	21,43	50,00	75,71	97,14	108,57	97,14	58,57	41,43	22,86	11,43	7,14	10,00

Avaliação do estado

A massa de água não atinje o Bom Estado Ecológico devido às alterações hidromorfológicas significativas.

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção da barragem em massa de água a montante, nomeadamente alterações nas suas características morfológicas (profundidade e largura do rio) e substrato do leito devido à alteração do regime hidrológico e do transporte sólido, com quebra do *continuum fluvial*, tendo sido identificada como fortemente modificada no 1.º ciclo.

A magnitude da alteração hidromorfológica é tal, que se prescinde da verificação da identificação preliminar.

Teste de designação

Análise de medidas de restauro necessárias para atingir o bom estado ecológico

Medidas

- Eliminar a barragem a montante e todos os seus órgãos
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água
- Ajustamento progressivo do RCE estabelecido para atingir o Bom Estado.

O cumprimento do RCE estabelecido para a Barragem de Touvedo, cujo lançamento se iniciou em 2000, necessita que sejam efetuadas adaptações das condições técnicas para libertação de caudais, no sentido de permitir o lançamento do valor máximo previsto de 7,6 m³/s. Este contexto conduz a que a identificação no 2.º ciclo de planeamento ficará sujeita a confirmação no 3.º ciclo, sendo que até será dada continuidada à implementação de um programa de monitorização que permita aferir a evolução desta massa de água em termos ecológicos.

Assim, face às alternativas a massa de água fica sujeita a um programa de medidas que inclui o lançamento de RCE da Barragem de Touvedo e um programa de monitorização, dirigido a avaliar o estado da massa de água (definidos no contrato de concessão em vigor), podendo a sua identificação como massa de água fortemente modificada ser revista em 2021.

Efeitos adversos das medidas sobre o ambiente e os usos

Os efeitos adversos da eliminação da barragem e do plano de água associado foi avaliado no âmbito da designação da massa de água PT01LIM0036 - Albufeira Touvedo.

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja a existência da barragem de Touvedo, cujos benefícios e alternativas foram avaliadas no processo de designação da massa de água PT01LIM0036 - Albufeira Touvedo.

O cumprimento do regime de caudais ecológicos definido no âmbito do contrato de concessão para captação de água superficial destinada à produção de energia poderá minimizar os efeitos adversos para jusante.

Assim, a massa de água PT01LIM0046 – Lima-WB4 fica sujeita a um programa de medidas que inclui o lançamento de RCE da Barragem de Touvedo e a respetiva monitorização dirigida a avaliar este aspeto, podendo a sua identificação como massa de água fortemente modificada ser revista em 2021.

O dispositivo de transposição para os peixes existentes permite minimizar a perda do continuum fluvial.

Consequências socioeconómicas e ambientais

Não se encontrando alternativas viáveis não se pode analisar as suas consequências.

Designação definitiva

Com base na análise efetuada, a massa de água é designada como fortemente modificada.

Identificação e designação de Massas de Água Fortemente Modificadas

Código: PT01LIM0057

Categoria: Transição

Natureza (1.º ciclo): Fortemente Modificada

Tipologia: Estuario mesotidal estratificado

Internacional: Não

Nome: Lima-WB2

Comprimento longitudinal do troço do rio (km): 6,72

Sub-bacia hidrográfica: Lima

Bacia hidrográfica: Lima

Tipo de alteração hidromorfológica: Morfológica

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Não

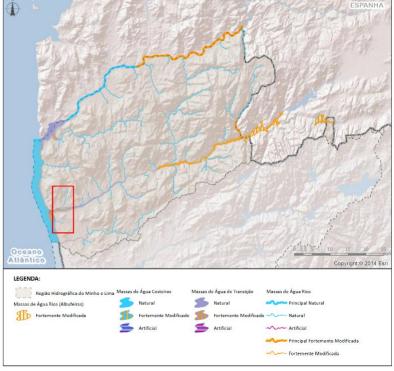
Zona vulnerável: Não

Zona sensível em termos de nutrientes: Não

Zona de captação de água para a produção de água para consumo humano: Não

Zona designada como águas de recreio (águas balneares): Não

Zona designada para a proteção de espécies aquáticas de interesse económico


Águas piscícolas: Não

Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763)

	X (m)	Y (m)	Concelho(s)	Distrito		
Montante	-52645,867	225431	Viana do Castelo	Viana do Castelo		
Jusante	-57714	224630	Viana do Castelo	Viana do Castelo		

Descrição

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia e do substrato do leito (dragagens para operações de acesso ao porto de Viana do Castelo) e ocupação e alteração das margens e estão associadas às seguintes infraestruturas: Porto de Viana do Castelo. Estas destinam-se a atividades portuárias (logística e piscatória) e têm uma importância socioecomómica relevante, nomeadamente no que se refere ao suporte das atividades económicas da região hidrográfica.

Avaliação do estado

A massa de água não atinje o Bom Estado Ecológico devido às alterações hidromorfológicas significativas.

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção do canal de navegação e do porto de Viana do Castelo, nomeadamente alterações nas suas características morfológicas, para navegação, e substrato do leito, devido às dragagens, e alteração do regime hidrológico e do transporte sólido, tendo sido identificada como fortemente modificada no 1.º ciclo.

A magnitude da alteração hidromorfológica é tal que se prescinde da verificação da identificação preliminar.

Teste de designação

Análise das medidas de restauro necessárias para atingir o bom estado ecológico

Medidas

- Retirar o porto
- Eliminar o canal de navegação.
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água

Efeitos adversos das medidas sobre o ambiente e os usos

A eliminação do porto e do canal de navegação, e consequentemente a alteração das rotas de navegação, coloca em causa a economia local, regional e nacional.

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja não existe uma opção que possa realizar as funções com o mesmo nível de garantia e que resulte numa opção ambientalmente melhor, nomeadamente:

- i) Não é possível transferir o porto, dado que a construção de novas infraestruturas necessárias para esta deslocalização tem custos incomportáveis;
- ii) A necessidade de garantir um canal de navegação é essencial para a economia local, regional e nacional.

Assim, face às alternativas a massa de água fica sujeita a um programa de medidas e a um programa de monitorização, dirigido a avaliar o estado da massa de água, podendo a sua identificação como massa de água fortemente modificada ser revista em 2021.

Região Hidrográfica do Minho e Lima

Ciclo de Planeamento 2016-2021

Consequências socioeconómicas e ambientais

Não se encontrando alternativas viáveis não se pode analisar as suas consequências.

Designação definitiva

RH 1

Com base na análise efetuada a massa de água é designada como fortemente modificada.

Identificação e designação de Massas de Água Fortemente Modificadas

Código: PT01LIM0059

Categoria: Transição

Natureza (1.º ciclo): Fortemente Modificada

Tipologia: Estuario mesotidal estratificado

Internacional: Não

Nome: Lima-WB1

Comprimento longitudinal do troço do rio (km): 5,08

Sub-bacia hidrográfica: Lima

Bacia hidrográfica: Lima

Tipo de alteração hidromorfológica: Morfológica

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Não

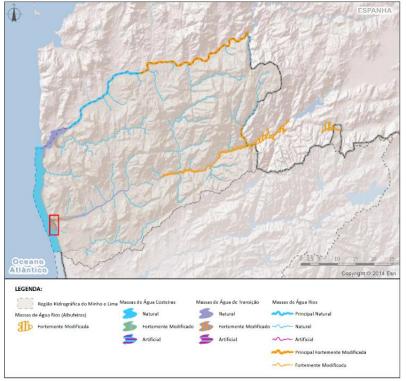
Zona vulnerável: Não

Zona sensível em termos de nutrientes: Não

Zona de captação de água para a produção de água para consumo humano: Não

Zona designada como águas de recreio (águas balneares): Não

Zona designada para a proteção de espécies aquáticas de interesse económico


Águas piscícolas: Não

Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763)

	X (m)	Y (m)	Concelho(s)	Distrito
Montante	-57714,194	224630	Viana do Castelo	Viana do Castelo
Jusante	-58474	221593	Viana do Castelo	Viana do Castelo

Descrição

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia e do substrato do leito (dragagens para operações de acesso ao porto de Viana do Castelo) e ocupação e alteração das margens e estão associadas às seguintes infraestruturas: Porto de Viana do Castelo. Estas destinam-se a atividades portuárias (logística e piscatória) e têm uma importância socioecomómica relevante, nomeadamente no que se refere ao suporte das atividades económicas da região hidrográfica.

Avaliação do estado

A massa de água não atinje o Bom Estado Ecológico devido às alterações hidromorfológicas significativas.

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção do canal de navegação e do porto de Viana do Castelo, nomeadamente alterações nas suas características morfológicas, para navegação, e substrato do leito, devido às dragagens, e alteração do regime hidrológico e do transporte sólido, tendo sido identificada como fortemente modificada no 1.º ciclo.

A magnitude da alteração hidromorfológica é tal que se prescinde da verificação da identificação preliminar.

Teste de designação

Análise das medidas de restauro necessárias para atingir o bom estado ecológico

Medidas

- Retirar o porto
- Eliminar o canal de navegação.
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água

Efeitos adversos das medidas sobre o ambiente e os usos

A eliminação do porto e do canal de navegação, e consequentemente a alteração das rotas de navegação, coloca em causa a economia local, regional e nacional.

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja não existe uma opção que possa realizar as funções com o mesmo nível de garantia e que resulte numa opção ambientalmente melhor, nomeadamente:

- i) Não é possível transferir o porto, dado que a construção de novas infraestruturas necessárias para esta deslocalização tem custos incomportáveis;
- ii) A necessidade de garantir um canal de navegação é essencial para a economia local, regional e nacional.

Assim, face às alternativas a massa de água fica sujeita a um programa de medidas e a um programa de monitorização, dirigido a avaliar o estado da massa de água, podendo a sua identificação como massa de água fortemente modificada ser revista em 2021.

Região Hidrográfica do Minho e Lima

Ciclo de Planeamento 2016-2021

Consequências socioeconómicas e ambientais

Não se encontrando alternativas viáveis não se pode analisar as suas consequências.

Designação definitiva

RH 1

Com base na análise efetuada a massa de água é designada como fortemente modificada.

Identificação e designação de Massas de Água Fortemente Modificadas

Código: PT01LIM0060

Categoria: Rio (albufeira)

Natureza (1.º ciclo): Fortemente Modificada

Tipologia: Norte

Internacional: Sim (Transfronteiriça)

Nome: Albufeira de Salas

Comprimento longitudinal do troço do rio (km): 2,42

Área do Plano de Água (NPA) (ha): 469,12

Sub-bacia hidrográfica: Lima Bacia hidrográfica: Lima

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Sim

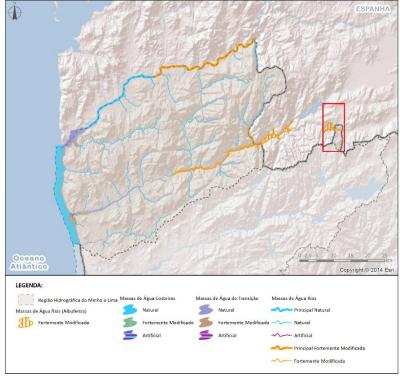
Zona vulnerável: Não

Zona sensível em termos de nutrientes: Não

Zona de captação de água para a produção de água para consumo humano: Não

Zona designada como águas de recreio (águas balneares):

Zona designada para a proteção de espécies aquáticas de interesse económico


Águas piscícolas: Não

Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763)

X (m) Y (m)		Concelho(s)	Distrito	
16672,4756	250550,742	Montalegre	Vila Real	

Descrição

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia e do regime de escoamento natural e estão associadas à barragem de Salas, cujo início de exploração data de 1971, que se destina a produção de energia e tem uma importância sócioecomómica relevante, nomeadamente no que se refere ao fornecimento de energia para as diversas atividades económicas da *Demarcación Hidrográfica del Miño-Sil* (Espanha).

Barragem associada

Altura (m)	Desenvolvimento do coroamento (m)	Volume útil (hm³)	Índice de regularização	Exploração
50,5	1005	86,67	Não aferido	Início: 1971

Usos da água

Rega (ha)	Abastecimento Público (n.º habitantes)	Produção de energia hidroelétrica – Potência Instalada (MW)	Atividade industrial (hm³)	Atividades recreativas e/ou de lazer
0	0	48	0	

Dispositivo de transposição para peixes

Instalado	Funcionamento	Tipo	Monitorização
Não	Início:		Início:

Regime de caudais ecológicos (RCE)

Em projeto	Implementado	Método de definição	Monitorização		
Sim	Início:	Não aferido	Início: 2006		

Caudais (m³/s)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
Caudal ecológico	0,306	0,306	0,306	0,306	0,306	0,306	0,306	0,306	0,306	0,306	0,306	0,306
Caudal médio	5,80											

Para mais informação consultar:

- Apéndice 6 del Real Decreto 1/2016, de 8 de enero (por el que se aprueba la revisión de los Planes Hidrológicos de las demarcaciones hidrográficas del Guadalquivir, Ceuta, Melilla, Segura, Júcar y Cantábrico Occidental, y de la parte española de las demarcaciones hidrográficas del Miño-Sil, Duero, Tajo, Guadiana, Ebro y Cantábrico Oriental) [http://www.chms.es/images/planificacion/proyecto-ph-2015-2021-rd/Real_Decreto_1-2016_de_8_de_enero_PHMS.pdf];
- Capítulo 4 de la Memoria del Plan Hidrológico del ciclo 2015-2021 Parte española de la Demarcación Hidrográfica del Miño-Sil [http://www.chminosil.es/images/planificacion/proyecto-ph-2015-

202rd/01.%20Memoria%20y%20Anexos/04_CAP%C3%8DTULO_IV.pdf].

Avaliação do estado

A massa de água não atinje o Bom Estado Ecológico devido às alterações hidromorfológicas significativas.

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção da barragem, nomeadamente as alterações na morfologia (profundidade, largura, substrato), com quebra do *continuum fluvial*, e alteração do regime de escoamento natural. A massa de água assemelha-se a um lago, tendo sido identificada no 1.º ciclo como fortemente modificada.

Teste de designação

Análise de medidas de restauro necessárias para atingir o bom estado ecológico

Medidas

- Eliminar a barragem e todos os seus órgãos
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água

Efeitos adversos das medidas sobre o ambiente e os usos

A eliminação da barragem e consequentemente do plano de água,

- colocaria em causa a produção média anual de 61,1 GWh de energia hidroelétrica;
- provocaria impactes ambientais negativos devido ao desaparecimento do ecossistema lêntico artificial e do reservatório de água, com a consequente perda de valor paisagístico.

Com a eliminação da barragem desapareceria também a capacidade de regularização de cheias a jusante, com afetação das respetivas povoações, estradas e terrenos agrícolas.

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja não existe uma opção que possa realizar as funções com o mesmo nível de garantia e que resulte numa opção ambientalmente melhor, nomeadamente atingir as metas das energias renováveis para Espanha.

Consequências socioeconómicas e ambientais

A eliminação da barragem e consequente reservatório de água tem como principal consequência a redução da disponibilidade de água para as diversas atividades económicas da *demarcación hidrográfica*, o que em termos socioeconómicos tem impactes muito negativos numa região, em que a variabilidade intra e interanual da precipitação é um fator determinante na vida das populações.

Os custos ambientais de manter a barragem estão associados à implementação de um RCE, adaptação de dispositivos de libertação de caudais ecológicos e de transposição para peixes e custos de monitorização e de implementação de outras medidas complementares.

Designação definitiva

Com base na análise efetuada a massa de água é designada como massa de água fortemente modificada.

Identificação e designação de Massas de Água Fortemente Modificadas

Código: PT01MIN00061

Nome: Rio Minho (HMWB - Jusante B. Frieira)

Categoria: Rios

Natureza (1.º ciclo): Modificada

Tipologia: Grandes Rios do Norte (Rios Minho

e Douro)

Internacional: Sim (Fronteiriço)

Comprimento longitudinal do troço do rio (km): 40,90

Sub-bacia hidrográfica: Minho

Bacia hidrográfica: Minho

Zonas protegidas

Sítio de importância comunitária (SIC): Sim

Zona de proteção especial (ZPE): Não

Zona vulnerável: Não

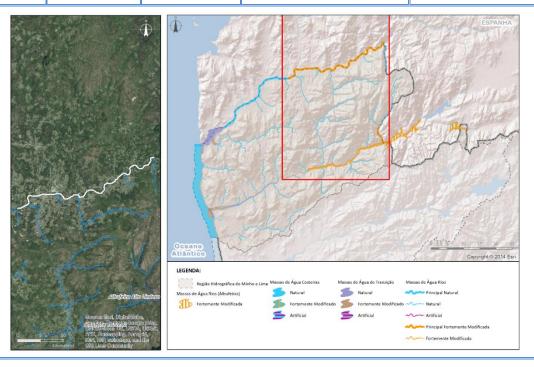
Zona sensível em termos de nutrientes: Não

Zona de captação de água para a produção de

água para consumo humano: Não

Zona designada como águas de recreio (águas

balneares): Não


Zona designada para a proteção de espécies aquáticas de interesse económico

Águas piscícolas: Sim

Produção de moluscos bivalves: Não

Localização (Sistema de Coordenadas ETRS89-PT-TM06 (EPS:3763)

	X (m)		Concelho(s)	Distrito		
Montante	-4933,9589	276241,861	Melgaço, Monção, Valença	Viana do Castelo		
Jusante	-34910,92	264942,6	Melgaço, Monção, Valença	Viana do Castelo		

Descrição

RH 1

As alterações hidromorfológicas da massa de água consistem em modificações significativas da morfologia, do regime de escoamento natural e do transporte sólido e estão associadas à barragem de Frieira existente na massa de água a montante, com entrada em exploração em 1970, que se destina a produção de energia, com um regime de exploração de albufeira e que tem uma importância socioecomómica relevante, nomeadamente no que se refere ao fornecimento de energia para as diversas atividades económicas da *Demarcación Hidrográfica del Miño-Sil* (Espanha).

Dispositivo de transposição para peixes associado à barragem a montante

Instalado	Funcionamento	Tipo	Monitorização
Sim	Início: Não aferido	Escada, elevador e tanque de estabilização; adicionalmente tem escada e tanque de estabilização para enguias	Início: 2008

Regime de caudais ecológicos (RCE) associado à barragem a montante

Em projeto	Implementado	Método de definição	Monitorização
Sim	Início:	Não aferido	Início: 2006

Caudais (m³/s)	out	nov	dez	jan	fev	mar	abr	mai	jun	jul	ago	set
RCE	29	29	29	29	29	29	29	29	29	29	29	29

Para mais informação consultar:

- Apéndice 6 del Real Decreto 1/2016, de 8 de enero (por el que se aprueba la revisión de los Planes Hidrológicos de las demarcaciones hidrográficas del Guadalquivir, Ceuta, Melilla, Segura, Júcar y Cantábrico Occidental, y de la parte española de las demarcaciones hidrográficas del Miño-Sil, Duero, Tajo, Guadiana, Ebro y Cantábrico Oriental) [http://www.chms.es/images/planificacion/proyecto-ph-2015-2021-rd/Real_Decreto_1-2016_de_8_de_enero_PHMS.pdf];
- Capítulo 4 de la Memoria del Plan Hidrológico del ciclo 2015-2021 Parte española de la Demarcación Hidrográfica del Miño-Sil [http://www.chminosil.es/images/planificacion/proyecto-ph-2015-202rd/01.%20Memoria%20y%20Anexos/04_CAP%C3%8DTULO_IV.pdf].

Avaliação do estado

A massa de água não atinje o Bom Estado Ecológico devido às alterações hidromorfológicas significativas.

Identificação provisória

A massa de água natural foi substancialmente modificada devido às alterações físicas provocadas pela construção da barragem na massa de água a montante, nomeadamente alterações nas suas características morfológicas (profundidade e largura do rio) e substrato do leito devido à alteração do regime hidrológico e do transporte sólido, com quebra do *continuum fluvial*, tendo sido identificada como fortemente modificada no 1.º ciclo. A magnitude da alteração hidromorfológica é tal, que se prescinde da verificação da identificação preliminar.

Teste de designação

Análise de medidas de restauro necessárias para atingir o bom estado ecológico

Medidas

RH 1

- Eliminar a barragem a montante e todos os seus órgãos
- Recuperar a morfologia natural do curso de água
- Repor o regime hidrológico natural do curso de água

Efeitos adversos das medidas sobre o ambiente e os usos

A eliminação da barragem e consequentemente do plano de água,

- colocaria em causa a produção de energia hidroelétrica;
- provocaria impactes ambientais negativos devido ao desaparecimento do ecossistema lêntico artificial e o desaparecimento do reservatório de água, com a consequente perda de valor paisagístico.

Com a eliminação da barragem desapareceria também a capacidade de regularização de cheias a jusante, com afetação das respetivas povoações, estradas e terrenos agrícolas.

Análise de alternativas

Não existe uma alternativa técnica e economicamente viável que se substitua à existente, ou seja não existe uma opção que possa realizar as funções com o mesmo nível de garantia e que resulte numa opção ambientalmente melhor, nomeadamente atingir as metas das energias renováveis para Espanha.

O dispositivo de transposição para os peixes existentes permite minimizar a perda do continuum fluvial.

Consequências socioeconómicas e ambientais

Não se encontrando alternativas viáveis não se pode analisar as suas consequências.

Designação definitiva

Com base na análise efetuada, a massa de água é designada como fortemente modificada.

ANITYO IV. Cuitérios de eleccificação do estado/notaveial ecológico dos massas do équa
ANEXO IV - Critérios de classificação do estado/potencial ecológico das massas de água superficial

Rios

Para esta categoria de massas de água encontram-se definidos critérios de classificação para todos os elementos de qualidade. Os critérios estabelecidos são utilizados quer na avaliação do estado ecológico, quer na avaliação do potencial ecológico.

a) Elementos biológicos

No que se refere aos elementos biológicos foram definidos, para os rios, os seguintes indicadores:

• Invertebrados Bentónicos – Índice Português de Invertebrados que integra duas formas, Norte (IPtI_N, aplicado à maioria dos tipos de rios do norte de Portugal Continental) e Sul (IPtI_S, aplicado à maioria dos tipos de rios do sul de Portugal Continental). Este índice multimétrico resulta do somatório de várias métricas ponderadas, que no seu conjunto permitem avaliar o nível de degradação geral de uma massa de água, nomeadamente a resultante de poluição orgânica, de poluentes específicos e de pressões hidromorfológicas. As métricas utilizadas integram a quantificação de *taxa* sensíveis à degradação ou do nível de diversidade das comunidades de invertebrados bentónicos, dando resposta aos requisitos impostos pela Diretiva Quadro da Água. Na Tabela IV.1 apresentam-se os valores de referência e os valores associados às classes de qualidade para cada tipo de rio, utilizados na classificação da qualidade biológica com base nos invertebrados bentónicos.

Tabela IV.1 – Sistema de classificação para os invertebrados bentónicos em rios

Tubcia IVII				içao para os				
Tipo Nacional		Índice	Valor de Referência	Excelente	Bom	Razoável	Medíocre	Mau
Rios Montanhosos do Norte	М	IPtI _N	0,98	≥ 0,86	[0,60 – 0,86[[0,40 - 0,60[[0,20 - 0,40[[0 - 0,20[
Rios do Norte de Pequena Dimensão	N 1 < 100 km ²	IPtI _N	1,02	≥ 0,87	[0,68 – 0,87[[0,44 – 0,68[[0,22 - 0,44[[0 - 0,22[
Rios do Norte de Média-Grande Dimensão	N 1 > 100 km ²	IPtI _N	1,00	≥ 0,88	[0,68 – 0,88[[0,44 - 0,68[[0,22 - 0,44[[0 - 0,22[
Rios do Alto Douro de Média-Grande Dimensão	N 2	IPtI _N	1,01	≥ 0,83	[0,69 – 0,83[[0,41 - 0,69[[0,20 - 0,41[[0 - 0,20[
Rios do Alto Douro de Pequena Dimensão	N 3	IPtI _N	1,01	≥ 0,85	[0,69 – 0,85[[0,40 - 0,69[[0,20 - 0,40[[0 - 0,20[
Rios de Transição Norte-Sul	N 4	IPtI _N	1,00	≥ 0,86	[0,64 – 0,86[[0,42 - 0,64[[0,21 - 0,42[[0 - 0,21[
Rios do Litoral Centro	L	IPtI _s	0,98	≥ 0,74	[0,56 – 0,74[[0,37 - 0,56[[0,19 - 0,37[[0 - 0,19[
Rios do Sul de Pequena Dimensão	S 1 < 100 km ²	IPtl _s	0,99	≥ 0,97	[0,71 - 0,97[[0,47 - 0,71[[0,23 - 0,47[[0 - 0,23[
Rios do Sul de Média Grande Dimensão	S 1 > 100 km ²	IPtI _s	0,98	≥ 0,97	[0,72 – 0,97[[0,48 - 0,72[[0,24 - 0,48[[0 - 0,24[
Rios Montanhosos do Sul	S 2	IPtI _N	0,99	≥ 0,82	[0,56 – 0,82[[0,38 - 0,56[[0,19 - 0,38[[0 - 0,19[
Depósitos Sedimentares do Tejo e do Sado	\$3	IPtI _S	1,05	≥ 0,96	[0,71 – 0,96[[0,44 - 0,71[[0,22 - 0,44[[0 - 0,22[
Calcários do Algarve	S 4	IPtI _s	0,99	≥ 0,95	[0,70 – 0,95[[0,47 - 0,70[[0,23 - 0,47[[0 - 0,23[

• Fitobentos - Diatomáceas — Índice de Poluossensibilidade Específica (IPS). Este índice considera o valor indicador e a sensibilidade específica dos taxa sobretudo relativamente à poluição por nutrientes. Para

além dos valores indicadores e de sensibilidade, o IPS integra também a abundância das espécies presentes, pelo cumpre os requisitos impostos pela Diretiva Quadro da Água. Na Tabela IV.2 apresentam-se os valores de referência e os valores associados às classes de qualidade para cada tipo de rio, utilizados na classificação da qualidade biológica com base no fitobentos – diatomáceas.

Tabela IV.2 – Sistema de classificação para os fitobentos – diatomáceas em rios

Tubcia IVIL			a ac classificação para os fitobelitos					
Tipo Nacion	Tipo Nacional		Valor de Referência	Excelente	Bom	Razoável	Medíocre	Mau
Rios Montanhosos do Norte	M	IPS	18,00	≥ 0,96	[0,72 - 0,96[[0,48 - 0,72[[0,24 - 0,48[[0 - 0,24[
Rios do Norte de Pequena Dimensão	N 1 < 100 km ²	IPS	19,00	≥ 0,97	[0,73 - 0,97[[0,49 - 0,73[[0,24 - 0,49[[0 - 0,24[
Rios do Norte de Média-Grande Dimensão	N 1 > 100 km ²	IPS	19,00	≥ 0,97	[0,73 - 0,97[[0,49 - 0,73[[0,24 - 0,49[[0 - 0,24[
Rios do Alto Douro de Média-Grande Dimensão	N 2	IPS	17,45	≥ 0,91	[0,68 - 0,91[[0,45 - 0,68[[0,23 - 0,45[[0 - 0,23[
Rios do Alto Douro de Pequena Dimensão	N 3	IPS	17,45	≥ 0,91	[0,68 - 0,91[[0,45 - 0,68[[0,23 - 0,45[[0 - 0,23[
Rios de Transição Norte-Sul	N 4	IPS	18,50	≥ 0,94	[0,70 - 0,94[[0,47 - 0,70[[0,23 - 0,47[[0 - 0,23[
Rios do Litoral Centro	L	IPS	17,00	≥ 0,98	[0,73 - 0,98[[0,49 - 0,73[[0,24 - 0,49[[0 - 0,24[
Rios do Sul de Pequena Dimensão	S 1 < 100 km ²	IPS	16,35	≥ 0,80	[0,65-0,80[[0,40 - 0,65[[0,20 - 0,40[[0-0,20[
Rios do Sul de Média Grande Dimensão	S 1 > 100 km ²	IPS	16,35	≥ 0,80	[0,60 - 0,80[[0,40 - 0,60[[0,20 - 0,40[[0 - 0,20[
Rios Montanhosos do Sul	S 2	IPS	18,50	≥ 0,94	[0,70 - 0,94[[0,47 - 0,70[[0,23 - 0,47[[0 - 0,23[
Depósitos Sedimentares do Tejo e do Sado	S 3	IPS	16,35	≥ 0,94	[0,70 - 0,94[[0,47 - 0,70[[0.23 - 0,47[[0 - 0,23[
Calcários do Algarve	S 4	IPS	16,35	≥ 0,80	[0,60 - 0,80[[0,40 - 0,60[[0,20 - 0,40[[0 - 0,20[

• Macrófitos – Índice Biológico de Macrófitos de Rio (IBMR). O IBMR baseia-se na ocorrência e abundância no meio aquático e em zonas de contacto com este, de espécies indicadoras (não incluindo espécies terrestres e lenhosas, mesmo que higrófitas e presentes no leito), isto é, espécies sensíveis a poluição associada, sobretudo, a nutrientes. Uma vez que o IBMR integra a composição e abundância de macrófitos, este índice dá resposta aos requisitos impostos pela Diretiva Quadro da Água. Na Tabela IV.3 apresentam-se os valores de referência e os valores associados às classes de qualidade para cada tipo de rio, utilizados na classificação da qualidade biológica com base nos macrófitos.

Tabela IV.3 – Sistema de classificação para os macrófitos em rios

Tipo Nacional		Índice	Valor de Referência	Excelente	Bom	Razoável	Medíocre	Mau
Rios Montanhosos do Norte	М	IBMR	12,68	≥ 0,92	[0,69 – 0,92[[0,46 – 0,69[[0,23 – 0,46[[0 - 0,23[
Rios do Norte de Pequena Dimensão	N 1 < 100 km ²	IBMR	12,68	≥ 0,92	[0,69 – 0,92[[0,46 - 0,69[[0,23 – 0,46[[0 - 0,23[

Tipo Nacional		Índice	Valor de Referência Excelente Bom		Razoável	Medíocre	Mau	
Rios do Norte de Média-Grande Dimensão	N 1 > 100 km ²	IBMR	12,68	≥ 0,92	[0,69 – 0,92[[0,46 – 0,69[[0,23 – 0,46[[0 - 0,23[
Rios do Alto Douro de Média-Grande Dimensão	N 2	IBMR	12,68	≥ 0,92	[0,69 - 0,92[[0,46 – 0,69[[0,23 – 0,46[[0 - 0,23[
Rios do Alto Douro de Pequena Dimensão	N 3	IBMR	12,68	≥ 0,92	[0,69 – 0,92[[0,46 – 0,69[[0,23 – 0,46[[0 - 0,23[
Rios de Transição Norte-Sul	N 4	IBMR	Sem sistema de classificação					
Rios do Litoral Centro	L	IBMR			Sem sistema d	e classificação		
Rios do Sul de Pequena Dimensão	S 1 < 100 km ²	IBMR	12,00	≥ 0,93	[0,70 – 0,93[[0,46 - 0,70[[0,23 – 0,46[[0 - 0,23[
Rios do Sul de Média Grande Dimensão	S 1 > 100 km ²	IBMR			Sem sistema d	e classificação		
Rios Montanhosos do Sul	S 2	IBMR	12,68	≥ 0,92	[0,69 – 0,92[[0,46 – 0,69[[0,23 – 0,46[[0 - 0,23[
Depósitos Sedimentares do Tejo e do Sado	S 3	IBMR	12,00	≥ 0,93	[0,70 – 0,93[[0,46 - 0,70[[0,23 – 0,46[[0 - 0,23[
Calcários do Algarve	S 4	IBMR	12,00	≥ 0,93	[0,70 - 0,93[[0,46 - 0,70[[0,23 – 0,46[[0 - 0,23[

Fauna Piscícola – Índice Piscícola de Integridade Biótica para Rios Vadeáveis de Portugal Continental (F-IBIP). O F-IBIP é constituído por diversas métricas que refletem as características estruturais e funcionais básicas da comunidade piscícola. Estas métricas traduzem a resposta das comunidades a um conjunto alargado de pressões, baseando-se, não só, na riqueza e composição específica e na abundância, mas também em fatores ecológicos. O F-IBIP não integra uma das componentes consideradas como um dos requisitos da DQA, isto é, a estrutura etária das populações. Deve-se salientar que o F-IBIP difere dos restantes índices biológicos anteriormente apresentados, no sentido em que contempla uma tipologia própria. Por esta razão os valores do F-IBIP associados às classes de qualidade são iguais para todos os tipos de rios nacionais, desde que estes sejam vadeáveis (Tabela IV.4).

Tabela IV.4 – Sistema de classificação para a fauna piscícola em rios

Tipo Nacional	Índice	Excelente	Bom	Razoável	Medíocre	Mau
Todos (desde que vadeáveis)	F-IBIP	≥ 0,85	[0,675 – 0,850[[0,450 – 0,675[[0,225 – 0,450[[0 - 0,225[

b) Físico químicos de suporte

Os elementos químicos e físico-químicos de suporte aos elementos biológicos integram a avaliação das condições gerais e dos poluentes específicos, da seguinte forma:

 Condições Gerais – Integram 7 parâmetros que avaliam as condições de oxigenação, o estado de acidificação e as condições relativas a nutrientes. Os limiares para o bom estado/potencial ecológico encontram-se indicados na Tabela IV.5.

Tabela IV.5 – Sistema de classificação das condições gerais dos elementos químicos e físico-químicos em rios

	Limite para o Bom Estado				
Parâmetros	Agrupamento Norte Tipos: M, N1<100 km², N1≥100 km², N2, N3, N4	Agrupamento Sul Tipos: L, S1<100 km², S1≥100 km², S2, S3, S4			
Oxigénio Dissolvido (1)	≥ 5 mg O ₂ /L	≥ 5 mg O ₂ /L			
Taxa de saturação em Oxigénio (1)	entre 60% e 120%	entre 60% e 120%			
Carência Bioquímica de Oxigénio (CBO ₅) (1)	≤ 6 mg O ₂ /L	≤ 6 mg O ₂ /L			
pH (1)	entre 6 e 9 (3)	entre 6 e 9 (3)			
Azoto amoniacal (1)	≤1 mg NH ₄ /L	≤ 1 mg NH ₄ /L			
Nitratos (2)	≤ 25 mg NO ₃ /L	≤ 25 mg NO ₃ /L			
Fósforo Total (2)	≤ 0,10 mg P/L	≤ 0,13 mg P/L			

^{(1) – 80%} das amostras deverão respeitar o limite estabelecido se a frequência for mensal ou superior, nos restantes casos 100% das amostras terão que respeitar o limite estabelecido; (2) – Média anual. Para o cálculo da média anual e quando numa amostra os valores forem inferiores ao LQ, deverá utilizar-se o valor correspondente a metade do limite de quantificação (de acordo com o Decreto-Lei n.º 83/2011); (3) – Os limites indicados poderão ser ultrapassados caso ocorram naturalmente.

c) Poluentes específicos relevantes são substâncias químicas enquadradas nos pontos 1 a 9 do Anexo VIII da Diretiva Quadro da Água que não estão incluídos na lista de substâncias prioritárias.

Revelou-se necessário proceder à revisão da lista de Poluentes Específicos e das respetivas Normas de Qualidade publicadas nos Decreto-Lei n.º 506/99, de 20 de novembro e n.º 261/2003, de 21 outubro, tendo sido adotados os critérios que se descrevem seguidamente.

Tendo por base as listas de poluentes específicos incluídas nos decretos-lei acima referidos, retiraram-se as substâncias que não foram detetadas na água no período 2004-2012. Para os produtos fitofarmacêuticos, foi ainda analisada a sua situação atual em termos de autorização (ou não) de utilização em Portugal. As substâncias que não se encontram autorizadas (em termos de substâncias ativas e/ou dos produtos formulados contendo essas substâncias) foram retiradas da lista, uma vez que não são persistentes, e não constituirão uma pressão relevante.

A metodologia usada para a definição das Normas de Qualidade baseou-se em avaliações de risco existentes, recorrendo a Concentrações Previsivelmente Sem Efeitos (PNEC – "Predicted No Effect Concentrations"), prevista no "Guidance Document n.º 27 – Technical Guidance for Deriving Environmental Quality Standards", de 2011. Na Tabela IV.6 apresentam-se as normas de qualidade utilizadas na avaliação dos poluentes específicos no 2º ciclo.

Tabela IV.6 – Normas de qualidade definidos para os poluentes específicos

Poluentes específicos	Número	Normas de Qualidade μg/l * (média anual)	
	CAS	Águas de superfície interiores	
2,4,5-Triclorofenol	95-95-4	0.13	
2,4,6-Triclorofenol	88-06-2	0.26	
2,4-D (ácido 2,4-Diclorofenoxiacético - sais e ésteres)	94-75-7	0.30	
2,4-Diclorofenol	120-83-2	1.6	

Poluentes específicos	Número	Normas de Qualidade μg/l * (média anual)
	CAS	Águas de superfície interiores
3,4-Dicloroanilina	95-76-1	0.2
Antimónio ⁽¹⁾	7440-36-0	5.6
Arsénio ⁽¹⁾	7440-38-2	50
Bário ⁽¹⁾	7440-39-3	140
Bentazona	25057-89-0	80
Cobre ⁽¹⁾	7440-50-8	7.8 (depende de pH, DOC e dureza da água)
Crómio ⁽¹⁾	7440-47-3	4.7
Dimetoato	60-51-5	0.07
Etilbenzeno	100-41-4	65
Fosfato de tributilo	126-73-8	66
Linurão	330-55-2	0.15
MCPP (Mecoprope)	93-65-2	5.5
Xileno (total)	1330-20-7	2.4
Tolueno	108-88-3	74
Zinco ⁽¹⁾	7440-66-6	7.8 (depende de pH, DOC e dureza da água); Norma de Qualidade de 3.1 será aplicada se a dureza da água <24 mg/l CaCO₃
Terbutilazina	5915-41-3	0.22
Desetil Terbutilazina	30125-63-4	0.14
Cianetos (HCN)	57-12-5	5.0

^{*} Fonte: Relatórios de Avaliação de Risco da ECHA (Environmental Chemical Agency) e de organizações oficiais a nível Europeu.

d) Hidromorfológicos

No que se refere aos elementos hidromorfológicos de suporte aos elementos biológicos foram definidos, para esta categoria de massas de água, os seguintes indicadores:

A avaliação de parte das componentes que integram os elementos hidromorfológicos é realizada com base na informação recolhida através da metodologia do River Habitat Survey. Esta metodologia assenta na caracterização de variáveis hidromorfológicas do leito de um rio e de variáveis estruturais do corredor ribeirinho, permitindo inferir acerca das condições de escoamento, continuidade do rio, estrutura e substrato do leito do rio e estrutura da zona ripícola. Esta metodologia não assegura, porém, a caracterização dos caudais e a ligação a massas de água subterrâneas, duas componentes obrigatórias para a avaliação da qualidade hidromorfológica no âmbito da Diretiva Quadro da Água. Através da aplicação do River Habitat Survey é possível proceder à classificação da qualidade hidromorfológica, através da aplicação de dois índices, o índice de modificação de habitats (HMS) e índice de qualidade habitacional (HQA). O HMS permite avaliar o grau de artificialização da estrutura física de um troço de rio (isto é, a magnitude do impacto da presença de estruturas e intervenções transversais e longitudinais no rio) e o HQA corresponde a uma medida de riqueza, raridade, diversidade e naturalidade da estrutura física de um troço de um rio e que integra atributos do leito e do corredor ribeirinho. Refira-se que os elementos hidromorfológicos são apenas utilizados para distinguir as massas de água que se encontram num estado excelente das restantes. Os valores associados ao estado ecológico excelente com base nos elementos hidromorfológicos encontram-se indicados na Tabela IV.7.

⁽¹⁾ Todos os metais devem ser analisados na forma dissolvida.

Tabela IV.7 – Sistema de classificação dos elementos hidromorfológicos em rios

Tipo Nacional	HQA	нмѕ	
Rios Montanhosos do Norte	M	≥42	≤16
Rios do Norte de Pequena Dimensão	N 1 < 100 km ²	≥46	≤16
Rios do Norte de Média-Grande Dimensão	N 1 > 100 km ²	≥46	≤16
Rios do Alto Douro de Média-Grande Dimensão	N 2	≥42	≤16
Rios do Alto Douro de Pequena Dimensão	N 3	≥44	≤16
Rios de Transição Norte-Sul	N 4	≥44	≤16
Rios do Litoral Centro	L	≥36	≤16
Rios do Sul de Pequena Dimensão	S 1 < 100 km ²	Sem sistema de classificação	≤16
Rios do Sul de Média Grande Dimensão	S 1 > 100 km ²	Sem sistema de classificação	≤16
Rios Montanhosos do Sul	S 2	Sem sistema de classificação	≤16
Depósitos Sedimentares do Tejo e do Sado	\$3	≥50	≤16
Calcários do Algarve	S 4	Sem sistema de classificação	≤16

Albufeiras

Para as albufeiras identificadas como massas de água fortemente modificadas foram definidos 3 tipos ecologicamente distintos (Ferreira *et al*, 2009): Albufeiras do Norte, Albufeiras do Sul e Albufeiras de Curso Principal.

Para esta categoria de massas de água apenas se encontram definidos critérios de classificação para os elementos biológicos e para os elementos químicos e físico-químicos. As albufeiras são consideradas como massas de água fortemente modificadas aplicando-se apenas o conceito de potencial ecológico pelo que, nem todos os elementos de qualidade são aplicáveis. No caso dos elementos biológicos de qualidade apenas o fitoplâncton é considerado como um elemento pertinente para avaliar o potencial ecológico das albufeiras. No que se refere à qualidade hidromorfológica, não foi ainda possível definir critérios para a sua avaliação. Uma vez que nas albufeiras se aplica o conceito de potencial ecológico, a sua classificação é feita apenas numa de 4 classes, não existindo distinção entre a classe excelente e bom.

a) Elementos biológicos

Para a avaliação do potencial ecológico em albufeiras apenas é considerado o elemento biológico fitoplâncton. Para as **Albufeiras do Norte** a avaliação da qualidade biológica é realizada com base no índice multimétrico MARSP e para avaliação das **Albufeiras do Sul** apenas é utilizado o parâmetro *clorofila* a.

O Índice Mediterrânico de Avaliação do Fitoplâncton em Albufeiras (MARSP) é um índice multimétrico que integra 4 métricas: *Clorofila a* e Biovolume Total (métricas de biomassa) e Biovolume de Cianobactérias e o Índice de Grupos de Algas (métricas de composição). O Biovolume de Cianobactérias permite também avaliar, ainda que de forma rudimentar, a frequência e intensidade de *blooms* fitoplanctónicos. O valor do índice final, MARSP, é obtido através da média de todas as métricas e permite, desta forma, responder a todos os requisitos impostos pela Diretiva Quadro da Água relativamente ao fitoplâncton.

De realçar, que os valores apresentados para o tipo Norte correspondem a valores médios de Verão. As métricas utilizadas para as Albufeiras do Norte são combinadas para a determinação do índice multimétrico MARSP. Na Tabela IV.8 são apresentados os valores das classes de qualidade em RQE, para o índice selecionado para avaliação da qualidade recorrendo ao fitoplâncton, o qual é apenas aplicado às Albufeiras do Norte.

IV.8- Albufeiras do tipo Norte: limiares estabelecidos para cada métrica

Componente	Indicador	Valor de Referência	Limite para o Bom Potencial
Biomassa	Clorofila a (mg/m³)	1.70	7.90
DIUIIIdSSd	Biovolume total (mm³/L)	1.20	2.80
Composição o Abrundância	Biovolume de Cianobactérias (mm³/L)	0.02	0.80
Composição e Abundância	Índice de Grupo de Algas (IGA)	2.00	37.60

Na Tabela IV.9 apresentam-se os valores associados às classes de qualidade para as Albufeiras do Norte, utilizados na classificação da qualidade biológica com base no fitoplâncton.

Tabela IV.9 - Sistema de classificação para o fitoplâncton em albufeiras

Tipo Nacional	Índice	Classe de Qualidade	Valor
Albufeiras do Norte		Bom e Superior	[1,0 - 0,6]
	MARSP	Razoável]0,6 - 0,4]
		Medíocre]0,4 - 0,2]
		Mau]0,2 – 0]

Para as Albufeiras do tipo Sul o valor guia estabelecido para a fronteira Bom /Razoável é o que consta na Tabela IV.10

Tabela IV.10 - Mediana dos valores de referência e valores-guia de fronteira Bom/Razoável para os tipos de albufeiras Sul para o Elemento de Qualidade Biológica Fitoplâncton.

Tipo	Componente	Indicador	Valor de Referência	Exc./Bom (RQE)	Bom/Raz. (RQE)
Albufeiras do Sul	Biomassa	Clorofila <i>a</i> (mg/m³)	1.6		9.5
uo 3ui		(1116/111)			(0.17)

Para calcular os RQEs os valores a utilizar deverão corresponder a médias anuais para o tipo Sul.

Para as albufeiras do tipo Curso Principal não foram desenvolvidas métricas e no 2.º ciclo dos PGRH optouse por utilizar para a clorofila a valor guia estabelecido para a fronteira Bom /Razoável definido para as Albufeiras do tipo Sul.

b) Físico-químicos de suporte

Os elementos químicos e físico-químicos de suporte aos elementos biológicos integram a avaliação das condições gerais e dos poluentes específicos, da seguinte forma:

 Condições Gerais – Integram 5 parâmetros que avaliam as condições de oxigenação, o estado de acidificação e as condições relativas a nutrientes. Os limiares para o bom estado/potencial ecológico encontram-se indicados na Tabela IV.11.

Tabela IV.11 – Sistema de classificação das condições gerais dos elementos químicos e físico-químicos em albufeiras

Parê washina	Limite para o Bom Estado			
Parâmetros	Albufeiras do Norte	Albufeiras do Sul		
Oxigénio Dissolvido (1)	≥ 5 mg O ₂ /L	≥ 5 mg O ₂ /L		
Taxa de saturação em Oxigénio (1)	entre 60% e 120%	entre 60% e 140%		
pH (1)	entre 6 e 9 (3)	entre 6 e 9 (3)		
Nitratos (2)	≤ 25 mg NO ₃ /L	≤ 25 mg NO ₃ /L		
Fósforo Total (2)	≤ 0,05 mg P/L	≤ 0,07 mg P/L		

^{(1) – 80%} das amostras deverão respeitar o limite estabelecido se a frequência for mensal ou superior, nos restantes casos 100% das amostras terão que respeitar o limite estabelecido; (2) – Média anual. Para o cálculo da média anual e quando numa amostra os valores forem inferiores ao LQ, deverá utilizar-se o valor correspondente a metade do limite de quantificação (de acordo com o Decreto-Lei n.º 83/2011); (3) – Os limites indicados poderão ser ultrapassados caso ocorram naturalmente.

c) Poluentes específicos relevantes são substâncias químicas enquadradas nos pontos 1 a 9 do Anexo VIII da Diretiva Quadro da Água que não estão incluídos na lista de substâncias prioritárias.

Revelou-se necessário proceder à revisão da lista de Poluentes Específicos e das respetivas Normas de Qualidade publicadas nos Decreto-Lei n.º 506/99, de 20 de novembro e n.º 261/2003, de 21 outubro, tendo sido adotados os critérios que se descrevem seguidamente.

Tendo por base as listas de poluentes específicos incluídas nos decretos-lei acima referidos, retiraram-se as substâncias que não foram detetadas na água no período 2004-2012. Para os produtos fitofarmacêuticos, foi ainda analisada a sua situação atual em termos de autorização (ou não) de utilização em Portugal. As substâncias que não se encontram autorizadas (em termos de substâncias ativas e/ou dos produtos formulados contendo essas substâncias) foram retiradas da lista, uma vez que não são persistentes, e não constituirão uma pressão relevante.

A metodologia usada para a definição das Normas de Qualidade baseou-se em avaliações de risco existentes, recorrendo a Concentrações Previsivelmente Sem Efeitos (PNEC – "Predicted No Effect Concentrations"), prevista no "Guidance Document n.º 27 – Technical Guidance for Deriving Environmental Quality Standards", de 2011.

Para os poluentes específicos foram definidas Normas de Qualidade Ambiental para 22 substâncias as quais estão indicadas na Tabela IV.12.

Tabela IV.12 – Normas de qualidade definidos para os poluentes específicos

Delicentes associates	Número	Normas de Qualidade μg/l *	
Poluentes específicos	CAS	Águas de superfície interiores	
2,4,5-Triclorofenol	95-95-4	0.13	
2,4,6-Triclorofenol	88-06-2	0.26	
2,4-D (ácido 2,4-Diclorofenoxiacético - sais e ésteres)	94-75-7	0.30	
2,4-Diclorofenol	120-83-2	1.6	
3,4-Dicloroanilina	95-76-1	0.2	
Antimónio ⁽¹⁾	7440-36-0	5.6	
Arsénio ⁽¹⁾	7440-38-2	50	

Poluentes específicos	Número	Normas de Qualidade μg/l *
Poluentes especificos	CAS	Águas de superfície interiores
Bário ⁽¹⁾	7440-39-3	140
Bentazona	25057-89-0	80
Cobre (1)	7440-50-8	7.8 (depende de pH, DOC e dureza da água)
Crómio ⁽¹⁾	7440-47-3	4.7
Dimetoato	60-51-5	0.07
Etilbenzeno	100-41-4	65
Fosfato de tributilo	126-73-8	66
Linurão	330-55-2	0.15
MCPP (Mecoprope)	93-65-2	5.5
Xileno (total)	1330-20-7	2.4
Tolueno	108-88-3	74
Zinco ⁽¹⁾	7440-66-6	7.8 (depende de pH, DOC e dureza da água); a Norma de Qualidade de 3.1 será aplicada se a dureza da água <24 mg/l CaCO₃
Terbutilazina	5915-41-3	0.22
Desetil Terbutilazina	30125-63-4	0.14
Cianetos (HCN)	57-12-5	5.0

^{*} Fonte: Relatórios de Avaliação de Risco da ECHA (Environmental Chemical Agency) e de organizações oficiais a nível Europeu.

Águas de Transição e Costeiras

A definição dos critérios de classificação das massas de água de transição e costeiras teve por base o trabalho desenvolvido no âmbito do projeto EEMA – Avaliação do Estado Ecológico das Massas de Águas Costeiras e de Transição Adjacentes e do Potencial Ecológico das Massas de Água Fortemente Modificadas.

Este projeto tem como principais objetivos a definição dos Sistemas de Classificação previstos para estas categorias de massas de água, visando a classificação do Estado/Potencial Ecológico das mesmas, e a intercalibração com os Sistemas de Classificação desenvolvidos pelos restantes Estados-Membros que partilham tipologias comuns, através do Exercício de Intercalibração, implementado pela CE e coordenado pelo grupo ECOSTAT.

Atendendo ao caracter inovador e à complexidade técnico-científica das atividades necessárias para conseguir dar cumprimento ao exigido pela DQA para as águas de transição e costeiras, os trabalhos do projeto continuam a decorrer, em particular os trabalhos do exercício de intercalibração cuja conclusão está prevista para 2016. Desta forma, os Sistemas de Classificação até agora desenvolvidos podem vir a sofrer alterações.

Também para os parâmetros físico-químicos de suporte – Elementos Gerais está em fase de conclusão o tratamento estatístico dos dados recolhidos no âmbito do projeto EEMA que define os critérios de classificação para estes parâmetros. Nesta fase será por isso utilizada a mesma metodologia que no primeiro ciclo de planeamento.

Para além dos resultados do projeto EEMA, a definição dos critérios de classificação destas tipologias de massas de água tem em consideração o seguinte:

 Para os elementos biológicos adotou-se o disposto na Decisão da Comissão 2013/480/EU, e na Retificação de 8 de outubro de 2013, que estabelecem, nos termos da DQA, os valores para a atribuição de classificações com base nos sistemas de monitorização dos Estados-Membros, no seguimento do exercício de intercalibração.

⁽¹⁾ Todos os metais devem ser analisados na forma dissolvida.

- Para os parâmetros físico-químicos de suporte Poluentes específicos procedeu-se à revisão das substâncias (conjuntamente com a seleção efetuada para as águas superficiais interiores) aplicando como critério a utilização/pressão relevante e/ou presença na água. A metodologia usada para a definição das Normas de Qualidade Ambiental baseou-se em avaliações de risco existentes, recorrendo a Concentrações Previsivelmente Sem Efeitos (PNEC), prevista no "Guidance Document n.º27 Technical Guidance for Deriving Environmental quality Standars", de 2011.
- Para a caracterização dos elementos hidromorfológicos foram identificadas as alterações morfológicas e hidrodinâmicas que poderiam ser consideradas como significativas, tendo por base a informação constante de planos congéneres de outros países, designadamente o "Etude de délimitation et de caractérisation des masses d'eau du Bassin Loire Bretagne", da Agence de l'eau Loire Bretagne e o "Esquema Provisional de Temas Importantes. Parte Española de La Demarcación Hidrográfica del Cantábrico", da Confederación Hidrográfica del Cantábrico.
- Para o Estado Químico adotaram-se as Normas de Qualidade Ambiental para as substâncias prioritárias e para outros poluentes definidas no Decreto-Lei n.º 103/2010, de 24 de setembro, que transpôs para a ordem jurídica interna a Diretiva 2013/39/UE, de 12 de agosto de 2013.

Águas de Transição

Para esta categoria de massas de água encontram-se definidos critérios de classificação para todos os elementos de qualidade. Os critérios estabelecidos são utilizados quer na avaliação do estado ecológico, quer na avaliação do potencial ecológico.

a) Elementos biológicos

A Tabela IV.13 resume os Sistemas de Classificação desenvolvidos para os Elementos Biológicos em águas de transição. Uma vez que os trabalhos do projeto EEMA continuam a decorrer, as condições de referência e valores de fronteiras das classes de qualidade associadas a estes Sistemas de Classificação podem vir a ser alterados.

Tabela IV.13 – Sistemas de Classificação para Elementos Biológicos em Águas de Transição

Tipo Nacional		Invertebrados	Fito	oplâncton	Oı			
		bentónicos	Biomassa	Biomassa Blooms de Fitoplâncton		Macroalgas Sapais Ervas marinhas		Peixes
Estuário mesotidal estratificado	A1	BAT	Clorofila a	Em desenvolvimento	вмі	AQuA- Index	SQI	EFAI
Estuário mesotidal homogéneo com descargas irregulares de rio	A2	BAT	Clorofila a	Em desenvolvimento	ВМІ	AQuA- Index	SQI	EFAI

Fitoplâncton

A métrica utilizada na classificação do Elemento Biológico Fitoplâncton é a biomassa de fitoplâncton, avaliada pela concentração de Clorofila-a, parâmetro indicador da produtividade fitoplanctónica. Em cada massa de água, é avaliado o Estado Ecológico em três gamas de salinidade, que correspondem a

comunidades fitoplanctónicas distintas (<5, 5-25 e >25). É utilizado o percentil 90 de forma a considerar a variabilidade natural e sazonal do fitoplâncton.

No desenvolvimento desta métrica foram utilizados dados históricos, resultados de campanhas de monitorização e a avaliação de especialistas. Foi calculado o percentil 90 das concentrações de Clorofila-a para cada sub-tipologia nacional e, com base nesse valor, derivou-se a Condição de Referência (por classes de salinidade) (Tabela IV.14).

A Tabela IV.15 apresenta os Rácios de Qualidade Ecológica para o Elemento Biológico Fitoplâncton em Águas de Transição.

Tabela IV.14 – Condições de referência e fronteiras das classes de qualidade para o Fitoplâncton em Águas de Transição, considerando o percentil 90 de Clorofila-a (μg L⁻¹) e referido por classes de salinidade.

Sub-tipologia		Classes	Fronteiras das Classes (Chl a, μg.L ⁻¹)						
		Salinidade	Referência	Excelente/ Bom	Bom/ Razoável	Razoável/ Medíocre	Medíocre/ Mau		
	Minho, Lima,	0-5	6.67	10	15	22	33.5		
Norte - estreitos	Cávado, Ave, Douro,	5-25	6.67	10	15	22	33.5		
	Mondego, Lis	>25	6	9	13.5	20	30		
		0-5	6.67	10	15	22	33.5		
Norte - largos Ria de Avei	Ria de Aveiro	5-25	6.67	10	15	22	33.5		
		>25	6	9	13.5	20	30		
		0-5	8	12	18	26.67	40		
Sul - estreitos	Mira, Guadiana	5-25	6.67	10	15	22	33.5		
		>25	5.3	8	12	17.5	26.5		
		0-5	8	12	18	26.67	40		
Sul-largos	Tejo, Sado	5-25	8	12	18	26.67	40		
		>25	6.67	10	15	22	33.5		

Tabela IV.15 – Rácios de Qualidade Ecológica para o Fitoplâncton (métrica biomassa, avaliada pelo percentil 90 da concentração de clorofila a) em Águas de Transição

Tipo Nacional		Índice	Excelente	Bom	Razoável	Medíocre	Mau
Estuário mesotidal estratificado	A1	Biomassa (Chl a)	≥ 0.67	[0,44 - 0,67[[0,30 - 0,44[[0,20 - 0,30[[0 - 0,20[
Estuário mesotidal homogéneo com descargas irregulares de rio	A2	Biomassa (Chl a)	≥ 0,67	[0,44 - 0,67[[0,30 - 0,44[[0,20 - 0,30[[0 - 0,20[

Macroalgas

O índice desenvolvido para avaliação do Elemento de Qualidade Biológica Macroalgas em Águas de Transição é o BMI – *Blooming Macroalgae Index* (Patricio *et al*, 2007). Este índice inclui as seguintes métricas: (i) a área intertidal disponível para os florescimentos, i.e., excluindo as áreas ocupadas por vegetação e/ou substrato duro, (ii) a área ocupada pelos florescimentos e (iii) a percentagem de cobertura dos florescimentos.

As métricas e as condições de referência são apresentadas nas Tabelas IV.16 e IV.17. a Tabela IV.18 apresenta os Rácios de Qualidade Ecológica para o Elemento Biológico Macroalgas em Águas de Transição.

Tabela IV.16 – Condições de referência para o elemento biológico Macroalgas em águas de transição

Métrica	Condições de Referência			
Área de cobertura	<1 km²			
Percentagem de cobertura	<5%			

Tabela IV.17 - Descrição das métricas que constituem o BMI

Métrica	Descrição							
% cobertura	<5	5-15	15-25	25-75	>75			
	<1	Sem alteração						
	1-4.99	Sem alteração						
Área de cobertura (km²)	5-9.99	Deprecia 1 classe						
	10-24.99	Deprecia 2 classes						
	>25	Deprecia 3 classes						
EQS	Excelente	Bom	Razoável	Medíocre	Mau			

Tabela IV.18 – Rácios de Qualidade Ecológica para o Elemento Biológico Macroalgas em Águas de Transição

Tipo Nacional		Índice	Excelente	Bom	Razoável	Medíocre	Mau
Estuário mesotidal estratificado	A1	ВМІ	≥ 0,80	[0,60 - 0,80[[0,40 - 0,60[[0,20 - 0,40[[0 - 0,20[
Estuário mesotidal homogéneo com descargas irregulares de rio	A2	ВМІ	≥ 0,80	[0,60 - 0,80[[0,40 - 0,60[[0,20 - 0,40[[0 - 0,20[

Angiospérmicas

O elemento biológico Angiospérmicas inclui os subelementos Ervas Marinhas e plantas de Sapal.

Subelemento Ervas Marinhas

O índice desenvolvido para avaliação do Subelemento de Qualidade Biológica Ervas Marinhas é o SQI – *Seagrass Quality Index*. As métricas que compõem este índice pertencem a duas categorias, (1) composição taxonómica e (2) abundância, a qual pode ser medida por diferentes sub-métricas isolada ou conjuntamente: (2.1) área intertidal ocupada, (2.2) densidade de indivíduos/meristemas foliares, (2.3) % cobertura média e/ou distribuição de classes de cobertura.

As condições de referência são estabelecidas por massa de água, tendo em consideração dados históricos e opinião especializada. As métricas e os critérios de referência gerais são apresentados nas Tabelas IV.19 e IV.20.

O Tabela IV.21 apresenta os Rácios de Qualidade Ecológica (EQR) para o Subelemento Biológico Ervas Marinhas em Águas de Transição.

Tabela IV.19 - Critérios gerais de referência para o subelemento Ervas Marinhas intertidais em águas de transição

Métrica	Condições de Referência
Nº Taxa	Sem perda de n.º de espécies face ao máximo registado
Área total ocupada	Sem perda de área de cobertura – no potencial máximo e em equilíbrio natural (= 5% área intertidal)
Densidade de indivíduos	Sem desvio apreciável da densidade máxima potencial = 12 000 pés/m²
% Cobertura	Sem desvio apreciável da cobertura máxima potencial

Tabela IV.20- Descrição das métricas que constituem o SQI

Métrica	Descrição						
N.º Taxa presentes	Sem perda	Perda 1 espécie	Perda 1 a 2 espécies	Perda 2 a 3 espécies	Perda total		
Score do n.º Taxa	5	1	1	1	1		
Área ocupada (< cond. ref)	0-10%	11-30%	31-50%	51-70%	>70%		
Densidade de pés	0-10%	11-30%	31-50%	51-70%	>70%		
EQR	≥0.8	0.6-0.79	0.4-0.59	0.21-0.39	<0.2		

Tabela IV.21 – Rácios de Qualidade Ecológica para o Subelemento Biológico Ervas Marinhas em Águas de Transição

Tipo Nacional		Índice	Excelente	Bom	Razoável	Medíocre	Mau
Estuário mesotidal estratificado	A1	SQI	≥ 0,80	[0,60 - 0,80[[0,40 - 0,60[[0,20 - 0,40[[0 - 0,20[
Estuário mesotidal homogéneo com descargas irregulares de rio	A2	SQI	≥ 0,80	[0,60 - 0,80[[0,40 - 0,60[[0,20 - 0,40[[0 - 0,20[

Subelemento Sapal

O índice utilizado na avaliação da qualidade ecológica das massas de água através do subelemento biológico Sapal é o AQuA-Index - *Angiosperm Quality Assessment Index* (Caçador *et al.*, 2013).

Este índice inclui diversas métricas ecológicas reveladoras da estrutura do sapal. Através da abundância relativa das espécies em cada massa de água são calculados os índices de Diversidade de Shannon (H'), a Diversidade Máxima de Shannon (H'max), o Índice de Equitabilidade de Pielou (J), o Índice de Diversidade de Margalef e também o número total de espécies (S) presentes na massa de água a avaliar.

No cálculo do Índice AQuA considera-se não com os valores absolutos das variáveis ecológicas, mas sim o seu valor ponderado por um valor determinado (peso) usando como base os estuários da costa Portuguesa (Caçador *et al.*, 2013). Este valor (peso) foi obtido através de uma análise de componentes principais (PCA) e corresponde ao *eighen value* obtido para cada variável. Desta forma o AQuA-Index pode ser calculado da seguinte forma:

$$AQuA - Index = \sum_{i=1}^{n} W_i E_i$$

Onde Wi é o valor de peso da variável ecológica determinado pela PCA e Ei o seu respetivo valor normalizado entre 0 e 1. Para a normalização aplicou-se uma equação sigmoidal com a forma:

$$E = \frac{a}{1 + (\frac{x}{x_0})^b}$$

Onde a é um valor normalizador de 0,535 para que o índice final composto por 5 variáveis varie entre 0 e 1; x_0 é o valor médio para a variável em causa; x é o valor da variável; b é o declive da equação sendo neste caso -2,5.

Desta forma o AQuA-Index final será calculado como:

$$AQuA - Index = 0.410 \times E_{H'} + 0.406 \times E_{H'} + 0.397 \times E_S + 0.368 \times E_{Margalef} + 0.293 \times E_J$$

A Tabela IV.22 apresenta os Rácios de Qualidade Ecológica (EQR) para o Subelemento Biológico Sapais em Águas de Transição.

Tabela IV.22 – Rácios de Qualidade Ecológica para o Subelemento Biológico Sapais em Águas de Transição

Tipo Nacional		Índice	Excelente	Bom	Razoável	Medíocre	Mau
Estuário mesotidal estratificado	A1	AQuA-Index	≥ 0,80	[0,60 - 0,80[[0,40 - 0,60[[0,20 - 0,40[[0 - 0,20[
Estuário mesotidal homogéneo com descargas irregulares de rio	A2	AQuA-Index	≥ 0,80	[0,60 - 0,80[[0,40 - 0,60[[0,20 - 0,40[[0 - 0,20[

• Invertebrados bentónicos

O índice desenvolvido para avaliação do Elemento de Qualidade Biológica Macroinvertebrados Bentónicos é o BAT – *Benthic Assessment Tool* (Teixeira *et al., 2009*). Este sistema foi desenhado para se aplicar a dados de abundância de macroinvertebrados recolhidos em habitats subtidais de substrato móvel (areia

fina/vasosa). O BAT é um índice multimétrico que articula os resultados de três indicadores ecológicos (ver descrição detalhada no Quadro 1):

- (1) *d* Margalef index (Margalef, 1968);
- (2) H'(log₂) Shannon-Wiener index (Shannon & Weaver, 1963);
- (3) AMBI AZTI's Marine Biotic Index (Borja et al., 2000).

As métricas (1) e (2) fornecem medidas complementares de diversidade, sendo que a métrica (1) mede a riqueza específica, articulando o número de espécies e a abundância total de indivíduos amostrados, e a (2) centra-se mais na abundância proporcional das espécies na comunidade. A métrica (3) é um índice baseado na presença relativa de espécies sensíveis e indicadoras de perturbação numa comunidade (Tabela IV.23).

Tabela IV.23 – Algoritmos dos índices incluídos no método BAT para avaliação do EQB macroinvertebrados bentónicos em Águas de Transição, para habitats subtidais de substrato móvel.

(1) Margalef	(2) Shannon-Wiener	<i>(3)</i> AMBI
$d = (S-1)/log_e N$	$H' = -\sum p_i \log_2 p_i$	BC = [(0)(%GI)+(1,5)(%GII)+(3)(%GIII)+ (4,5)(%GIV)+(6)(%GV)]/100
S – número de espécies N – número total de indivíduos	 p_i – n_i/N n_i – número de indivíduos da espécie ; N – número total de indivíduos 	Grupos Ecológicos: GI: espécies muito sensíveis ao enriquecimento orgânico e presentes em condições não poluídas; GII: espécies indiferentes ao enriquecimento, presentes sempre em densidades baixas e sem variações significativas ao longo do tempo; GIII: espécies tolerantes ao enriquecimento excessivo de matéria orgânica, podendo ocorrer em condições normais mas sendo estimuladas pelo enriquecimento orgânico; GIV: espécies oportunistas de segundaordem, maioritariamente poliquetas de pequenas dimensões; GV: espécies oportunistas de primeiraordem, essencialmente detritívoros.

A Tabela IV.24 mostra os valores de referência definidos para estes índices em águas de transição. Estes valores são específicos para habitats subtidais, de características vasoso/arenoso. No caso de se pretender

fazer a avaliação de outros habitats, será necessária a utilização de novas condições de referência (adaptadas às características biológicas desses habitats).

A Tabela IV.25 apresenta os Rácios de Qualidade Ecológica para o Elemento Biológico Macroinvertebrados Bentónicos em Águas de Transição.

Tabela IV.24 – Valores de referência definidos para os índices de Margalef (d), Shannon-Wiener (H') e AMBI, que compõe a metodologia BAT para Águas de Transição.

Tipo Nacio	nal	Salinidade	d	H′(log₂)	AMBI
		Oligohalino	1.9	2.30	2.50
Canal	A1	Mesohalino	2.1	2.40	2.40
Cariai		Polihalino	4.1	2.80	1.00
		Euhalino	5.4	3.80	0.60
		Oligohalino	1.9	2.30	2.50
Delta	A1	Mesohalino	2.1	2.40	2.40
Delta		Polihalino	4.1	2.80	1.00
		Euhalino	5.6	3.80	0.60
		Oligohalino	1.9	2.30	2.50
Canal	A2	Mesohalino	2.1	2.40	2.40
cunar		Polihalino	4.1	3.20	1.00
		Euhalino	8.2	4.40	0.60
		Oligohalino	1.9	2.30	2.50
Delta	A2	Mesohalino	2.1	2.40	2.40
	AZ	Polihalino	4.1	3.20	1.00
		Euhalino	10.9	4.40	0.60

Tabela IV.25 – Rácios de Qualidade Ecológica para o Elemento Biológico Macroinvertebrados Bentónicos em Águas de Transição.

Tipo Nacional		Índice	Excelente	Bom	Razoável	Medíocre	Mau
Estuário mesotidal estratificado	A1	BAT	≥ 0,79	[0,58 - 0,79[[0,44 – 0,58[[0,27 - 0,44[< 0,27
Estuário mesotidal homogéneo com descargas irregulares de rio	A2	ВАТ	≥ 0,79	[0,58 - 0,79[[0,44 – 0,58[[0,27 - 0,44[< 0,27

Peixes

O índice desenvolvido para a avaliação do Elemento de Qualidade Biológica Peixes é o EFAI - Estuarine Fish Assessment Index (Cabral et al., 2012). O EFAI é composto por 6 métricas, representativas das características estruturais e funcionais das comunidades piscícolas de zonas de transição e cumpre as definições normativas da DQA.

As métricas selecionadas para integrarem o EFAI descrevem diferentes aspetos das comunidades de peixes, em particular a sua estrutura e função (estrutura trófica e padrão de utilização do habitat). Foram igualmente integradas métricas referentes a espécies-chave que são indicadoras de impactos antropogénicos (Tabela IV.26).

Tabela IV.26 - Descrição das métricas do EFAI.

Métrica	Descrição
Riqueza específica	Número total de espécies
Percentagem de indivíduos que utilizam o estuário como viveiro	Percentagem do número total de indivíduos de espécies de peixes marinhos que utilizam o estuário como área de viveiro (representados quase exclusivamente por juvenis). As espécies consideradas como utilizadoras do estuário como viveiro.
Percentagem de indivíduos de espécies residentes	Percentagem do número total de indivíduos de espécies que completam todo o seu ciclo de vida no ambiente estuarino
Espécies piscívoras	Esta métrica combina duas sub-métricas: uma relativa ao número de espécies que se alimenta de peixes, mas que podem não ser estritamente piscívoras; e outra referente à percentagem de indivíduos das espécies com estes hábitos tróficos.
Espécies diádromas	Esta métrica é referente ao número de espécies e abundância de peixes migradores diádromos. Como a captura de exemplares destas espécies é relativamente ocasional, a sua avaliação é feita através do julgamento de peritos.
Espécies sensíveis a perturbações	Esta métrica avalia o número de espécies e abundância de espécies de peixes que são habitualmente sensíveis a perturbações de origem humana, em particular a perda e/ou degradação do habitat. O grupo considerado foi o dos peixes pertencentes à família Syngnathidae. A captura de exemplares destas espécies é relativamente ocasional, ou limitada a áreas restritas, pelo que a sua avaliação foi igualmente efetuada através do julgamento de peritos.

Como condições de referência para a avaliação da qualidade ecológica de um estuário, considerou-se um estuário hipotético que apresentasse as seguintes características:

- Riqueza específica: superior a 28 espécies;
- Percentagem de indivíduos que utilizam o estuário como viveiro: superior a 60%;
- Percentagem de indivíduos residentes entre 30% e 50%
- Percentagem de indivíduos piscívoros (exclusivamente ou não) entre 40% e 60% e Número de espécies piscívoras (exclusivamente ou não) superior a 5; ou número de espécies piscívoras (exclusivamente ou não) superior a 12 e percentagem de indivíduos piscívoros (exclusivamente ou não) não inferior a 20% ou não superior a 80%;
- Espécies diádromas: com possibilidade de completarem os seus ciclos de vida; sem redução na abundância; sem redução no número de espécies;
- Espécies sensíveis a perturbações: sem redução na abundância; sem redução no número de espécies.

A Tabela IV.27 apresenta a descrição das métricas que constituem o EFAI com indicação dos "scores" a aplicar na classificação dos estuários como um todo. Os "scores" das métricas "espécies diádromas" e "espécies sensíveis a perturbações" são atribuídos com recurso à apreciação de peritos.

A Tabela IV.28 apresenta os Rácios de Qualidade Ecológica para o Elemento Biológico Peixes em Águas de Transição.

Tabela IV.27 – Descrição das métricas que constituem o EFAI com indicação dos "scores" a aplicar na classificação dos estuários como um todo.

	Métrica	Scores		
N.º	Designação	1	3	5
1	Riqueza especifica	≤ 16	17 a 28	> 28
2	Percentagem de indivíduos que utilizam o estuário como viveiro	≤ 20%	20% a 60%	> 60%
3	Espécies residentes	≤ 10% e > 90%	10 % - 30% e 50% - 90%	30% - 50%
4	Espécies piscívoras (exclusivamente ou não)	1 & 1	1 & 3, 1 & 5; 3 & 1; 3 & 3; 5 & 1	3 & 5; 5 & 3; 5 & 5
4.1	Percentagem de indivíduos	≤ 20% e > 80%	20% - 40% e 60% - 80%	40% - 60%
4.2	Número de espécies	≤5	5 e 12	> 12
5	Espécies diádromas	Redução no número de espécies	Redução na abundância	Sem redução
6	Espécies sensíveis a perturbações	Redução no número de espécies	Redução na abundância	Sem redução

Tabela IV.28 – Rácios de Qualidade Ecológica do índice EFAI: fronteiras e conversão do somatório de "scores" em EQR.

EFAI (∑ scores)	EQR	Qualidade Ecológica
6-8	0.20	Má
9-12	0.30	Medíocre
13-17	0.43	Razoável
18-25	0.60	Boa
26-30	0.86	Excelente

Para a avaliação do Estado Ecológico por massa de água, o EFAI foi adaptado de acordo com diferentes classes de Salinidade (oligonalina, mesonalina e polihalina).

A Tabela IV.29 apresenta a descrição das métricas que constituem o EFAI, quando aplicado a massas de água oligohalinas e os "scores" aplicados a cada métrica. A Tabela IV.30 apresenta os Rácios de Qualidade Ecológica para o Elemento Biológico Peixes em massas de água de transição oligohalinas.

Tabela IV.29 – Descrição das métricas que constituem o EFAI com indicação dos "scores" a aplicar na classificação de massas de água oligohalinas

Métrica		Métrica			
N.º	Designação	1	3	5	
1	Riqueza especifica	≤ 3	3 a 8	> 8	
2	Percentagem de indivíduos que utilizam o estuário como viveiro	≤ 20%	20% a 60%	> 60%	
3	Espécies residentes	≤ 10% e > 90%	10 % - 30% e 50% - 90%	30% - 50%	
4	Espécies piscívoras (exclusivamente ou não)	1 & 1	1 & 3, 1 & 5; 3 & 1; 3 & 3; 5 & 1	3 & 5; 5 & 3; 5 & 5	
4.1	Percentagem de indivíduos	≤ 20% e > 80%	20% - 40% e 60% - 80%	40% - 60%	
4.2	Número de espécies	≤ 1	1 e 2	> 2	
5	Espécies diádromas	Redução no número de espécies	Redução na abundância	Sem redução	

Tabela IV.30 – Rácios de Qualidade Ecológica do índice EFAI aplicado a massas de água oligohalinas: fronteiras e conversão do somatório de "scores" em EQR.

EFAI (∑ scores)	EQR	Qualidade Ecológica
5-7	0.20	Má
8-10	0.32	Medíocre
11-14	0.42	Razoável
15-20	0.60	Воа
21-25	0.84	Excelente

A Tabela IV.31 apresenta a descrição das métricas que constituem o EFAI, quando aplicado a massas de água mesohalinas e os "scores" aplicados a cada métrica. A Tabela IV.32 apresenta os Rácios de Qualidade Ecológica para o Elemento Biológico Peixes em massas de água mesohalinas.

Tabela IV.31 – Descrição das métricas que constituem o EFAI com indicação dos "scores" a aplicar na classificação de massas de água mesohalinas

	Métrica	Métrica			
N.º	Designação	1	3	5	
1	Riqueza especifica	≤ 4	5 a 15	> 15	
2	Percentagem de indivíduos que utilizam o estuário como viveiro	≤ 20%	20% a 60%	> 60%	
3	Espécies residentes	≤ 10% e > 90%	10 % - 30% e 50% - 90%	30% - 50%	
4	Espécies piscívoras (exclusivamente ou não)	1 & 1	1 & 3, 1 & 5; 3 & 1; 3 & 3; 5 & 1	3 & 5; 5 & 3; 5 & 5	
4.1	Percentagem de indivíduos	≤ 20% e > 80%	20% - 40% e 60% - 80%	40% - 60%	

Métrica		Métrica		
N.º	Designação	1	3	5
4.2	Número de espécies	≤1	2 a 3	>3
5	Espécies diádromas	Redução no número de espécies	Redução na abundância	Sem redução
6	Espécies sensíveis a perturbações	Redução no número de espécies	Redução na abundância	Sem redução

Tabela IV.32 – Rácios de Qualidade Ecológica do índice EFAI aplicado a massas de água mesohalinas: fronteiras e conversão do somatório de "scores" em EQR.

EFAI (∑ scores)	EQR	Qualidade Ecológica
6-8	0.20	Má
9-12	0.30	Medíocre
13-17	0.43	Razoável
18-25	0.60	Воа
26-30	0.86	Excelente

A Tabela IV.33 apresenta a descrição das métricas que constituem o EFAI, quando aplicado a massas de água polihalinas e os "scores" aplicados a cada métrica. A Tabela IV.34 apresenta os Rácios de Qualidade Ecológica para o Elemento Biológico Peixes em massas de água polihalinas.

Tabela IV.33 – Descrição das métricas que constituem o EFAI com indicação dos "scores" a aplicar na classificação de massas de água polihalinas

	Métrica	Métrica		
N.º	Designação	1	3	5
1	Riqueza especifica	≤ 10	11 a 20	> 20
2	Percentagem de indivíduos que utilizam o estuário como viveiro	≤ 20%	20% a 60%	> 60%
3	Espécies residentes	≤ 10% e > 90%	10 % - 30% e 50% - 90%	30% - 50%
4	Espécies piscívoras (exclusivamente ou não)	1 & 1	1 & 3, 1 & 5; 3 & 1; 3 & 3; 5 & 1	3 & 5; 5 & 3; 5 & 5
4.1	Percentagem de indivíduos	≤ 20% e > 80%	20% - 40% e 60% - 80%	40% - 60%
4.2	Número de espécies	≤ 2	3 a 5	> 5
5	Espécies diádromas	Redução no número de espécies	Redução na abundância	Sem redução
6	Espécies sensíveis a perturbações	Redução no número de espécies	Redução na abundância	Sem redução

Tabela IV.34 – Rácios de Qualidade Ecológica do índice EFAI aplicado a massas de água polihalinas: fronteiras e conversão do somatório de "scores" em EQR.

EFAI (Σ scores)	EQR	Qualidade Ecológica
6-8	0.20	Má
9-12	0.30	Medíocre
13-17	0.43	Razoável
18-25	0.60	Boa
26-30	0.86	Excelente

b) Físico químicos de suporte

A metodologia base para a classificação das massas de água relativamente a cada elemento físico-químico de suporte aos elementos biológicos foi desenvolvida no âmbito do projeto EEMA pela equipa do CIIMAR/IPMA. Essa metodologia divide-se nos seguintes passos: (i) Recolha dos dados disponíveis para cada tipologia de águas de transição, (ii) estimativa dos valores de referência para cada parâmetro a avaliar e (iii) estimativa do desvio das características de cada massa de água em relação aos valores de referência.

Utiliza-se o percentil 90 de cada parâmetro por representar uma medida que engloba a maioria dos dados, excluindo valores extremos devidos a distribuições assimétricas relacionadas com situações invulgares. São apenas definidas duas classes de qualidade: Bom e Razoável.

Na Tabela IV.35 são apresentados os valores de referência obtidos para cada elemento, através da metodologia referida. Desta forma, para o cálculo da classificação dos parâmetros FQ gerais, procede-se da seguinte forma:

- i) calcula-se o percentil 90 de cada parâmetro analisado;
- ii) calcula-se a razão entre o percentil 90 e o valor de referência;
- iii) convertem-se os resultados nas seguintes classificações:
 - a. para o oxigénio dissolvido consideram-se com a classificação "Bom" os resultados entre 0.7 e
 1.2, inclusive;
 - b. para os nutrientes consideram-se com a classificação "Bom" os resultados inferiores a 2, inclusive.

Tabela IV.35 – Valor de referência para as águas de transição

	Valor de Referência							
Tipo Nacional	Classe Salinidade	Nitrato + Nitrito (mg N/L)	Amónia (mg N/L)	Fosfato (mg P/L)	Oxigénio Dissolvido (%sat)			
Todas as tipologias	0-10	1	0.3	0.11	109			
	10-20	0.5	0.1	0.06	109			
	20-30	0.6	0.4	0.10	109			
	>30	0.3	0.2	0.05	109			

c) Poluentes específicos relevantes são substâncias químicas enquadradas nos pontos 1 a 9 do Anexo VIII da Diretiva Quadro da Água que não estão incluídos na lista de substâncias prioritárias.

Revelou-se necessário proceder à revisão da lista de Poluentes Específicos e das respetivas Normas de Qualidade publicadas nos Decreto-Lei n.º 506/99, de 20 de novembro e n.º 261/2003, de 21 outubro, por parte da APA.

A análise referente às águas costeiras e de transição foi realizada conjuntamente com a revisão efetuada para as águas superficiais interiores. As substâncias foram selecionadas tendo por base a sua utilização/pressão relevante e/ou a presença na água.

A metodologia usada para a definição das Normas de Qualidade baseou-se em avaliações de risco existentes, recorrendo a Concentrações Previsivelmente Sem Efeitos (PNEC – "Predicted No Effect Concentrations"), prevista no "Guidance Document n.º 27 – Technical Guidance for Deriving Environmental Quality Standards", de 2011.

A Tabela IV.36 apresenta as normas de qualidade definidas para os poluentes específicos.

Tabela IV.36 – Normas de qualidade definidos para os poluentes específicos

	Número	Normas de Qualidade μg/l *
Poluentes específicos	CAS	Águas de transição e costeiras
2,4,5-Triclorofenol	95-95-4	0.13
2,4,6-Triclorofenol	88-06-2	0.26
2,4-D (ácido 2,4-Diclorofenoxiacético - sais e ésteres)	94-75-7	0.30
2,4-Diclorofenol	120-83-2	0.16
Arsénio (1)	7440-38-2	25
Dimetoato	60-51-5	0.007
Etilbenzeno	100-41-4	10
Fosfato de tributilo	126-73-8	6.6
MCPP (Mecoprope)	93-65-2	0.3
Xileno (total)	1330-20-7	0.24
Tolueno	108-88-3	7.4
Cianetos (HCN)	57-12-5	5.0

^{*} Fonte: Relatórios de Avaliação de Risco da ECHA (Environmental Chemical Agency) e de organizações oficiais a nível Europeu.

d) Hidromorfológicos

Para os elementos hidromorfológicos não se estabeleceram limites quantitativos entre as classes de estado, mas estabeleceram-se critérios para classificar uma pressão hidromorfológica como significativa. Considerou-se que uma MA não alcança o estado excelente quando está submetida a pressões hidromorfológicas significativas.

Para a identificação das alterações morfológicas e hidrodinâmicas das massas de água de transição que poderiam ser consideradas como significativas, foi analisada e adaptada a informação constante de planos congéneres de outros países, designadamente o Etude de délimitation et de caractérisation des masses d'eau du Bassin Loire Bretagne, da Agence de l'eau Loire Bretagne e o Esquema Provisional de Temas Importantes, Parte Española de La Demarcación Hidrográfica del Cantábrico, da Confederación Hidrográfica del Cantábrico.

⁽¹⁾ Todos os metais devem ser analisados na forma dissolvida.

Foram identificadas como alterações hidromorfológicas a considerar as que se apresentam na Tabela IV.37 (alterações morfológicas) e na Tabela IV.38 (alterações hidrodinâmicas).

As pressões hidromorfológicas significativas em águas de transição estão identificadas na Tabela IV.39.

Tabela IV.37 - Alterações morfológicas consideradas nas águas de transição

Alterações morfológicas	Descrição e efeitos potenciais
Deposição de materiais de dragagens	Normalmente abaixo da batimérica do -20 ZH, mas está em estudo a alteração desta localização: a menores profundidades será benéfica para minimizar a erosão costeira mas pode dar origem à suspensão de sedimentos e ao aumento da turbidez
Dragagens	Aprofundamento de bacias portuárias ou de canais de acesso a portos e bacias portuárias: alteram a profundidade (e o volume) da massa de água e podem dar origem, temporariamente, à suspensão de sedimentos e de contaminantes
Retenções marginais	Retenções marginais de enrocamento ou "perré" destinadas a conter um terrapleno ou a proteger da erosão, muros cais de acostagem ou paredões marginais: dão origem à artificialização das margens
Aterros	Terraplanagem ou enchimento artificial: retira área (e volume) à massa de água
Assoreamentos	Enchimentos resultantes da deposição de sedimentos: retira volume à massa de água e pode, nos casos mais graves, retirar área
Erosões litorais	Recuo da linha de costa: pode dar origem a alterações consideráveis na morfologia costeira e ao rompimento de restingas com a consequente alteração de escoamentos e/ou da qualidade da água
Infraestruturas portuárias	Infraestruturas diversas que podem ser terraplenos, cais, docas, marinas e bacias de estacionamento e manobra: alteram a morfologia, artificializando a massa de água e podendo aumentar ou diminuir a sua área e o seu volume
Vegetação invasora	Plantas de crescimento rápido que ocupam as margens, o fundo e a superfície da massa de água: reduzem as velocidades de escoamento e dão origem a assoreamentos e alteração das margens

Tabela IV.38 - Alterações hidrodinâmicas consideradas nas águas de transição

Alterações hidrodinâmicas	Descrição e efeitos potenciais
Dragagens	Aprofundamento de bacias portuárias ou de canais de acesso a portos e bacias portuárias: ao modificar a morfologia do fundo e as profundidades podem alterar os escoamentos (velocidade e direção) e aumentar o prisma de maré
Aterros	Terraplanagem ou enchimento artificial: ao modificarem a morfologia da massa de água introduzem alterações nos escoamentos (velocidade e direção) e podem diminuir o prisma de maré
Açudes	Açudes, moinhos de maré e armadilhas de pesca: introduzem alterações no escoamento fluvial, podendo reduzi-lo significativamente, de forma permanente (açudes) ou temporária
Quebra-mares	Obras de proteção de áreas portuárias: introduzem alterações nas correntes litorais e por conseguinte nos fluxos sedimentares, podendo alterar os locais de deposição e acreção
Esporões	Obras de proteção costeira: introduzem alterações nas correntes litorais e por conseguinte nos fluxos sedimentares, podendo alterar os locais de deposição e acreção
Emissários submarinos	Condutas destinadas ao transporte de materiais líquidos ou gasosos, normalmente colocadas no fundo: podem interferir com o escoamento se colocadas transversalmente ao fundo, ou perpendicularmente à costa.
Vegetação invasora	Plantas de crescimento rápido que ocupam as margens e o fundo da massa de água: reduzem as velocidades de escoamento e dão origem a assoreamentos e alteração das margens

Tabela IV.39 - Pressões hidromorfológicas significativas em águas de transição

Pressão	Condição Limite para ser considerada como significativa						
Dragagens	Todas as que se efetuarem fora das bacias portuárias bem como dragagens de estabelecimento						
Assoreamentos/Aterros	Apenas novos aterros/assoreamentos quando a superfície e a localização contribuem para modificar a hidrodinâmica do estuário						
Retenções marginais	Quando o comprimento total de todas as retenções inventariadas for superior a 15% do perímetro da massa de água						
Infraestruturas Portuárias	Apenas novas infraestruturas, quando correspondem a uma superfície superior a 1% da massa de água						
Açudes, moinhos e armadilhas	Quando a área isolada ou com escoamento potencialmente restringido é superior a 15% da massa de água						
Vegetação invasora	Quando esta ocupa uma área superior a 10% da superfície total da massa de água						

Fonte: Etude de délimitation et de caractérisation des masses d'eau du Bassin Loire Bretagne, da Agence de l'eau Loire Bretagne; Esquema Provisional de Temas Importantes. Parte Española de La Demarcación Hidrográfica del Cantábrico

Classificação final do estado ecológico

A pior classificação obtida é a considerada para a classificação do estado/potencial ecológica de uma massa de água. Ou seja, seguiu-se o princípio "one-out, all-out" constante do Documento Guia de Apoio à Implementação da DQA "Guidance document n.º 13 - Overall approach to the classification of ecological status and ecological potential". De um modo geral os elementos biológicos são utilizados para classificar uma massa de água numa de 5 classes. Os critérios estabelecidos para os elementos químicos e físico-químicos apenas permitem distinguir a qualidade "Acima do bom" e "Abaixo do bom". Os elementos hidromorfológicos apenas são utilizados para distinguir as massas de água em estado "Excelente" e "Bom ou Inferior".

Águas Costeiras

Para esta categoria de massas de água encontram-se definidos critérios de classificação para todos os elementos de qualidade, no entanto, estes não estão disponíveis para todas as tipologias nacionais. Em particular, os Sistemas de Classificação para Lagoas Costeiras estão ainda em desenvolvimento, devido à complexidade natural destes ecossistemas. Os critérios estabelecidos são utilizados quer na avaliação do estado ecológico, quer na avaliação do potencial ecológico.

a) Elementos biológicos

A Tabela IV.40 resume os Sistemas de Classificação desenvolvidos para os Elementos Biológicos em águas costeiras. Uma vez que os trabalhos do projeto EEMA continuam a decorrer, as condições de referência e valores de fronteiras das classes de qualidade associadas a estes Sistemas de Classificação podem vir a ser alterados.

Tabela IV.40 - Sistemas de Classificação para Elementos Biológicos em Águas Costeiras

Tipo Nacional		Invertebrados	Fitoplâncton		Outras Plantas		
		bentónicos	Biomassa	<i>Blooms</i> de Fitoplâncton	Macroalgas	Sapais	Ervas marinhas
Lagoa mesotidal semi- fechada	А3	Sistemas de Classificação em desenvolvimento					
Lagoa mesotidal pouco profunda	A4	Em desenvolvimento Clorofila a desenvolvimento Em desenvolvimento				to	
Costa Atlântica mesotidal exposta	A5	BAT	Clorofila a	Em desenvolvimento	MarMAT		
Costa Atlântica mesotidal moderadamente exposta	А6	BAT	Clorofila a	Em desenvolvimento	MarMAT		
Costa Atlântica mesotidal abrigada	А7	BAT	Clorofila a	Em desenvolvimento	MarMAT		

Fitoplâncton

A métrica utilizada na classificação do Elemento Biológico Fitoplâncton é a biomassa de fitoplâncton, avaliada pela concentração de Clorofila-a, parâmetro indicador da produtividade fitoplanctónica. É utilizado o percentil 90 de forma a considerar a variabilidade natural e sazonal do fitoplâncton.

No desenvolvimento desta métrica foram utilizados dados históricos, resultados de campanhas de monitorização e a avaliação de especialistas. Foi calculado o percentil 90 das concentrações de Clorofila-a para cada tipologia nacional e, com base nesse valor, derivou-se a Condição de Referência (Tabela IV.41).

A Tabela IV.42 apresenta os Rácios de Qualidade Ecológica para o Elemento Biológico Fitoplâncton em Águas Costeiras.

Tabela IV.41 - Condições de referência e fronteiras das classes de qualidade para o Fitoplâncton (métrica biomassa, avaliada pelo percentil 90 da concentração de clorofila a) em Águas Costeiras

Tipo Nacional			Fronteiras das Classes (Chl a, μg.L ⁻¹)				
		Índice	Referência	Excelente/ Bom	Bom/ Razoável	Razoável/ Medíocre	Medíocre/ Mau
Lagoa mesotidal semi-fechada	А3	Biomassa (Chl a)					
Lagoa mesotidal pouco profunda	A4	Biomassa (Chl a)	5.3	8	12	17.5	26.5
Costa Atlântica mesotidal exposta	A5	Biomassa (Chl a)	5.3	8	12	17.5	26.5
Costa Atlântica mesotidal moderadamente exposta	A6	Biomassa (Chl a)	4	6	9	13.5	20
Costa Atlântica mesotidal abrigada	A7	Biomassa (Chl a)	4	6	9	13.5	20

Tabela IV.42 – Rácios de Qualidade para o Fitoplâncton (métrica biomassa, avaliada pelo percentil 90 da concentração de clorofila a) em Águas Costeiras

Tipo Nacional Índice		Excelente	Bom	Razoável	Medíocre	Mau	
Lagoa mesotidal semi-fechada	А3	Biomassa (Chl a)					
Lagoa mesotidal pouco profunda	A4	Biomassa (Chl a)	≥ 0.67	[0,44 - 0,67[[0,30 - 0,44[[0,20 - 0,30[[0 - 0,20[
Costa Atlântica mesotidal exposta	A5	Biomassa (Chl a)	≥ 0.67	[0,44 - 0,67[[0,30 - 0,44[[0,20 - 0,30[[0 - 0,20[
Costa Atlântica mesotidal moderadamente exposta	A6	Biomassa (Chl a)	≥ 0.67	[0,44 - 0,67[[0,30 - 0,44[[0,20 - 0,30[[0 - 0,20[
Costa Atlântica mesotidal abrigada	A7	Biomassa (Chl a)	≥ 0.67	[0,44 - 0,67[[0,30 - 0,44[[0,20 - 0,30[[0 - 0,20[

Macroalgas

O índice desenvolvido para a avaliação do elemento biológico macroalgas em águas costeiras (costa aberta) é o MarMAT – *Marine Macroalgae Assessment Tool*. Este índice é composto por sete métricas, representativas das características estruturais e funcionais das comunidades de macroalgas de substratos rochosos de zonas do intertidal de águas costeiras. A Tabela IV.43 apresenta as métricas que compõem o índice MarMAT, aplicável às tipologias nacionais A5, A6 e A7 e A Tabela IV.44 a conversão dos valores do índice MarMAT em Rácios de Qualidade Ecológica. As condições de referência para este índice encontramse descritas na Tabela IV.45. A Tabela IV.46 mostra os valores associados às classes de qualidade para cada tipo de águas costeira, com base no elemento biológico macroalgas.

Tabela IV.43 – Métricas do índice MarMAT, aplicável às tipologias nacionais A5, A6 e A7

Métrica	Valores							
Riqueza especifica*	>28	21-27	14-20	7-13	0-6			
Proporção de Clorófitos	<0.10	0.1-0.199	0.2-0.299	0.30-0.39	>0.40			
Número de Rodófitos	>18	13-17	9-12	4-8	0-3			
Rácio "Ecological Status Group"	>2.00	1.0-1.99	0.50-0.99	0.25-0.49	<0.24			
Proporção de espécies oportunistas	<0.10	0.1-0.199	0.2-0.299	0.3-0.39	>0.40			
Cobertura de oportunistas*	<0.10	0.10-0.199	0.20-0.29	0.30-0.70	>0.70			
Descrição da costa	1-7	8-11	12-14	15-18				
"Score" correspondente à classe ecológica	4	3	2	1	0			
Somatório dos "Scores"	29-36	22-28	15-21	8-14	0-7			

Tabela IV.44 – Rácios de Qualidade Ecológica do índice MarMAT: fronteiras e conversão do somatório de "scores" em EQR.

MarMAT	EQR
0-7	0.00-0.20
8-14	0.21-0.40
15-21	0.41-0.63
22-28	0.64-0.81
29-36	0.82-1.00

Tabela IV.45 – Condições de referência para as Macroalgas em Águas Costeiras (costa aberta)

Métrica	Referência
Riqueza especifica*	28
Proporção de Clorófitos	10%
Número de Rodófitos	18
Rácio "Ecological Status Group"	2.0
Proporção de espécies oportunistas	10%
Cobertura de oportunistas*	10%
Descrição da costa	7

^{*}estas métricas são ponderadas com um fator de 2

Tabela IV.46 – Rácios de Qualidade para as Macroalgas em Águas Costeiras (costa aberta)

Tipo Nacional		Índice	Excelente	Bom	Razoável	Medíocre	Mau
Costa Atlântica mesotidal exposta	A5	MarMat	≥ 0.80	[0,61 - 0,80[[0,41 - 0,61[[0,21-0,41[[0 - 0,21[
Costa Atlântica mesotidal moderadamente exposta	A6	MarMat	≥ 0.80	[0,61 - 0,80[[0,41 - 0,61[[0,21-0,41[[0 - 0,21[
Costa Atlântica mesotidal abrigada	A7	MarMat	≥ 0.80	[0,61 - 0,80[[0,41 - 0,61[[0,21-0,41[[0 - 0,21[

• Invertebrados bentónicos

O índice desenvolvido para avaliação do Elemento de Qualidade Biológica Macroinvertebrados Bentónicos é o BAT – *Benthic Assessment Tool* (Teixeira *et al., 2009*). Este sistema foi desenhado para se aplicar a dados de abundância de macroinvertebrados recolhidos em habitats subtidais de substrato móvel (areia fina/vasosa). O BAT é um índice multimétrico que articula os resultados dos três indicadores ecológicos seguintes (ver descrição detalhada no Quadro 1):

- (1) *d* Margalef index (Margalef, 1968);
- (2) H'(log₂) Shannon-Wiener index (Shannon & Weaver, 1963);
- (3) AMBI AZTI's Marine Biotic Index (Borja et al., 2000).

As métricas (1) e (2) fornecem medidas complementares de diversidade, sendo que a métrica (1) mede a riqueza específica, articulando o número de espécies e a abundância total de indivíduos amostrados, e a (2) centra-se mais na abundância proporcional das espécies na comunidade. A métrica (3) é um índice baseado na presença relativa de espécies sensíveis e indicadoras de perturbação numa comunidade (Tabela IV.47).

A Tabela IV.48 mostra os valores de referência definidos para estes índices em águas costeiras das tipologias nacionais A5, A6 e A7. Estes valores são específicos para habitats subtidais, com características de areia fina/vasosa. No caso de se pretender fazer a avaliação de outros habitats, será necessária a utilização de novas condições de referência (adaptadas às características biológicas desses habitats).

A Tabela IV.49 apresenta os Rácios de Qualidade Ecológica (EQR) para o Elemento Biológico Macroinvertebrados Bentónicos em Águas Costeiras (costa aberta).

Tabela IV.47 – Algoritmos dos índices incluídos no método BAT para avaliação do EQB macroinvertebrados bentónicos em Águas Costeiras (costa aberta), para habitats subtidais de substrato móvel de areia/vasosa

(1) Margalef	(2) Shannon-Wiener	<i>(3)</i> AMBI
$d = (S-1)/log_eN$	$H' = -\sum p_i \log_2 p_i$	BC = [(0)(% <i>GI</i>)+(1,5)(% <i>GII</i>)+(3)(% <i>GIII</i>)+ (4,5)(% <i>GIV</i>)+(6)(% <i>GV</i>)]/100
S – número de espécies N – número total de indivíduos	$p_i - n_i/N$ n_i – número de indivíduos da espécie i N – número total de indivíduos	Grupos Ecológicos: GI: espécies muito sensíveis ao enriquecimento orgânico e presentes em condições não poluídas; GII: espécies indiferentes ao enriquecimento, presentes sempre em densidades baixas e sem variações significativas ao longo do tempo; GIII: espécies tolerantes ao enriquecimento excessivo de matéria orgânica, podendo ocorrer em condições normais mas sendo estimuladas pelo enriquecimento orgânico; GIV: espécies oportunistas de segunda-ordem, maioritariamente poliquetas de pequenas dimensões; GV: espécies oportunistas de primeira-ordem, essencialmente detritívoros.

Tabela IV.48 – Valores de referência definidos para os índices de Margalef (d), Shannon-Wiener (H') e AMBI, que compõe a metodologia BAT para Águas Costeiras (costa aberta)

Tipo Nacional		EQS	d	H′(log₂)	AMBI
Costa Atlântica mesotidal	ΔE	Mau	0,0	0,0	7,0
exposta	A5	Excelente	5,0	4,1	0,0
Costa Atlântica mesotidal moderadamente exposta	A6	Mau	0,0	0,0	7,0
	Au	Excelente	5,0	4,1	0,0
Costa Atlântica mesotidal abrigada	A7	Mau	0,0	0,0	7,0
	A/	Excelente	5,0	4,1	0,0

Tabela IV.49 – Rácios de Qualidade Ecológica, valores das fronteiras entre as diferentes classes de qualidade e correspondente Estado de Qualidade Ecológica para o Elemento Biológico Macroinvertebrados Bentónicos em Águas Costeiras (costa aberta)

Tipo Nacional		Índice	Excelente	Bom	Razoável	Medíocre	Mau
Costa Atlântica mesotidal exposta	А5	ВАТ	≥ 0,79	[0,58 - 0,79[[0,44 – 0,58[[0,27 - 0,44[< 0,27
Costa Atlântica mesotidal moderadamente exposta	A6	BAT	≥ 0,79	[0,58 - 0,79[[0,44 – 0,58[[0,27 - 0,44[< 0,27
Costa Atlântica mesotidal abrigada	А7	ВАТ	≥ 0,79	[0,58 - 0,79[[0,44 – 0,58[[0,27 - 0,44[< 0,27

b) Físico químicos de suporte

A metodologia base para a classificação das massas de água relativamente a cada elemento físico-químico de suporte aos elementos biológicos está a ser desenvolvida no âmbito do projeto EEMA pela equipa do IPMA. Essa metodologia divide-se nos seguintes passos: (i) Recolha dos dados disponíveis para cada tipologia de águas de transição, (ii) estimativa dos valores de referência para cada parâmetro a avaliar e (iii) estimativa do desvio das características de cada massa de água em relação aos valores de referência.

Utiliza-se o percentil 90 de cada parâmetro por representar uma medida que engloba a maioria dos dados, excluindo valores extremos devidos a distribuições assimétricas relacionadas com situações invulgares. São apenas definidas duas classes de qualidade: Bom e Razoável.

Os valores de referência são os descritos na Tabela IV.50. Desta forma, para o cálculo da classificação dos parâmetros FQ gerais, procede-se da seguinte forma:

- i) calcula-se o percentil 90 de cada parâmetro analisado;
- ii) calcula-se a razão entre o percentil 90 e o valor de referência;

- iii) convertem-se os resultados nas seguintes classificações:
 - a. para o oxigénio dissolvido consideram-se com a classificação "Bom" os resultados entre 0.7 e 1.2, inclusive;
 - b. para os nutrientes consideram-se com a classificação "Bom" os resultados inferiores a 2, inclusive.

Tabela IV.50- Valores de referência para os parâmetros físico químicos para águas costeiras

	Valor de referência					
Tipologia Salinidade		Nitrato + Nitrito (mg N/L)	Amónia (mg N/L)	Fosfato (mg P/L)	Oxigénio dissolvido (%sat)	
Costa aberta (A5, A6 e A7)	>30	0.13	0.07	0.02	117	
Lagoas Costeiras: Lagoa	20-30	0.7	0.1	0.5	-	
de Óbidos, Ria Formosa, Ria Alvor	>30	0.6	0.4	0.06	-	

c) Poluentes específicos relevantes são substâncias químicas enquadradas nos pontos 1 a 9 do Anexo VIII da Diretiva Quadro da Água que não estão incluídos na lista de substâncias prioritárias

Revelou-se necessário proceder à revisão da lista de Poluentes Específicos e das respetivas Normas de Qualidade publicadas nos Decreto-Lei n.º 506/99, de 20 de novembro e n.º 261/2003, de 21 outubro, tendo sido adotados os critérios que se descrevem seguidamente.

Tendo por base as listas de poluentes específicos incluídas nos decretos-lei acima referidos, retiraram-se as substâncias que não foram detetadas na água no período 2004-2012. Para os produtos fitofarmacêuticos, foi ainda analisada a sua situação atual em termos de autorização (ou não) de utilização em Portugal. As substâncias que não se encontram autorizadas (em termos de substâncias ativas e/ou dos produtos formulados contendo essas substâncias) foram retiradas da lista, uma vez que não são persistentes, e não constituirão uma pressão relevante.

A metodologia usada para a definição das Normas de Qualidade baseou-se em avaliações de risco existentes, recorrendo a Concentrações Previsivelmente Sem Efeitos (PNEC – "Predicted No Effect Concentrations"), prevista no "Guidance Document n.º 27 – Technical Guidance for Deriving Environmental Quality Standards", de 2001.

A Tabela IV.51 apresenta as normas de qualidade definidas para os poluentes específicos.

Tabela IV.51 – Normas de qualidade definidos para os poluentes específicos

Poluentes específicos	Número	Normas de Qualidade μg/l *
roluentes especificos	CAS	Águas costeiras
2,4,5-Triclorofenol	95-95-4	0.13
2,4,6-Triclorofenol	88-06-2	0.26
2,4-D	94-75-7	0.30
(ácido 2,4-Diclorofenoxiacético - sais e ésteres)		
2,4-Diclorofenol	120-83-2	0.16
Arsénio ⁽¹⁾	7440-38-2	25
Dimetoato	60-51-5	0.007
Etilbenzeno	100-41-4	10
Fosfato de tributilo	126-73-8	6.6
MCPP (Mecoprope)	93-65-2	0.3

Daluantas aspasíticas	Número	Normas de Qualidade μg/l *	
Poluentes específicos	CAS	Águas costeiras	
Xileno (total)	1330-20-7	0.24	
Tolueno	108-88-3	7.4	
Cianetos (HCN)	57-12-5	5.0	

^{*} Fonte: Relatórios de Avaliação de Risco da ECHA (Environmental Chemical Agency) e de organizações oficiais a nível Europeu. (1) Todos os metais devem ser analisados na forma dissolvida.

d) Hidromorfológicos

Para os elementos hidromorfológicos não existem limites quantitativos entre as classes de estado, e as MA foram avaliadas qualitativamente com base na conjugação das pressões hidromorfológicas significativas a que estão submetidas.

Para a identificação das alterações morfológicas e hidrodinâmicas das massas de água de transição e costeiras que poderiam ser consideradas como significativas, foi analisada e adaptada a informação constante de planos congéneres de outros países, designadamente o *Etude de délimitation et de caractérisation des masses d'eau du Bassin Loire Bretagne*, da *Agence de l'eau Loire Bretagne* e o *Esquema Provisional de Temas Importantes, Parte Española de La Demarcación Hidrográfica del Cantábrico*, da *Confederación Hidrográfica del Cantábrico*.

Foram identificadas como alterações hidromorfológicas a considerar as que se apresentam na Tabela IV.52 (alterações morfológicas) e na Tabela IV.53 (alterações hidrodinâmicas). As pressões hidromorfológicas significativas em águas costeiras estão identificadas na Tabela IV.54.

Tabela IV.52 - Alterações morfológicas consideradas nas águas costeiras

rabela 14.32			
Alterações morfológicas	Descrição e efeitos potenciais		
Deposição de materiais de dragagens	Normalmente abaixo da batimérica do -20 ZH, mas está em estudo a alteração desta localização: a menores profundidades será benéfica para minimizar a erosão costeira mas pode dar origem à suspensão de sedimentos e ao aumento da turbidez		
Dragagens	Aprofundamento de bacias portuárias ou de canais de acesso a portos e bacias portuárias: alteram a profundidade (e o volume) da massa de água e podem dar origem, temporariamente, à suspensão de sedimentos e de contaminantes		
Retenções marginais	Retenções marginais de enrocamento ou "perré" destinadas a conter um terrapleno ou a proteger da erosão, muros cais de acostagem ou paredões marginais: dão origem à artificialização das margens		
Aterros	Terraplanagem ou enchimento artificial: retira área (e volume) à massa de água		
Assoreamentos	Enchimentos resultantes da deposição de sedimentos: retira volume à massa de água e pode, nos casos mais graves, retirar área		
Erosões litorais	Recuo da linha de costa: pode dar origem a alterações consideráveis na morfologia costeira e ao rompimento de restingas com a consequente alteração de escoamentos e/ou da qualidade da água		
Infraestruturas portuárias	Infraestruturas diversas que podem ser terraplenos, cais, docas, marinas e bacias de estacionamento e manobra: alteram a morfologia, artificializando a massa de água e podendo aumentar ou diminuir a sua área e o seu volume		
Vegetação invasora	Plantas de crescimento rápido que ocupam as margens, o fundo e a superfície da massa de água: reduzem as velocidades de escoamento e dão origem a assoreamentos e alteração das margens		

Tabela IV.53 - Alterações hidrodinâmicas consideradas nas águas costeiras

Alterações hidrodinâmicas	Descrição e efeitos potenciais
Dragagens	Aprofundamento de bacias portuárias ou de canais de acesso a portos e bacias portuárias: ao modificar a morfologia do fundo e as profundidades podem alterar os escoamentos (velocidade e direção) e aumentar o prisma de maré
Aterros	Terraplanagem ou enchimento artificial: ao modificarem a morfologia da massa de água introduzem alterações nos escoamentos (velocidade e direção) e podem diminuir o prisma de maré
Açudes	Açudes, moinhos de maré e armadilhas de pesca: introduzem alterações no escoamento fluvial, podendo reduzi-lo significativamente, de forma permanente (açudes) ou temporária
Quebra-mares	Obras de proteção de áreas portuárias: introduzem alterações nas correntes litorais e por conseguinte nos fluxos sedimentares, podendo alterar os locais de deposição e acreção
Esporões	Obras de proteção costeira: introduzem alterações nas correntes litorais e por conseguinte nos fluxos sedimentares, podendo alterar os locais de deposição e acreção
Emissários submarinos	Condutas destinadas ao transporte de materiais líquidos ou gasosos, normalmente colocadas no fundo: podem interferir com o escoamento se colocadas transversalmente ao fundo, ou perpendicularmente à costa.
Vegetação invasora	Plantas de crescimento rápido que ocupam as margens e o fundo da massa de água: reduzem as velocidades de escoamento e dão origem a assoreamentos e alteração das margens

Tabela IV.54- Pressões hidromorfológicas significativas em águas costeiras

Pressão	Condição Limite para ser considerada como significativa
Deposição de materiais de dragagens	Quando esta deposição gera uma modificação das condições hidromorfológicas e biológicas que parece impedir, a priori, que a massa de água possa alcançar o bom estado ecológico
Infraestruturas portuárias	Superfície total, contemplando tanto a terrestre como a das bacias portuárias, superior a 3 ha
Dragagens	Quando a superfície dragada fora das bacias portuárias for superior a 3 ha
Assoreamentos/Aterros	Quando a superfície tem uma área tal que pode contribuir para alterar a dinâmica costeira
Erosões litorais	Áreas referidas como "Áreas críticas do ponto de vista do PGRH" no ponto "Erosão Costeira", que possam dar origem ao rompimento de restingas com alteração de escoamentos e/ou qualidade da água
Retenções marginais	Quando o comprimento total é superior a 1 000 m ou quando o comprimento total for superior a 15% do comprimento do troço de costa
Quebramares e Esporões	Quando o comprimento da estrutura for superior a 500 m ou quando os seus efeitos na hidrodinâmica produzam alterações significativas na morfologia costeira (retenção de sedimentos a barlamar, erosão costeira significativa a sotamar)
Emissários submarinos e pontes	Não incluídos. Considera-se que permitem o escoamento da água e não são suficientemente significativas para impedir que se atinja o bom estado ecológico

Fonte: Etude de délimitation et de caractérisation des masses d'eau du Bassin Loire Bretagne, da Agence de l'eau Loire Bretagne; Esquema Provisional de Temas Importantes. Parte Española de La Demarcación Hidrográfica del Cantábrico, da Confederación Hidrográfica del Cantábrico

Classificação final do estado ecológico

A pior classificação obtida é a considerada para a classificação do estado/potencial ecológica de uma massa de água. Ou seja, seguiu-se o princípio "one-out, all-out" constante do Documento Guia de Apoio à Implementação da DQA "Guidance document n.º 13 - Overall approach to the classification of ecological

status and ecological potential". De um modo geral os elementos biológicos são utilizados para classificar uma massa de água numa de 5 classes. Os critérios estabelecidos para os elementos químicos e físico-químicos apenas permitem distinguir a qualidade "Acima do bom" e "Abaixo do bom". Os elementos hidromorfológicos apenas são utilizados para distinguir as massas de água em estado "Excelente" e "Bom ou Inferior".

ANEXO V – Limiares estabelecidos pa	ara avaliação do estado subterrânea	químico das massas de água

Para a avaliação do estado químico das MA subterrâneas no 2º ciclo de planeamento, consideram-se os limiares que foram estabelecidos para 32 substâncias, das quais 11 decorrem das obrigações da DQA, resultando os restantes 21 parâmetros da avaliação de risco do 1º ciclo de planeamento (Tabela V.1).

Tabela V.1 – Valores dos limiares a nível nacional e normas de qualidade

D. A	Alómara da resista de qualidade		Norma de
Parâmetro	Número de registo	Limiar	qualidade
Azoto Amoniacal (mg/L)	CAS_7664-41-7	0,5	
Condutividade (μS/cm)	EEA_3142-01-6	2500	
pH	EEA_3152-01-0	5,5-9	
Arsénio (mg/L)	CAS_7440-38-2	0,01	
Cádmio (mg/L)	CAS_7440-43-9	0,005	
Chumbo (mg/L)	CAS_7439-92-1	0,01	
Mercúrio (mg/L)	CAS_7439-97-6	0,001	
Cloreto (mg/L)	CAS_16887-00-6	250	
Sulfato (mg/L)	CAS_151-21-3	250	
Tricloroetileno (μg/L)	CAS_79-01-6	Σ=10	
Tetracloroetileno (μg/L)	CAS_127-18-4	2-10	
Nitrato (mg/L)	CAS_14797-55-8		50
Pesticidas (substância individual) (μg/L)	EEA_34-01-5		0,1
Pesticidas (total) ^[1] (μg/L)	EEA_32-02-0		0,5
Naftaleno (µg/L)	CAS_91-20-3	2,4	
Acenafteno (μg/L)	CAS_83-32-9	0,0065	
Acenaftileno (μg/L)	CAS_208-96-8	0,013	
Antraceno (μg/L)	CAS_120-12-7	0,1	
Fenantreno (μg/L)	CAS_85-01-8	0,0065	
Fluoreno (µg/L)	CAS_86-73-7	0,0065	
Pireno (μg/L)	CAS_129-00-0	0,0065	
Fluoranteno (μg/L)	CAS_206-44-0	0,1	
Benzo[a]antraceno (μg/L)	CAS_56-55-3	0,0065	
Criseno (µg/L)	CAS_218-01-9	0,0065	
Benzo[a]pireno (μg/L)	CAS_50-32-8	0,01	
Benzo[b]fluoranteno (μg/L)	CAS_205-99-2		
Benzo[k]fluoranteno (μg/L)	CAS_207-08-9	5 0.1	
Benzo[g,h,i]perileno (μg/L)	CAS_191-24-2	∑=0,1	
Indeno[1,2,3-cd]pireno (μg/L)	CAS_193-39-5		
Dibenzo[a,h]antraceno (μg/L)	CAS_53-70-3	0,0065	
Benzeno (μg/L)	CAS_71-43-2	1,0	
Etilbenzeno (µg/L)	CAS_100-41-4	1,3	
Tolueno (μg/L)	CAS_108-88-3	1,3	
Xileno (μg/L)	CAS_1330-20-7	1,3	
MTBE (μg/L)	CAS_1634-04-4	0,65	

Entende-se por "total" a soma de todos os pesticidas individuais detetados e quantificados durante o processo de monitorização, incluindo os respetivos metabolitos e produtos de degradação e de reação.

Plano de Gestão de Região Hidrográfica 2016/2021

Na Tabela V.2 definem-se as exceções aos limiares a nível nacional a serem considerados nalgumas massas de água, uma vez que há substâncias que ocorrem naturalmente sendo a concentração de fundo superior ao limiar estabelecido a nível nacional. Nestes casos estabeleceu-se um limiar específico para essas massas de água, tendo em conta a concentração de fundo.

Tabela V.2 – Exceções para os limiares

Parâmetro	Massa de água	Limiar
Condutividade (μS/cm)	Mexilhoeira Grande - Portimão	3424
рН	Maciço Antigo Indiferenciado da Bacia do Minho	5,4
	Maciço Antigo Indiferenciado da Bacia do Cávado	5,3
	Maciço Antigo Indiferenciado da Bacia do Leça	4,7
	Maciço Antigo Indiferenciado da Bacia do Vouga	5,3
	Luso	5,0
	Torres Vedras	4,0
Chumbo (mg/L)	Maciço Antigo Indiferenciado da Bacia do Minho	0,019
	Veiga de Chaves	0,02
	Bacia de Alvalade	0,03
Arsénio (mg/L)	Maciço Antigo Indiferenciado da Bacia do Douro	0,013
	Maciço Antigo Indiferenciado da Bacia do Mondego	0,014
	Cretácico de Aveiro	0,015
	Vieira de Leiria – Marinha Grande	0,04
	Louriçal	0,02
	Viso-Queridas	0,02
Sulfato (mg/L)	Paço	542
	Peral - Moncarapacho	334
Cloreto (mg/L)	Orla Ocidental Indiferenciado das Bacias das Ribeiras do Oeste	293
	Bacia de Alvalade	589
	Zona Sul Portuguesa da Bacia do Guadiana	274
	Monte Gordo	308
	Covões	310
	Mexilhoeira Grande - Portimão	940
	Ferragudo - Albufeira	425
	Albufeira – Ribeira de Quarteira	425
	Quarteira	478
	São João da Venda - Quelfes	262
	Campina de Faro (subsistemas de Vale de Lobo e Faro)	257
	Luz-Tavira	299
	São Bartolomeu	337