

Os materiais de construção e a exposição às radiações ionizantes

130/100 ANOS DE ENGENHARIA DE MINAS Academia Politécnica do Porto (1885/1915) Escola de Engenharia do Porto (1915-....) Maria de Lurdes Dinis

Departamento de Engenharia de Minas (DEM FEUP) <u>(http://paginas.fe.up.pt/~deminas/</u>) Faculdade de Engenharia da Universidade do Porto (FEUP) <u>(www.fe.up.pt/)</u> Centro de Recursos Naturais e Ambiente (CERENA/FEUP) (<u>cerena.ist.utl.pt/</u>)

IAEA GENERAL Safety Requirements - GSR Part 3

Directive 2013/59/EURATOM

DL Nº 108/2018 de 03 dezembro 2018

Plano nacional para o radão

 Estratégia, incluindo métodos e ferramentas, para prevenir a penetração de radão nos edifícios novos, incluindo a identificação dos materiais de construção com libertação significativa de radão;

Exposição devida à radiação gama emitida por materiais de construção

O nível de referência aplicável à exposição externa a radiação gama emitida por materiais de construção no interior dos edifícios, que se vem acrescentar à exposição externa no exterior, é de 1 mSv por ano.

DL Nº 108/2018 de 03 dezembro 2018

Materiais naturais

• Xisto-aluminoso

Materiais de construção ou aditivos de origem ígnea natural

- Granitoides, tais como granito, sienito e ortognaisse;
- Pórfiros;
- Tufo;
- Pozolana, nomeadamente cinzas pozolânicas;
- Lava;

Materiais que incorporam resíduos de indústrias que processam material radioativo natural

- Cinzas volantes;
- Fosfogesso;
- Escórias com fósforo;
- Escórias de estanho;
- Escórias de cobre;
- Lama vermelha, nomeadamente resíduo da produção de alumínio;
- Resíduos da produção de aço;

Outros identificados pela autoridade competente

DL Nº 108/2018 de 03 dezembro 2018 Materiais de Construção

1 - O índice de concentração de atividade dos radionuclídeos..... deve ser determinado antes da sua colocação no mercado.

2 -realizada antes da primeira introdução no mercado e sempre que houver alteração dos fatores que influenciam os parâmetros medidos.

3 - ...resultados das medições e a avaliação do correspondente índice de concentração de atividade, são disponibilizados à autoridade competente sempre que solicitado.

4 -índice de concentração de atividade exceda o valor 1 é informada a autoridade competente, que procede à estimativa das doses...

5 -materiais de construção sejam suscetíveis de produzir doses superiores ao nível de referência, a autoridade competente determina as medidas adequadas a adotar, ... requisitos específicos nas normas de construção pertinentes ou restrições das utilizações previstas ...

Natural stone and other building materials (concrete, brick, gypsum) - natural radionuclides ²³⁸U, ²³²Th + decay products, and ⁴⁰K.

- U238 → Ra226 → Rn222
- Proportion of Rn222 from building materials and natural stone in homes is small compared to the amount from soil.

<u>NORMs</u>

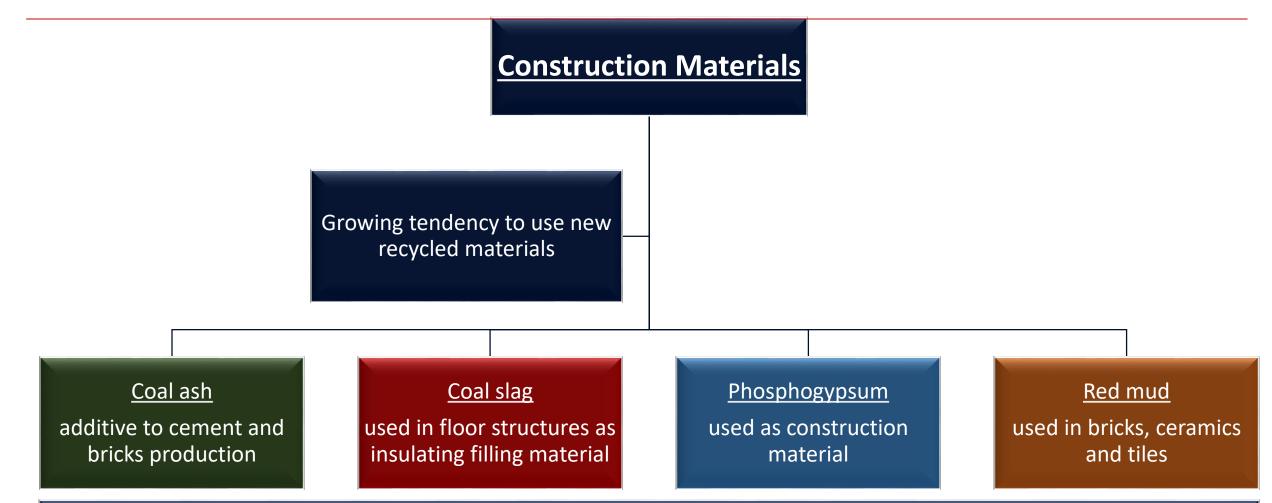
In some branches of industry, natural radionuclides can accumulate in parts of the material flux.

Compared to the natural background content of soils, NORM show an enhanced content of naturally occurring radionuclides.

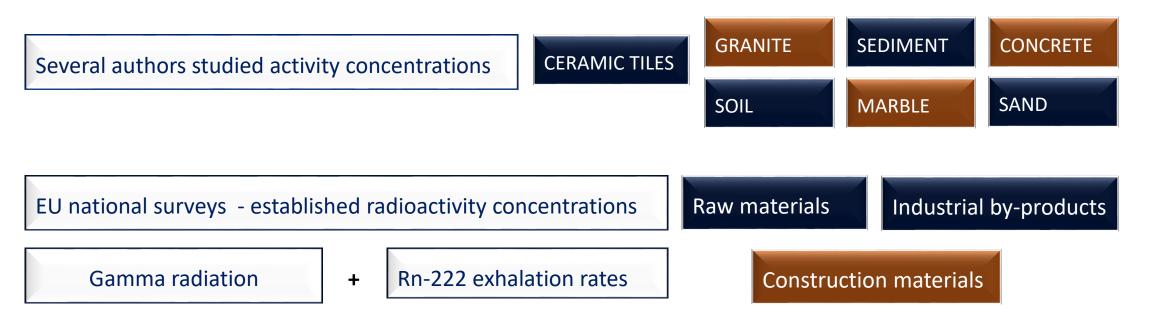
Some of them are used as secondary raw materials in the building and construction industry.

Red mud (residue from aluminium production)

Pozzolana (pozzolanic ash)


Construction/Building Materials:

- When using rocks and soils for building purposes, radionuclides contained therein or released from them may lead to a radiological exposure (U238, Th232 and K40).
- Radionuclides and radiation exposure emission of gamma radiation and, in very particular cases, inhalation of radon released.



- Range 100-400 Bq/kg for U-238 and Th-232;
- Large-scale use of by-products, with enhanced levels of radioactivity, as a raw material in building products considered to increase considerably the exposure (Real Potential Risk?)

Research and studies - attention had been drawn to measurement of activity levels of construction materials

Elevated levels of natural radionuclides (annual doses of several mSv) worldwide - Brazil, France, India, Nigeria.

Different types of building materials - concentration of over 2 - 3 orders of magnitude between the minimum and maximum values.

		²²⁶	Ra (Bq k	(g ⁻¹)	²³²]	h (Bq k	g ⁻¹)	40 F	K (Bq kg	⁻¹)
Tijolos	n. samples	mea n	max	min	mea n	max	min	mea n	max	min
EU countries										
Austria	32	38	71	20	45	112	16	635	880	520
Belgium	78	39	47	33	37	47	32	692	815	569
Bulgaria	1	42			43			600		
Cyprus	10	7	28	0.1	4	8	2	178	321	59
Czech Republic	516	69	113	46	61	86	48	498	616	312
Denmark	84	31	42	8	20	34	6	455	630	280
Estonia	6	20	27	13	19	30	13	275	440	145
Finland	42	51	80	23	41	62	21	804	986	622
France	12	69	133	24	67	106	18	59	118	21
Germany	188	84	281	8	72	(233)	6	463	(719)	115
Greece	86	52	93	35	41	52	24	685	860	551
Hungary	176	57	200	30	48	67	33	666	925	444
Ireland	14	42	139	7	31	50	8	482	1064	255
Italy	196	40	110	4	40	99	5	566	879	160
Lithuania	2	36	40	31	26	32	20	638	754	522
Luxembourg	3	68	83	53	102	147	58	805	1013	597
Netherlands	70	43	76	8	43	82	8	545	1030	150
Poland	6	16	20	11	19	33	6	514	825	204
Portugal	10	64	90	37	52	72	31	786	1098	473
Romania	76	53	139	8	47	66	12	549	1038	196
Slovakia	163	83	129	49	85	132	44	637	695	590
Slovenia	2	81	93	69	87	101	72	676	898	454
Spain	12	54	73	34	68	99	44	569	747	292
Sweden	71	75	98	10	94	127	7	734	960	162
United Kingdom	60	49	94	2	34	81	3	560	1000	12
Non EU countri									\sim	
Norway	19	83	104	63	69	74	63	1086	1136	1031
Switzerland	18	47	62	32						
Turkey	18	37	70	9	39	70	10	636	923	208
EU MS overall range	l average and		7-84)			-102)			(59-805)	
CV		41%			52%			32%		

Betão	n. samples	²²⁶ F	la (Bq k	g ⁻¹)	²³² Th (Bq kg ⁻¹)			⁴⁰ K (Bq kg ⁻¹)		
EU countries		mea n	max	min	mean	max	min	mean	max	min
Austria	1	15	21	7	14	57	3	164	382	16
Belgium	31	21	42	6	21	42	5	243	490	85
Bulgaria	1	19			17			200		
Czech Republic	1756	272	936	30	49	72	24	419	495	268
Denmark	22	72	670	10	30	53	10	685 (1190	280
Estonia	1	35			11			207	\smile	
Finland	35	55	75	33	42	59	34	599	838	359
France	16	14	26	8	12	24	4	17	20	14
Germany	96	53	100	18	50	100	12	642	1100	193
Greece	71	35	140	7	5	17	3	79	383	23
Hungary	95	15	22	7	13	24	7	234	407	148
Ireland	8	29	68	18	12	43	3	217 (1100	16
Italy	33	17	23	7	24	38	16	306	457	200
Lithuania	2	35	37	32	21	25	17	453	480	426
Luxembourg	5	87	163	4	66	99	6	323	707	110
Netherlands	66	66 (710	10	32	132	6	239	870	111
Poland	678	115	200	65	72	127	36	666	1005	492
Portugal	11	53	98	8	47	86	7	404	529	278
Romania	135	78	118	17	138	556	16	459	918	163
Slovakia	150	32	107	10	21	41	5	345	664	214
Slovenia	2	21	22	20	11	11	10	124	143	105
Spain	33	30	38	21	24	32	18	244	283	204
Sweden	188	200	1300	3	51	100	3	432	770	20
United Kingdom	22	60	89	18	32	43	13	492	650	370
Non EU countries									\frown	
Norway	151	38	52	26	44	56	36	710 (811)	638
Switzerland	9	60	149	12					\smile	
Turkey	11	16	17	16	17	25	9	339	527	151
EU MS overall av range	verage and	59 (14-272)		34 (5	-138)		340 (17-685)	
cv		103%	6		85%			55%		

Cimento	n. samples	²²⁶ F	Ra (Bq k	:g ⁻¹)	²³² T	h (Bq k	g ⁻¹)	⁴⁰ K	. (Bq kg	g ⁻¹)
EU countries		mea n	max	min	mean	max	min	mean	max	min
Austria	18	27	49	11	14	26	10	210	286	89
Belgium	26	52	64	37	46	76	22	255	470	110
Bulgaria	1	29			19			160		
Cyprus	8	25	37	4	10	12	5	152	209	4
Czech Republic	506	39	46	31	20	20	19	215	237	193
Denmark	8	38	65	20	29	52	12	157	240	90
Estonia	1	47			21			587		
Finland	11	40	84	15	20	55	9	251	336	169
France	2	72	111	32	65	109	21	38	52	24
Germany	36	65	200	20	56	200	15	235	700	40
Greece	191	87	218	15	19	41	10	226	457	32
Hungary	525	25	61	8	22	53	11	207	402	95
Ireland	3	60	107	27	11	15	3	131	252	66
Italy	198	46	98	10	70	240	10	387	846	125
Latvia	1	28	51	5	48	93	3	175	320	29
Lithuania	1	70	465) 4	30	211	3	268	1510	2
Netherlands	16	56	82	27	61	120	19	260	290	230
Poland	429	65	154	19	53	138	14	312	608	190
Portugal	8	31	40	22	19	23	15	256	276	235
Romania	57	69	178	4	48	206	12	225	421	50
Slovakia	383	43	61	23	28	67	15	281	613) 190
Spain	180	66	422	7	49	266) 2	270	599	12
Sweden	30	53	56	44	54	72	41	224	235	196
United Kingdom	8	65	109	22	23	28	18	160	160	160
Non EU countries										
Norway	8	61	96	30	39	59	19	410	815	259
Switzerland	10	20	29	11						
Turkey	49	31	40	22	19	26	14	197	317	99
EU MS overall av range	verage and		25-87)			0-70)			38-587)	
CV		36%			54%			43%		

Fonte: Trevisi et al., 2012

					Absorb	ed dose r	ate in air	indoors (nGy l	h ⁻¹)	
	f + c = concrete floor + ceiling		4 concrete walls $+$ (f $+$ c)		4 brick walls $+ (f+c)$		3 concrete walls + (ph.w.) + (f+ c)		3 brick walls $+$ (ph.w.) $+$ (f+ c)	
	ph.w. = phosphogypsum wall	Country	min	max	min	max	min	max	min	max
		Austria	11	113	35	157				
		Belgium	17	123	51	124	54	146	77	147
Min. and max. of abosrved dose	rate in indoor air	Bulgaria	52	115			47	137		
		Cyprus ^a	4	15	6	33				
		Czech Rep.								
γ dose rate in 4 standard rooms, for	a reasonable use of	Denmark	46	750	38	438				
•		Finland	96	166	85	169	84	231	77	234
brick, concrete, cement and pl	nosphogypsum.	France	16	242	39	176				
		Germany	84	287	59	245	79	298	62	268
		Greece	24	125	38	145	70	167	80	182
		Hungary	40	87	58	146				
433 nGy/h = 433 x 10 ⁻⁶ x 0.7 Sv/G	$x \times 7000 h/yoar -$	Ireland	21	160	24	184				
455 IIGy/II - 455 X 10 * X 0.7 5V/G	iy x 7000 ii/yeai –	Italy	43	83	29	157				
mSv/year		Lithuania	107	204	10.1	101				
		Luxembourg	186	204	184	191	24	224	24	077
		Netherlands	26 137	319 400	27	257 254	26 124	321	26	277
Dose to gamma radiation = 2	.12 mSv/year	Poland	3	400	84		124	381	86	279
		Portugal	-		41	320	54	220	40	210
		Romania Slovakia	45 37	303 137	36 52	275 147	54	338	48	318
		Slovenia	37	353	52 88	286				
		Spain	51	555	00	200				
		Sweden	94	1338	60	780				
		UK	59 59	1338	33	187	110	287	92	293
		Arithmetical average	51	282	53	234	72	256	92 69	293
		Anumeucai average	51	202	55	234	12	250	09	250

^a As data for Cyprus were lacking in the literature, 30% of cement activity concentrations were used as values for concrete.

Specific activities of natural radionuclides in natural stones, building materials and residues (Bq/kg)

Material	Radium-226 in Bq/kg Mean value (range)	Thorium-232 in Bq/kg Mean value (range)	Potassium-40 in Bq/kg Mean value (range)
Granite	100 (30 - 500)	120 (17 - 311)	1000 (600 - 4000)
Gneiss	75 (50 - 157)	43 (22 - 50)	900 (830 - 1500)
Diabase	16 (10 - 25)	8 (4 - 12)	170 (100 - 210)
Basalt	26 (6 - 36)	29 (9 - 37)	270 (190 - 380)
Gravel, sand, gravel sand	15 (1 - 39)	16 (1 - 64)	380 (3 - 1200)
Natural gypsum, anhydrite	10 (2 - 70) < 5	(2 - 100)	60 (7 - 200)
Tuff, pumice stone	100 (< 20 - 200)	100 (30 - 300)	1000 (500 - 2000)
Clay	< 40 (< 20 - 90)	60 (18 - 200)	1000 (300 - 2000)
Brick, clinker brick	50 (10 - 200)	52 (12 - 200)	700 (100 - 2000)
Concrete	30 (7 - 92)	23 (4 - 71)	450 (50 - 1300)
Sand-lime brick, porous concrete	15 (6 - 80)	10 (1 - 60)	200 (40 - 800)
Slag from Mansfelder copper-slate	1500 (860 - 2100)	48 (18 - 78)	520 (300 - 730)
Gypsum from flue gas desulfurisation	20 (< 20 - 70)	< 20	< 20
Brown coal filter ash	82 (4 - 200)	51 (6 - 150)	147 (12 - 610)

- Radon release from building products determined by the specific activity of radium-226 and other material characteristics determining the radon transport (such as porosity).
- Results have shown that the traditional use of building materials such as:
 - Concrete,
 - Brick,
 - Porous concrete and,
 - Sand-lime brick.
- Generally not the cause for the annual mean value of the indoor radon concentration!

Higher radon concentrations in some building materials:

- Release rates that may result in higher indoor concentrations were occasionally measured in residues from the incineration of coals with enhanced U/Ra concentrations (formerly used locally to fill ceilings, referred as "coal slag").
- Occurrences of above-average radon concentrations in the traditional mining regions, where residues from ore processing with enhanced radium concentration were used as building material: concrete or mortar additive or as foundation in house building.

How is the radionuclide content assessed?

- New Radiation Protection Law requires for certain construction materials that the manufacturer or importer measure the concentrations of the natural radionuclides and must prove that the legal reference value for the exposure of the users of buildings is not exceeded by the building material.
- European Standards Institute CEN developing standards measurement and evaluation of building materials within the framework of the Construction Products Regulation.
- Ultimately, the CE mark on a building material will also prove that the European radiation protection requirements have been met.

- Reference level for exposure to radionuclides in construction materials is not to exceed 1 mSv/year.
- The radionuclides are not specified in this requirement could be **NORM** or any other **artificial radionuclide**.
- Activity Index (AI) = 1, ensures compliance with 1 mSv/year.

$$AI = \frac{C_{K40}(Bq/kg)}{3000} + \frac{C_{Ra226}(Bq/kg)}{300} + \frac{C_{Th232}(Bq/kg)}{200}$$

$$AI = \frac{313 \times C_{K40}(\%)}{3000} + \frac{12.5 \times C_{Ra226}(ppm)}{300} + \frac{4.06 \times C_{Th232}(ppm)}{200}$$

The European [EU28+EFTA, 2016] aggregates demand is 2.7 billion tonnes per year - annual turnover of ~€15-€20 billion.

What is needed:

- < 1 mSv/year gamma dose</p>
- Testing NORM beginning cycle of the material
- Accredited test methods
- Certified factory control system production and in situ tests
- Laboratory capacity
- High test capacity + quick and reliable results + low investment + low price per test

Methodology:

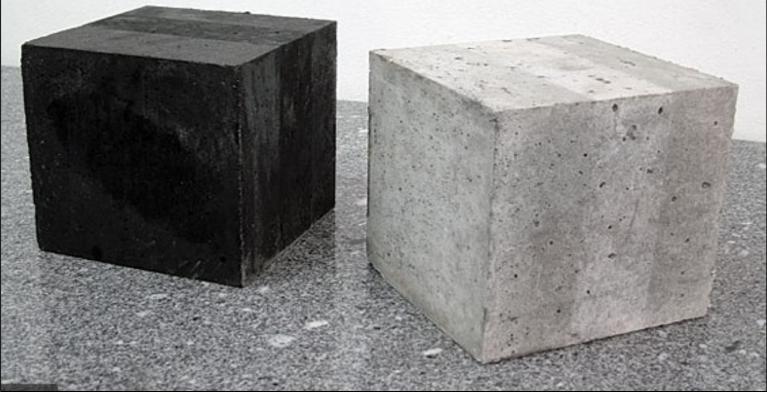
- In situ testing rock pit (considering eventually different types of rocks).
- Production control factories.
- Dose rate testing inside constructed buildings.
- Exact part the construction in the room/building is the main source of high dose rate (floor, wall and/or roof construction).

Method MMK A2 610

Determination of Activity Index, Radium Index and Gamma Radiation from stone-based construction material Swedish accredited method developed by MMK to test the aggregate product in quarry.

Method MMK A2 610 - Testing of building material raw rock/ballast/aggregate

- Accredited method MMK A2 610 in accordance with the Construction Product Regulation (EU) No. 305/2011.
- Method's accreditation applies internationally throughout the EU.
- Determination of Activity Index, Radium Index and Gamma Radiation.
- Carried out in situ in the quarry with a non destructive method directly in the bore hole.



Method MMK 605

Determination of Activity Index, Radium Index and Gamma Radiation from stone-based construction material

Swedish accredited method developed by MMK to test the construction material concrete.

Source: https://markochmiljokontroll.se/en/home/

Method MMK 605 – may be used at factory control

<u>Scope</u>

- Method is intended for laboratory and field laboratory for measurement of K40, Ra226 and Th232.
- Results from the measurement of these radionuclides is used for the determination of activity index (AI), radium index (RI) and gamma radiation (μSv/h) for the construction material.

Activity index (AI) and radium index (RI)

- Activity index (AI) is a tool for determining the suitability for a material regarding the effective dose.
- Radium index (RI) is a tool for determining the quality of radon production from the material.
- Gamma radiation refers to dose-rate expressed in µSv/h (microsievert per hour) from the material.

Principle for the method (suitable for daily factory control purposes)

- Activity concentration of gamma-emitting radionuclides in construction material determined by gamma spectrometry.
- Sample of 150 mm x 150 mm x 150 mm ± 5 mm.
- The building material in loose state consist of a volume of \geq 10 litres.
- Minimum of two samples from the same production batch.

- Measurements carried out at least twice on each sample.
- Minimum measurement time = 300 seconds.

Principle for the method

- Determination of activity concentration in a sample reflects the building material under the intended form of use
- Instantaneous and can be performed at all times during the year
- Natural nuclides: % for K40, ppm for Ra226 and ppm for Th232

- Média concentração da actividade das medições em cada amostra
- Média concentração da actividade das amostras do mesmo lote
- Cálculo do IA, IR e radiação gama do material de construção

Method MMK 605 - AI, RI, gamma radiation in construction materials

Activity Index (AI)			$AI = \frac{C_{K} \times 313}{3000} + \frac{C_{Ra} \times 12,35}{300} + \frac{C_{Th} \times 4,06}{200}$
Element	Content	Activity concentration, Bq/kg	3000 300 200
K - Potassium	1%	313	where:
U-Uranium 238/235	1 ppm	12,35	C_{K} = content of potassium, %.
Th-Thorium	1 ppm	4,06	C _{Ra} = content of radium (U238/235), ppm. C _{Th} = content of thorium, ppm.
Radium Index (RI)			$RI = (C_{Ra} \times 12,35)/200$
Element	Content	Activity concentration, Bq/kg	where:
U-Uranium 238/235	1 ppm	12,35	C _{Ra} = content of radium (U238/235), ppm.
Radiação Gama (µSv/h)			$\mu Sv/h = (C_K x 0.0151) + (C_{Ra} x 0.0065) + (C_{Th} x 0.0029)$
Element	Content	Dose rate, μSv/h	
K - Potassium	1%	0,0151	where: C _κ = content of potassium, %.
U-Uranium 238/235	1 ppm	0,0065	C _{Ra} = content of radium (U238/235), ppm.
Th-Thorium	1 ppm	0,0029	C _{Th} = content of thorium, ppm

Method MMK 608

Determination of effective dose gamma radiation from stone-based construction material

Measurement of gamma exposure indoors inside buildings

(submitted for accreditation in 2020)

Method MMK 608 - measurement of gamma exposure indoors inside buildings

Scope

In-situ method for determination of gamma exposure indoors inside buildings.

• Caused by NORM nuclides K40, Ra226 (U238 235) and Th232.

Principle for the method

- Dose-rate is measured in the air in a room.
- Calculate effective dose.
- Instantaneous and can be performed at all times during the year.

Principle for measurement

- Air in the middle of a room with an instrument reporting dose-rate.
- Measurement is performed on c/c dimensions of the area (walls/floor/ceiling = 1 measurement points) in a room.

Measurement place

- Rooms where inhabitants stay more than temporarily ex. living rooms, bedrooms, and eating/cooking areas.
- Rooms/facilities where staff stays more than temporarily ex., facilities/rooms where daily operations are carried out, as well as other staff-spaces and dining rooms.

Measurement time

- Minimum = 300 seconds per measurement point.
- Measurement at least twice on each point.

Calculation of effective dose

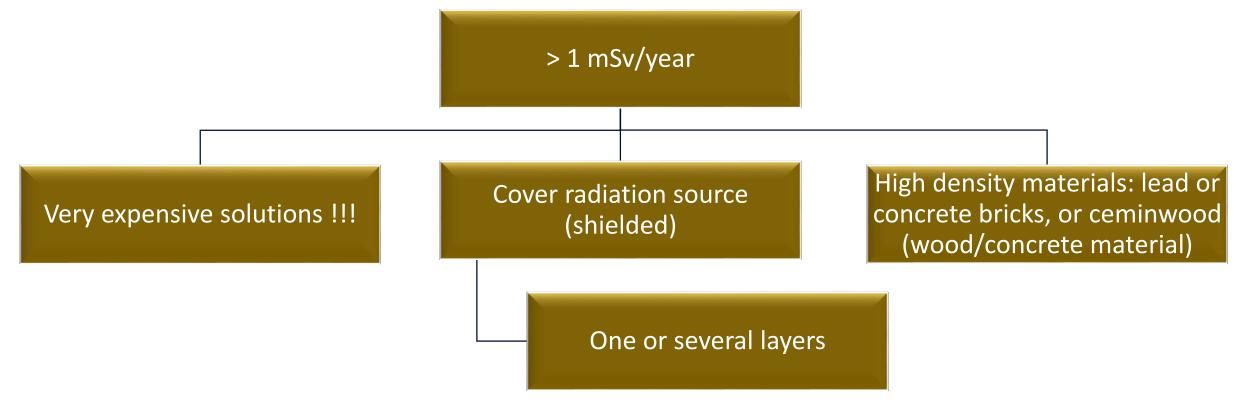
• Mean value for all measurement points in a room.

Step 1

- Measurement of individual measurement point = mean value for the individual point.
- Mean value for all measurement points in a room.

Step 2

• The effective dose is calculated.


Eeff = Dose-rate x Exposure time

- Exposure time residence/housing = 7000 h/y
- Exposure time workplaces = 2000 h/y

If the result is >1 mSv/year in the room - a much more advanced and time consuming method has to be used. It is
necessary to determine exactly which construction material is the problem: wall, floor and/or roof construction.

Method MMK A2 606

In-situ method for determination of Activity Index (AI) of construction materials indoors of existing Buildings

Swedish accredited method to test the construction products used in a completed construction

Method MMK 606 - Activity Index (AI) of construction materials indoors of existing Buildings

Scope

Measuring construction materials - K40, Ra226 and Th232.

determination of activity index (AI) for the construction material.

Activity concentration of gamma emitting radionuclides in construction materials - gamma spectrometry:

- Measured in a room directly on a surface of the building material.
- Measurement instantaneous and can be performed at all times during the year.
- Activity index is calculated.

Method MMK 606 - Activity Index (AI) of construction materials indoors of existing Buildings

Measurement instrument

Measurement time

Gamma spectrometer.

• Minimum = 300 sec/measurement point, at least twice on each point.

Principle for the measurement

- Directly on the surface of the construction material.
- Measurement performed on c/c dimensions of the area (walls/floor/ceiling = 6 measurement points) in a room.

Measurement place

- Rooms where inhabitants stay more than temporarily (living rooms, bedrooms, eating/cooking areas).
- Rooms/facilities where staff stays more than temporarily (facilities/rooms where daily operations are carried out, other staff-spaces and dining rooms).

Method MMK 606 - Activity Index (AI) of construction materials indoors of existing Buildings

Step 1

Measurement of individual measurement points = Mean activity concentration value of individual measurement point.

Step 2

Measuring mean value measuring point no $(1 + 2 + 3 + 4 + 5 + 6) \div 6$ = measured average value.

Step 3

The activity index is calculated:

$AI = \frac{C_{K} \times 313}{3000} + $	- C _{Ra} x 12,35 300 +	$\frac{C_{Th} \times 4,06}{200}$					
where:							
C_{K} = content of po	tassium, %.						
C _{Ra} = content of radium (U238/235), ppm.							
C_{Th} = content of th	norium, ppm.						

$$AI = \frac{C_{K}}{3000} + \frac{C_{Ra}}{300} + \frac{C_{Th}}{200}$$

where:

 C_{K} = content of potassium, Bq/kg. C_{Ra} = content of radium (U238/235), Bq/kg. C_{Th} = content of thorium, Bq/kg.

Accredited methods:

- Measurement of NORM radionuclides (K-40, Ra-226 (U238/235) and Th-232)
- Estimation of activity index, radium index and gamma dose rate

Objective to fulfil a number of requirements set out in international directives, regulations, standards and DL 108/2018:

- IAEA Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, No. GSR Part 3.
- EU Directive 2013/59/EURATOM.
- Regulation (EU) No 305/2011 on harmonised conditions for the marketing of construction products.
- Regulation (EC) No 765/2008 setting out requirements for accreditation and market surveillance relating to marketing of products.
- Radiological Protection Principles concerning the Natural Radioactivity of Building Materials, EC RP 112 (1999).

Obrigada!

