

# Critérios para a Classificação das Massas de Água



# ÍNDICE

| ΑP | RESENTAÇÃO                                                   | 1   |
|----|--------------------------------------------------------------|-----|
| ВА | SES DA DEFINIÇÃO E ATUALIZAÇÃO DOS CRITÉRIOS DE CLASSIFICAÇÃ | ÃO2 |
| 1. | ENQUADRAMENTO                                                | 3   |
| 1  | 1.1 Projetos técnico-científicos                             | 3   |
| 1  | 1.2 Exercício de intercalibração                             | 5   |
| ÁG | UAS SUPERFICIAIS                                             | 7   |
| 2. | CLASSIFICAÇÃO DAS MASSAS DE ÁGUA DE SUPERFÍCIE               | 8   |
| 2  | 2.1 CONCEITO DE ESTADO E POTENCIAL ECOLÓGICO                 | 8   |
|    | 2.1.1 Elementos de qualidade biológicos                      |     |
|    | 2.1.2 Elementos físico-químicos de suporte aos biológicos    |     |
|    | 2.1.2.1 Elementos físico-químicos gerais                     |     |
|    | 2.1.2.2 Poluentes específicos                                |     |
|    | 2.1.3 Elementos hidromorfológicos de suporte aos biológicos  |     |
|    | 2.2 CONCEITO DE ESTADO QUÍMICO                               |     |
| 2  | 2.3 ESTADO DA MASSA DE ÁGUA                                  | 16  |
| 3. | SISTEMAS DE CLASSIFICAÇÃO DO ESTADO ECOLÓGICO – ÁGUAS        |     |
| IN | TERIORES                                                     | 20  |
| -  | 3.1 Rios                                                     | 20  |
|    | 3.1.1 Elementos de qualidade biológicos                      |     |
|    | 3.1.1.1 Fitobentos - diatomáceas                             | 20  |
|    | 3.1.1.2 Macrófitos                                           |     |
|    | 3.1.1.3 Macroinvertebrados bentónicos                        |     |
|    | 3.1.1.4 Fauna piscícola                                      |     |
|    | 3.1.2 Elementos físico-químicos de suporte aos biológicos    |     |
|    | 3.1.3 Elementos hidromorfológicos de suporte aos biológicos  |     |
| 3  | 3.2 Grandes rios                                             | 32  |
|    | 3.2.1 Elementos de qualidade biológicos                      | 33  |
|    | 3.2.1.1 Fitoplâncton                                         | 33  |
|    | 3.2.1.2 Fitobentos – diatomáceas                             |     |
|    | 3.2.1.3 Macroinvertebrados bentónicos                        | 38  |
|    | 3.2.1.4 Fauna piscícola                                      |     |
|    | 3.2.2 Elementos físico-químicos de suporte aos biológicos    |     |
|    | 3.2.3 Elementos hidromorfológicos de suporte aos biológicos  | 40  |
| 4. | SISTEMAS DE CLASSIFICAÇÃO DO POTENCIAL ECOLÓGICO - ÁGUAS     |     |
| IN | TERIORES                                                     | 41  |
| _  | 4.1 RIOS E GRANDES RIOS                                      | 42  |
|    | 4.2 ALBUFEIRAS                                               |     |
|    | 4.2.1 Elementos de qualidade biológicos                      |     |

| 4.2.3                                                                                                              | 1.1 Fitoplâncton<br>L'Elementos físico-químicos de suporte aos biológicos<br>L'Elementos hidromorfológicos de suporte aos biológicos | 4                                          |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 5. SIST                                                                                                            | SAS DE ÁGUA ARTIFICIAIS                                                                                                              |                                            |
| -                                                                                                                  | ÃO E COSTEIRAS                                                                                                                       |                                            |
|                                                                                                                    | MENTOS DE QUALIDADE BIOLÓGICOS                                                                                                       |                                            |
|                                                                                                                    | Fitoplâncton                                                                                                                         |                                            |
|                                                                                                                    | P. Macroalgas oportunistas<br>B. Macroalgas de substrato rochoso                                                                     |                                            |
|                                                                                                                    | ! Ervas marinhas                                                                                                                     |                                            |
|                                                                                                                    | 5 Sapais                                                                                                                             |                                            |
|                                                                                                                    | Macroinvertebrados bentónicos                                                                                                        |                                            |
|                                                                                                                    | 7 Fauna piscícola                                                                                                                    |                                            |
|                                                                                                                    | ELEMENTOS FÍSICO-QUÍMICOS DE SUPORTE AOS BIOLÓGICOS                                                                                  |                                            |
|                                                                                                                    | ELEMENTOS HIDROMORFOLÓGICOS DE SUPORTE AOS BIOLÓGICOS                                                                                |                                            |
|                                                                                                                    |                                                                                                                                      |                                            |
|                                                                                                                    | EMAS DE CLASSIFICAÇÃO DO POTENCIAL ECOLÓGICO – ÁGUAS D<br>ZÃO E COSTEIRAS                                                            |                                            |
| -                                                                                                                  |                                                                                                                                      | <i>9</i> .                                 |
| 7. CRIT<br>ESPECÍFI                                                                                                | ÉRIOS DE CLASSIFICAÇÃO DO ESTADO QUÍMICO E POLUENTES                                                                                 | 9                                          |
| 7.1                                                                                                                | Matriz água                                                                                                                          | 10                                         |
| 7.2                                                                                                                | Matriz biota                                                                                                                         | 10                                         |
| 7.3                                                                                                                | MATRIZ SEDIMENTOS                                                                                                                    | 10                                         |
| ÁGUAS S                                                                                                            | UBTERRÂNEAS                                                                                                                          | 10                                         |
|                                                                                                                    | SSIFICAÇÃO DAS MASSAS DE ÁGUA SUBTERRÂNEAS                                                                                           |                                            |
|                                                                                                                    |                                                                                                                                      |                                            |
|                                                                                                                    | SSIFICAÇÃO DO ESTADO QUANTITATIVO                                                                                                    |                                            |
|                                                                                                                    | Avaliação da recarga das massas de água                                                                                              |                                            |
|                                                                                                                    | ? Avaliação das extrações nas massas de água subterrâneas                                                                            |                                            |
|                                                                                                                    | B Avaliação do estado quantitativo                                                                                                   | 11                                         |
|                                                                                                                    |                                                                                                                                      |                                            |
|                                                                                                                    | 3.1 Teste do balanço hídrico                                                                                                         | 11                                         |
| 8.1.3                                                                                                              | 3.2 Teste de escoamento superficial                                                                                                  | 11<br>11                                   |
| 8.1.3<br>8.1.3                                                                                                     | 3.2 Teste de escoamento superficial                                                                                                  | 11<br>11<br>11                             |
| 8.1.3<br>8.1.3<br>8.1.3                                                                                            | 3.2 Teste de escoamento superficial                                                                                                  | 11<br>11<br>11<br>das                      |
| 8.1.3<br>8.1.3<br>8.1.3<br>água                                                                                    | 3.2 Teste de escoamento superficial                                                                                                  | 11<br>11<br>11<br>das<br>11                |
| 8.1.3<br>8.1.3<br>8.1.3<br>água<br>8.1.4                                                                           | 3.2 Teste de escoamento superficial                                                                                                  | 11<br>11<br>11<br>das<br>11                |
| 8.1.3<br>8.1.3<br>8.1.3<br>água<br>8.1.4<br>8.2 CLA                                                                | 8.2 Teste de escoamento superficial                                                                                                  | 11<br>11<br>11<br>das<br>11<br>11          |
| 8.1.3<br>8.1.3<br>8.1.3<br>água.<br>8.1.4<br>8.2 CLA:<br>8.2.1                                                     | 8.2 Teste de escoamento superficial                                                                                                  | 11<br>11<br>das<br>11<br>11<br>11          |
| 8.1.3<br>8.1.3<br>8.1.3<br>água<br>8.1.4<br>8.2 CLA<br>8.2.1<br>8.2.1                                              | 8.2 Teste de escoamento superficial                                                                                                  | 11<br>11<br>das<br>11<br>11<br>11          |
| 8.1.3<br>8.1.3<br>8.1.3<br>água<br>8.1.4<br>8.2 CLA<br>8.2.1<br>8.2.1                                              | 8.2 Teste de escoamento superficial                                                                                                  | 11 11 11 das 11 11 11 11                   |
| 8.1.3<br>8.1.3<br>8.1.3<br>água<br>8.1.4<br>8.2 CLA<br>8.2.1<br>8.2.1<br>água                                      | 8.2 Teste de escoamento superficial                                                                                                  | 11 11 das 11 11 11 11                      |
| 8.1.3<br>8.1.3<br>8.1.3<br>água.<br>8.1.4<br>8.2 CLA:<br>8.2.1<br>8.2.1<br>água<br>8.2.1                           | 8.2 Teste de escoamento superficial                                                                                                  | 11 11 das 11 11 11 11 11                   |
| 8.1.3<br>8.1.3<br>8.1.4<br>8.2 CLA<br>8.2.1<br>8.2.1<br>8.2.1<br>água<br>8.2.1<br>subte                            | 8.2 Teste de escoamento superficial                                                                                                  | 11 11 das 11 11 11 11 12                   |
| 8.1.3<br>8.1.3<br>8.1.4<br>8.2 CLA<br>8.2.1<br>8.2.1<br>8.2.1<br>água<br>8.2.1<br>subte<br>8.2.1                   | 8.2 Teste de escoamento superficial                                                                                                  | 11 11 das 11 11 11 11 12 12 12             |
| 8.1.3<br>8.1.3<br>8.1.4<br>8.2 CLA<br>8.2.1<br>8.2.1<br>8.2.1<br>água<br>8.2.1<br>subte<br>8.2.1                   | 8.2 Teste de escoamento superficial                                                                                                  | 11 11 das 11 11 11 11 11 11 12 12 12       |
| 8.1.3<br>8.1.3<br>8.1.4<br>8.2 CLA<br>8.2.1<br>8.2.1<br>8.2.1<br>água<br>8.2.1<br>subte<br>8.2.1<br>8.2.1          | 8.2 Teste de escoamento superficial 8.3 Teste da intrusão salina ou outra                                                            | 11 11 das 11 11 11 11 11 12 12 12 12 12    |
| 8.1.3<br>8.1.3<br>8.1.4<br>8.2 CLA<br>8.2.1<br>8.2.1<br>8.2.1<br>água<br>8.2.1<br>subte<br>8.2.1<br>8.2.1<br>8.2.2 | 8.2 Teste de escoamento superficial                                                                                                  | 11 11 das 11 11 11 11 11 12 12 12 12 12 12 |

| ANEXOS     |          |           |           | AGUA SUDE        | RFICIAIS                   | 0 0 0      |   | <b>131</b> |  |
|------------|----------|-----------|-----------|------------------|----------------------------|------------|---|------------|--|
| ANEXO II - | ANEXOS F | REFERENTI | ES ÀS MAC | ROALGAS          | DE SUBSTRATO               | O ROCHOSO. |   | 137        |  |
| ANEXO IV   | -ANEXOS  | REFERENT  | ES À FAUN | A PISCÍCO        | LA                         |            |   | 142        |  |
|            |          |           |           |                  | ESTADO QUÍN<br>DE ÁGUA SUE |            |   |            |  |
|            |          |           |           |                  | 2                          |            |   |            |  |
|            |          |           | 5         | \<br>\<br>\<br>\ | 250                        |            |   | P          |  |
|            |          |           |           |                  |                            | 4          |   |            |  |
|            | 0        | 0         | 0         | 0                | 0                          |            |   |            |  |
|            | 0        | 0         | 0         | 0                | 0                          |            | 0 |            |  |
|            |          | 0         | 0         | 0                | 0                          |            | 0 |            |  |
|            |          |           |           |                  |                            |            |   |            |  |
| 1          | 0        | 0         | 0         | 0                | 0                          |            |   |            |  |

# **APRESENTAÇÃO**

A Diretiva-Quadro da Água (DQA), Diretiva 2000/60/CE do Parlamento Europeu e do Conselho, de 23 de outubro de 2000, teve por base o reconhecimento da necessidade de estabelecer uma abordagem comunitária centrada na proteção integrada dos recursos hídricos, bem como dos ecossistemas que deles dependem e de assegurar a sustentabilidade dos usos da água e o controlo da poluição. Esta Diretiva configura-se como o principal instrumento da política da União Europeia relativo à água, estabelecendo a obrigatoriedade, transversal aos Estados Membros, de planear as respetivas políticas com vista a assegurar a proteção, melhoria e recuperação das massas de água superficiais e subterrâneas, com o objetivo de assegurar que estas alcançam o Bom estado e de evitar a sua degradação.

A aferição do Estado, alicerce da avaliação do cumprimento dos objetivos ambientais da DQA, é realizada através de um processo de classificação das massas de água, no qual são indexadas, caso a caso, as classes de qualidade aplicáveis de acordo com as definições normativas enunciadas no Anexo V da Diretiva. Assim, o processo de classificação do Estado das massas de água é uma etapa fundamental para as políticas de gestão dos recursos hídricos, uma vez que permite realizar avaliações periódicas do panorama nacional e avaliar a evolução da qualidade das mesmas. A classificação possibilita a identificação de massas de água que se encontram em estado inferior a Bom e em risco de não atingir os objetivos ambientais definidos na DQA, permitindo assim direcionar as medidas de proteção e melhoria das águas, em conjugação com a análise de pressões, no âmbito dos Planos de Gestão de Região Hidrográfica (PGRH). Permite ainda analisar a eficácia das medidas adotadas ao longo dos ciclos de planeamento.

Neste contexto, a gestão integrada das massas de água requer a existência de sistemas de classificação abrangentes e coerentes, cujos critérios, paralelamente à implementação de programas de monitorização de elevada exigência, desempenham um papel chave no processo de implementação da Diretiva.

No presente documento é apresentada a sistematização dos critérios de classificação que foram aplicados para avaliação do estado das massas de água no período 2014-2019 e que vigoram durante o 3.º ciclo de planeamento dos PGRH. São aqui descritos os cálculos e processos associados à avaliação do Estado das massas de águas de superfície (categorias rios, albufeiras, transição e costeiras) e das águas subterrâneas, em Portugal continental.

O documento divide-se em duas partes principais, uma relativa aos critérios de classificação das massas de água superficiais e outra relativa aos critérios de classificação das massas de água subterrâneas, antecedidas de um capítulo relativo às bases utilizadas na revisão e definição destes critérios de classificação.



# Definição dos critérios de classificação

## 1. Enquadramento

Os critérios de classificação das massas de água foram desenvolvidos tendo em conta orientações estabelecidas no âmbito da Estratégia Comum de Implementação da Diretiva Quadro da Água (Common Implementation Strategy — CIS), nomeadamente pelos vários Documentos-Guia publicados, bem como as orientações emanadas pela Comissão Europeia decorrentes dos processos de avaliação dos PGRH precedentes. Assim, neste documento são revistos e atualizados os critérios anteriormente publicados, à luz do melhor conhecimento atual.

Por forma a dar cumprimento a estas orientação, a APA, I.P., implementou um conjunto de projetos técnico-científicos e participou nos exercícios de intercalibração promovidos pela Comissão Europeia, conforme se descreve de seguida.

# 1.1 Projetos técnico-científicos

A APA, I.P. (APA), na prossecução das suas funções de Autoridade Nacional da Água, tem a responsabilidade de propor, desenvolver e acompanhar a execução da política nacional dos recursos hídricos, de forma a assegurar a sua gestão sustentável, e detém a competência para, nas regiões hidrográficas de Portugal Continental, avaliar o estado das massas de água. Para que este desígnio possa ser prosseguido adequadamente, é necessário implementar programas de monitorização e aplicar sistemas de classificação robustos, nos termos da Diretiva Quadro da Água e da Lei da Água.

Neste contexto, para elaboração dos PGRH de 3ª geração considerou-se fundamental, não obstante o esforço e as condicionantes existentes em termos de recursos humanos e financeiros, o desenvolvimento de diversos estudos, no sentido de colmatar as lacunas existentes nos PGRH precedentes.

Assim, dando cumprimento aos princípios expostos, foi financiado pelo financiado pelo POSEUR (POSEUR-03-2013-FC-000001) um conjunto de estudos englobados no Projeto "Melhorar e complementar os critérios de classificação das massas de água", que decorreram entre 2015 e 2020 e envolveram diversas componentes que se sintetizam no Quadro 1.1, tendo o custo associado aos mesmos rondado os três milhões de euros.

Quadro 1.1 – Projetos técnico-cientificos para melhorar e complementar os critérios de classificação das massas de água

| N.º | Designação                                                                                                                                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Monitorização de rios e albufeiras, visando a recolha de informação que permita melhorar a base estatística de suporte aos critérios de classificação |
| 6   | Melhorar e complementar os critérios de classificação do estado das massas de água de transição e costeira                                            |
| 7   | Melhorar e complementar os critérios de classificação do estado /potencial ecológico das massas de água superficiais interiores                       |

No que se refere às águas interiores, os sistemas de classificação do estado/potencial ecológico das massas de água sofreram uma evolução relevante durante o 2.º ciclo de planeamento, impulsionada sobretudo por duas das componentes acima referidas. A componente "Monitorização de rios e albufeiras, visando a recolha de informação que permita melhorar a base estatística de suporte aos critérios de classificação" permitiu a recolha de dados em diversas estações relativamente a elementos de qualidade biológicos, hidromorfológicos e físico-químicos. Estes dados, conjuntamente com outros, foram depois integrados nas análises realizadas no contexto da operacionalização da componente "Melhorar e complementar os critérios de classificação do estado /potencial ecológico das massas de água superficiais interiores". Para esta componente foram definidos os seguintes objetivos gerais:

- Estabelecimento dos sistemas de classificação para avaliação do estado ecológico nas massas de água naturais dos tipos Rios Grandes do Norte (GR Norte), Rios Grandes do Centro (GR Centro) e Rios Grandes do Sul (GR Sul).
- Estabelecimento dos critérios de classificação para avaliação do potencial ecológico nas albufeiras do tipo Curso Principal.
- Desenvolvimento e melhoria dos sistemas de classificação aplicáveis a massas de água fortemente modificadas de caráter lêntico da categoria rios Albufeiras, referentes aos tipos Albufeiras do Norte e Albufeiras do Sul.
- Aferição e melhoria dos sistemas de classificação definidos até à data para os rios do Agrupamento Norte e Agrupamento Sul.
- Estabelecimento dos sistemas de classificação aplicáveis a massas de água fortemente modificadas de caráter lótico da categoria rios.

Foi assim possível proceder à revisão e melhoria dos sistemas de classificação aplicáveis à avaliação do estado/potencial ecológico das massas de água interiores, sendo alargados a novos tipos de massas de água e incluindo também novos parâmetros.

No que se refere às águas de transição e costeiras (Componente 6), na sequência da avaliação dos PGRH do 1.º ciclo, a Comissão Europeia definiu um Plano de Ação para Portugal, com a finalidade de serem colmatadas as lacunas na implementação da DQA, em particular no que respeita à avaliação do estado das massas de água. No decorrer do 2.º ciclo de planeamento foram adotados critérios de classificação das massas de água de transição e costeiras que resultaram da evolução possível atendendo à disponibilidade de meios e de recursos. Contudo, verificaram-se ainda diversas lacunas, nomeadamente no que diz respeito às condições de referência e aos sistemas de

classificação dos estuários e lagoas costeiras, que urgia colmatar. Neste contexto, foi implementado o projeto MESCLA – Melhorar e complementar os critérios de classificação do estado das massas de água de transição e costeiras. Este projeto teve como objetivos principais:

- Aferir as condições de referência e atualizar os sistemas de classificação das águas de transição e costeiras para todos os elementos de qualidade aplicáveis;
- Estabelecer as condições de referência e os sistemas de classificação para as tipologias nacionais não abrangidas pelo exercício de intercalibração, em particular as lagoas costeiras;
- Concluir os trabalhos de intercalibração, nomeadamente para as macroalgas oportunistas em águas de transição;
- A partir dos resultados da monitorização e dos sistemas de classificação desenvolvidos, apresentar uma proposta de classificação das massas de água para o 3.º ciclo de planeamento;

Os trabalhos foram desenvolvidos por um consórcio que abrangeu centros de investigação das universidades das regiões norte, centro e sul de Portugal continental, composto por consultores com comprovada experiência na coordenação e desenvolvimento de projetos técnicos e de investigação científica no âmbito da implementação da DQA em massas de água de transição e costeiras. O projeto ficou concluído em 2020, tendo os seus principais objetivos sido cumpridos, colmatando desta forma as lacunas previamente identificadas.

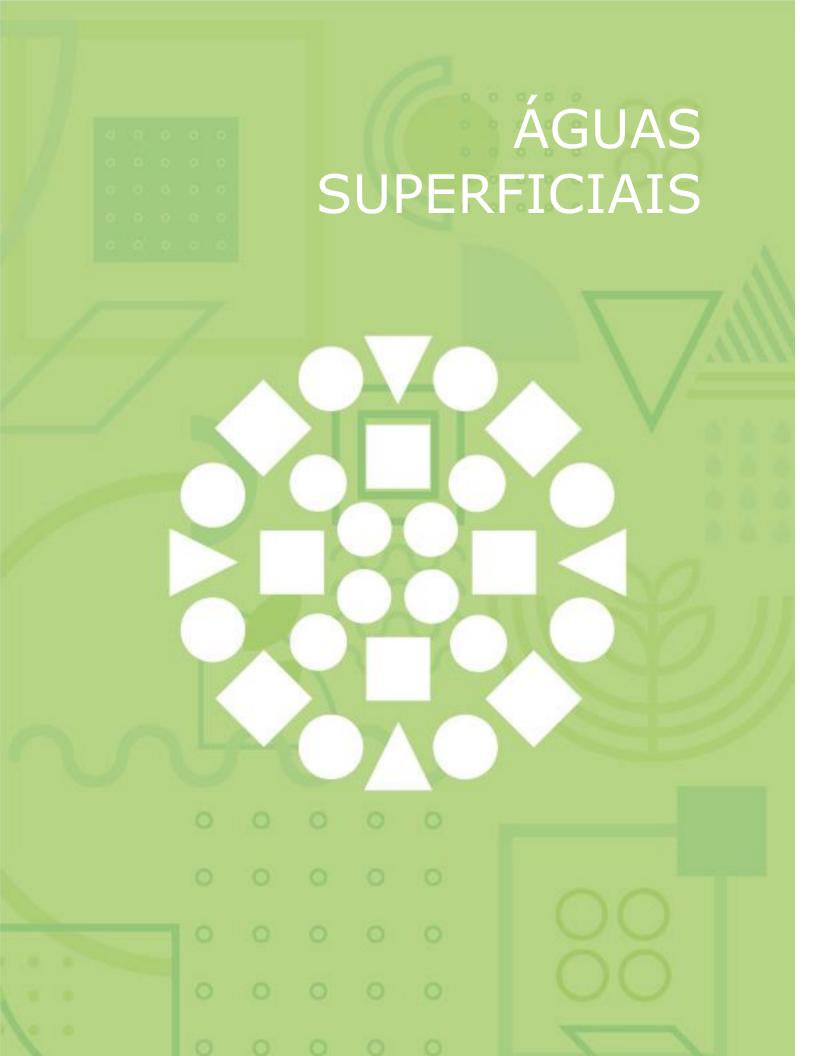
Para além do projeto MESCLA, foi ainda realizado trabalho de desenvolvimento dos sistemas de classificação para os elementos físico-químicos gerais, nomeadamente o estabelecimento da fronteira de qualidade Excelente/Bom (anteriormente estava definida apenas a fronteira Bom/Razoável) e a definição de normas de qualidade para os poluentes específicos. No que se refere à hidromorfologia, mantém-se a metodologia previamente definida estando a sua revisão prevista para o 4.º ciclo de planeamento.

# 1.2 Exercício de intercalibração

Por forma a contribuir para o estabelecimento de uma estratégia comunitária concertada no que diz respeito à proteção dos recursos aquáticos, além da significância e robustez nos critérios nacionais, pretende-se que os sistemas de classificação sejam comparáveis e equiparáveis entre Estados-Membros, concretamente entre aqueles que partilham características biofísicas e biogeográficas. Por esse motivo, no ponto 1.4.1 do Anexo V da DQA é prevista a realização de um Exercício de Intercalibração (IC), cujo objetivo final é assegurar que os sistemas de classificação, definidos por cada um dos Estados Membros, são capazes de atribuir um nível de qualidade semelhante a sistemas que se encontram em condições ecológicas equivalentes.

Os exercícios de intercalibração (IC) são realizados entre grupos de países geograficamente próximos, comparando os diferentes métodos de classificação desenvolvidos e harmonizando os valores de fronteira que separam as classes de qualidade ecológica Excelente, Bom e Razoável. Para a realização de IC, os Estados Membros são organizados em Grupos de Intercalibração Geográfica (GIG), que partilham tipos comuns dentro de cada categoria de massa de água de superfície.

O processo de intercalibração é sumariamente constituído pelas seguintes fases:


- Definição de tipos de massas de água comuns e organização dos Estados Membros em grupos que partilham os mesmos tipos de massas de água;
- Seleção dos índices de qualidade ecológica em uso nos vários países e que estão de acordo com as definições normativas da DQA;
- Elaboração de matrizes incluindo dados biológicos e ambientais, relativos à aplicação dos índices, incluindo a homogeneização taxonómica e estrutural dos dados;
- Tratamento de dados;
- Apresentação e defesa dos resultados para obtenção de concordâncias individuais e coletivas;
- Elaboração de relatórios, a aprovar pela Comissão Europeia.

A terceira fase do IC culminou com a publicação da Decisão 2018/229/EU da Comissão, de 12 de fevereiro, que revogou a Decisão 2013/480/UE da Comissão, de 20 de setembro, e respetiva Retificação de 8 de outubro de 2013, que refletia os trabalhos executados no decorrer da segunda fase dos trabalhos de intercalibração.

No que respeita às águas interiores, no decorrer do último ciclo foram estabelecidos e/ou revistos os sistemas de classificação aplicáveis aos elementos de qualidade biológicos nos grandes rios, que se enquadram no âmbito dos exercícios de intercalibração. Para fitoplâncton, fitobentos e macroinvertebrados o processo de intercalibração comunitário havia sido realizado previamente, entre outros Estados-Membros, pelo que foram elaborados relatórios que visaram demonstrar o ajuste dos sistemas nacionais ao IC, conforme estabelecido no Documento-Guia n.º 30 da Estratégia Comum de Implementação da DQA (European Union, 2015). Os relatórios apresentados mereceram aceitação. Os trabalhos relativos à fauna piscícola ainda decorrem, estando a ser desenvolvidos conjuntamente com outros Estados-Membros. Os resultados dos trabalhos referidos serão refletidos numa próxima Decisão da Comissão.

No que diz respeito às águas de transição e costeiras, o IC encontra-se concluído para todos os elementos biológicos, no entanto não se encontram publicados nesta 3ª decisão de intercalibração os resultados das macroalgas oportunistas em águas de transição, uma vez que os trabalhos ficaram concluídos após a publicação da Decisão, pelo que serão publicados posteriormente. Não obstante, os critérios de classificação apresentados neste documento refletem já os resultados da intercalibração.

O processo de intercalibração abrange apenas os tipos de massas de água que apresentam correspondência com os tipos de intercalibração. Para as restantes tipologias de massas de água foram desenvolvidos sistemas de classificação nacionais. No caso dos últimos, optou-se por utilizar a mesma metodologia que foi utilizada no exercício de intercalibração, com as devidas adaptações necessárias, nomeadamente ao nível das condições de referência.



# Águas superficiais

# 2. Classificação das massas de água de superfície

A avaliação do estado de uma massa de água de superfície abrange duas componentes: o estado ecológico e o estado químico, sendo necessário que todos os elementos considerados para avaliação do estado ecológico e todas as substâncias consideradas na determinação do estado químico sejam classificados, pelo menos, como Bom para que se atinja o Bom estado.

# 2.1 Conceito de estado e potencial ecológico

O conceito de estado ecológico é utilizado enquanto indicador da qualidade dos ecossistemas aquáticos associados às águas superficiais, no que diz respeito à sua estrutura e funcionamento. A qualidade ecológica é avaliada comparando os resultados obtidos durante a monitorização com valores previamente identificados como sendo as condições de referência do tipo de massa de água em análise.

A tipificação das massas de água foi feita através da identificação e agregação de massas de água com características geográficas e hidrológicas relativamente homogéneas, consideradas relevantes para determinação das condições ecológicas (Bettencourt *et al.*, 2004; INAG, 2008a). Os tipos de massas de água para as várias categorias de águas superficiais são apresentados no Anexo I.

Para cada tipo de massa de água, consideram-se como referência as condições de uma massa de água num cenário em que as pressões antrópicas são inexistentes ou muito pouco significativas e nas quais, simultaneamente, os valores associados aos elementos considerados para avaliação do estado ecológico não apresentam qualquer distorção, ou mostram apenas uma distorção muito ligeira. Nos termos da DQA, as condições de referência devem assim refletir os valores dos elementos de qualidade num estado ecológico Excelente.

No que diz respeito a massas de água artificiais ou massas de água fortemente modificadas (MAFM), é aplicado um objetivo ambiental específico, sendo o conceito de estado ecológico substituído pelo conceito de potencial ecológico. A qualidade ecológica é então avaliada com base no desvio relativamente à qualidade máxima que se considera que as massas de água podem atingir, após implementação de todas as medidas de mitigação que não têm efeitos adversos significativos sobre os usos específicos ou no ambiente em geral, condição definida como potencial ecológico Máximo (PEM). O Bom potencial ecológico é o objetivo ambiental aplicável nestes casos e considera-se que este é alcançado quando os resultados de qualidade obtidos indicam apenas a existência de ligeiras modificações dos valores dos elementos considerados, por comparação com os valores próprios do PEM.

Os elementos aplicáveis para avaliação do estado/potencial ecológico dividem-se em elementos de qualidade biológicos, elementos físico-químicos de suporte aos elementos biológicos e elementos hidromorfológicos de suporte aos elementos biológicos. Os elementos a considerar na classificação das diferentes categorias de massa de água estão definidos no Anexo V da DQA e variam em função dos objetivos da monitorização, da relevância de cada elemento na categoria de massa de água em análise e da sua sensibilidade aos diferentes tipos de pressão antrópica, entre outros fatores (European Communities, 2003a). A avaliação das massas de água artificiais e fortemente

modificadas recorre aos elementos de qualidade pertinentes, considerando os utilizados na avaliação da categoria de massas de água naturais que mais se assemelha à massa de água artificial ou fortemente modificada em causa.

# 2.1.1 Elementos de qualidade biológicos

Os elementos de qualidade biológicos considerados na avaliação da qualidade ecológica para as diferentes categorias de massas de água foram identificados tendo por base o Anexo V da DQA. No Quadro 2.1 apresentam-se os elementos biológicos aplicados em cada caso, bem como as componentes caracterizadas e os indicadores de qualidade adotados para efeitos de classificação.

Quadro 2.1 – Elementos de qualidade biológicos utilizados para a avaliação da qualidade ecológica em massas de água de superfície em Portugal Continental.

| Categoria             | Elemento biológico               | Componente                           | Indicador de qualidade                                                                                                                                               |
|-----------------------|----------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Fitoplâncton (*)                 | Composição, abundância<br>e biomassa | Novo Índice Mediterrânico de<br>Avaliação do Fitoplâncton em<br>Albufeiras (NMARSP)                                                                                  |
|                       | Fitobentos                       | Composição e<br>abundância           | Índice de Poluossensibilidade Específica (IPS)                                                                                                                       |
|                       | Macrófitos                       | Composição e<br>abundância           | Índice Biológico de Macrófitos de Rio<br>(IBMR)                                                                                                                      |
| Rios                  | Macroinvertebrados<br>bentónicos | Composição e<br>abundância           | Índice Português de Invertebrados do<br>Norte (IPtI <sub>N</sub> ) e Índice Português de<br>Invertebrados do Sul (IPtI <sub>S</sub> ), conforme o<br>tipo de rio     |
|                       | Fauna piscícola                  | Composição e<br>abundância           | Índice Piscícola de Integridade Biótica<br>(F-IBIP) ou Índice Piscícola de<br>Integridade Biótica em Grandes Rios<br>(F-IBIP <sub>GR</sub> ), conforme o tipo de rio |
| Albufeiras            | Fitoplâncton                     | Composição, abundância<br>e biomassa | Novo Índice Mediterrânico de<br>Avaliação do Fitoplâncton em<br>Albufeiras (NMARSP)                                                                                  |
|                       | Fitoplâncton                     | Composição, abundância<br>e biomassa | Clorofila a                                                                                                                                                          |
|                       | Macroalgas oportunistas          | Composição e<br>abundância           | BMI – Blooming Macroalgae Index                                                                                                                                      |
| Águas de<br>transição | Sapais                           | Composição e<br>abundância           | AQuA-Index - Angiosperm Quality Assessment Index                                                                                                                     |
|                       | Ervas Marinhas                   | Composição e<br>abundância           | SQI - Seagrass Quality Index                                                                                                                                         |
|                       | Macroinvertebrados<br>bentónicos | Composição e<br>abundância           | BAT – Benthic Assessment Tool                                                                                                                                        |

| Categoria | Elemento biológico   | Componente                           | Indicador de qualidade                 |
|-----------|----------------------|--------------------------------------|----------------------------------------|
|           | Fauna piscícola      | Composição e<br>abundância           | EFAI – Estuarine Fish Assessment Index |
|           | Fitoplâncton         | Composição, abundância<br>e biomassa | Clorofila-a                            |
|           | Macroalgas substrato | Composição e                         | P-MarMAT - Portuguese Marine           |
|           | rochoso (**)         | abundância                           | Macroalgae Assessment Tool             |
| Águas     | Sapais               | Composição e                         | AQuA-Index - Angiosperm Quality        |
| costeiras | Sapais               | abundância                           | Assessment Index                       |
|           | Ervas Marinhas       | Composição e                         | SQI - Seagrass Quality Index           |
|           | Li vas iviai illilas | abundância                           | SQI - Seagrass Quanty muck             |
|           | Macroinvertebrados   | Composição e                         | BAT – Benthic Assessment Tool          |
|           | bentónicos           | abundância                           | DAT DETITITE ASSESSMENT TOO            |

<sup>(\*) -</sup> Aplicável apenas em grandes rios. (\*\*) No caso das lagoas costeiras aplica-se o disposto para as macroalgas em águas de transição.

As respostas dos vários elementos de qualidade biológicos face à perturbação manifestam-se em escalas espaciais e temporais diferentes, em função da duração do ciclo de vida e da mobilidade de cada elemento. Deste modo, a informação obtida por cada elemento biológico integra as condições ambientais num período de tempo que pode ser de dias (e.g fitoplâncton, fitobentos), semanasmeses (e.g. macrófitos, macroinvertebrados bentónicos) ou meses-anos (e.g. fauna piscícola). Relativamente à escala espacial, a resposta dos elementos biológicos varia desde o micro-habitat (e.g. fitobentos) até à escala do segmento ou setor fluvial (e.g. fauna piscícola).

As respostas dos elementos de qualidade biológicos à pressão podem também variar conforme as características das categorias de massas de água em análise. No Quadro 2.2 e no Quadro 2.3 sistematizam-se, em termos gerais, as principais fontes de pressão a que os elementos de qualidade adotados manifestam respostas.

Quadro 2.2 – Sensibilidade dos elementos de qualidade biológica a diferentes pressões antrópicas em águas interiores (adaptado de European Communities, 2003b; UK TAG, 2005).

| Pressão                                                |            | Albufeiras e<br>grandes rios |                                  |                    |              |
|--------------------------------------------------------|------------|------------------------------|----------------------------------|--------------------|--------------|
| riessau                                                | Fitobentos | Macrófitos                   | Macroinvertebrados<br>bentónicos | Fauna<br>piscícola | Fitoplâncton |
| Nutrientes                                             | ×          | ×                            |                                  |                    | ×            |
| Poluição orgânica                                      |            |                              | ×                                | ×                  | ×            |
| Poluentes específicos<br>e substâncias<br>prioritárias |            |                              | ×                                |                    |              |
| Alterações<br>hidrológicas                             | ×          | ×                            | ×                                | ×                  | ×            |
| Alterações<br>morfológicas                             |            | ×                            | ×                                | ×                  |              |

| Pressão          |            | Rios       |                                  |                    |              |  |
|------------------|------------|------------|----------------------------------|--------------------|--------------|--|
| FICSSAU          | Fitobentos | Macrófitos | Macroinvertebrados<br>bentónicos | Fauna<br>piscícola | Fitoplâncton |  |
| Acidificação     | ×          |            | ×                                | ×                  |              |  |
| Degradação geral |            |            | ×                                |                    | ×            |  |

Quadro 2.3 – Sensibilidade dos elementos de qualidade biológica a diferentes pressões antrópicas em águas de transição e costeiras.

|                                                           | Águas de transição e costeiras |            |                   |        |                                  |        |  |  |
|-----------------------------------------------------------|--------------------------------|------------|-------------------|--------|----------------------------------|--------|--|--|
| Pressão                                                   | Fitoplâncto<br>n               | Macroalgas | Ervas<br>Marinhas | Sapais | Macroinvertebrados<br>bentónicos | Peixes |  |  |
| Nutrientes                                                | х                              | x          | x                 | х      |                                  |        |  |  |
| Poluição orgânica                                         | х                              | х          | х                 | х      | x                                | х      |  |  |
| Poluentes<br>específicos e<br>substâncias<br>prioritárias |                                |            |                   |        | х                                |        |  |  |
| Alterações<br>hidrológicas                                |                                | x          | ×                 | х      | х                                | х      |  |  |
| Alterações<br>morfológicas                                |                                | x          | x                 | х      | х                                | х      |  |  |
| Acidificação                                              |                                |            |                   |        |                                  | х      |  |  |
| Degradação geral                                          | х                              |            | х                 |        | х                                |        |  |  |

No estabelecimento dos sistemas de classificação foram tidas em consideração as orientações da estratégia comum de implementação da Diretiva, concretamente no que diz respeito aos Documentos-Guia n.º 5 (águas costeiras e de transição; European Communities, 2003c) e n.º 10 (rios e lagos; European Communities, 2003b). A DQA fornece ainda descrições qualitativas para cada classe de qualidade de cada elemento biológico, onde as classes de qualidade representam vários graus de perturbação nas comunidades biológicas (item 1.2 do anexo V da DQA).

Para assegurar a comparabilidade dos sistemas de classificação, os resultados dos elementos biológicos devem ser expressos em Rácios de Qualidade Ecológica (RQE) (alínea ii, item 1.4.1 do Anexo V da DQA). Estes rácios representam a relação entre os valores observados para um determinado parâmetro biológico numa determinada massa de água e o valor desse parâmetro na condição de referência para o tipo de massa de água em questão. Os RQE são expressos num valor numérico entre 0 (situação de degradação extrema) e 1 (situação de referência). Pela divisão destes gradientes de qualidade obtêm-se as classes de qualidade previstas na DQA, sendo que, para a valiação do estado ecológico, os elementos de qualidade biológicos são classificados numa de cinco classes: Excelente, Bom, Razoável, Medíocre e Mau. Para a avaliação do potencial ecológico aplicam-

se as classes Máximo, Bom, Razoável, Medíocre e Mau, sendo que as classes Máximo e Bom podem, nos termos da DQA, ser agregadas em Bom e superior.

Sempre que possível, os valores de referência específicos dos tipos foram estabelecidos tendo por base dados recolhidos em condições com ausência de perturbação ou minimamente perturbadas (Feio *et al.*, 2014). Nos casos em que tais locais não existem, como nos grandes rios, as condições de referência foram estabelecidas conjugando dados com análise pericial.

A amostragem e identificação dos diferentes elementos de qualidade pressupõe o correto planeamento e cumprimento dos protocolos de amostragem e processamento laboratorial estabelecidos no âmbito da implementação da DQA, de forma a garantir a exequibilidade do método e comparabilidade espacial e temporal dos resultados.

# 2.1.2 Elementos físico-químicos de suporte aos biológicos

No âmbito da DQA, os elementos de qualidade físico-químicos englobam elementos físico-químicos gerais e poluentes específicos.

# 2.1.2.1 Elementos físico-químicos gerais

Relativamente aos elementos físico-químicos gerais, é necessária a seleção de parâmetros que permitam caracterizar as componentes identificadas no Anexo V da DQA, com adaptações em função das características das diferentes categorias de massas de água, conforme consta do Quadro 2.4, do Quadro 2.5 e do Quadro 2.6.

Quadro 2.4 – Parâmetros físico-químicos integrados no sistema de classificação de rios e grandes rios, agregados de acordo com as componentes requeridas no Anexo V da DQA.

| Grupo de parâmetros              | Parâmetro                                                         | Unidade              |
|----------------------------------|-------------------------------------------------------------------|----------------------|
|                                  | Amoníaco                                                          | mg/l NH₃             |
|                                  | Azoto amoniacal                                                   | mg/l NH <sub>4</sub> |
|                                  | Azoto total                                                       | mg/l N               |
| Condições relativas a nutrientes | Fosfato                                                           | mg/l PO <sub>4</sub> |
| Condições relativas a nutrientes | Fósforo total                                                     | mg/l P               |
|                                  | Nitrato                                                           | mg/l NO₃             |
|                                  | Nitrito                                                           | mg/l NO2             |
|                                  | Sólidos Suspensos Totais                                          | mg/l                 |
|                                  | Carência Bioquímica em Oxigénio aos 5 dias<br>(CBO <sub>5</sub> ) | mg/l O <sub>2</sub>  |
| Condições de oxigenação          | Taxa de saturação do oxigénio                                     | % sat                |
|                                  | Oxigénio dissolvido                                               | mg/l O₂              |
| Condições térmicas               | Temperatura da amostra                                            | °C                   |
| Estado de acidificação pH        |                                                                   | Escala de Sorensen   |
| Salinidade                       | Condutividade a 20°C                                              | μS/cm                |

Quadro 2.5 – Parâmetros físico-químicos integrados no sistema de classificação de albufeiras, agregados de acordo com as componentes requeridas no Anexo V da DQA.

| Grupo de parâmetros              | Parâmetro                                            | Unidade              |
|----------------------------------|------------------------------------------------------|----------------------|
|                                  | Amoníaco                                             | mg/l NH₃             |
|                                  | Azoto amoniacal                                      | mg/l NH <sub>4</sub> |
|                                  | Azoto total                                          | mg/l N               |
| Condições relativas a nutrientes | Fosfato                                              | mg/l PO <sub>4</sub> |
| Condições relativas a nutrientes | Fósforo total                                        | mg/l P               |
|                                  | Nitrato                                              | mg/l NO₃             |
|                                  | Nitrito                                              | mg/l NO <sub>2</sub> |
|                                  | Sólidos Suspensos Totais                             | mg/l                 |
|                                  | Carência Bioquímica em Oxigénio aos 5 dias<br>(CBO₅) | mg/l O₂              |
| Condições de oxigenação          | Taxa de saturação do oxigénio                        | % sat                |
|                                  | Oxigénio dissolvido                                  | mg/l O₂              |
| Condições térmicas               | Temperatura da amostra                               | °C                   |
| Estado de acidificação           | рН                                                   | Escala de Sorensen   |
| Salinidade                       | Condutividade a 20°C                                 | μS/cm                |
| Condições de transparência       | Transparência (disco de Secchi)                      | m                    |

Quadro 2.6 – Parâmetros físico-químicos integrados no sistema de classificação de águas de transição e costeiras, agregados de acordo com as componentes requeridas no Anexo V da DOA.

| Grupo de parâmetros              | Parâmetro                       | Unidade |
|----------------------------------|---------------------------------|---------|
| Condições de transparência       | Transparência (disco de Secchi) | m       |
| Condições de salinidade          | Salinidade                      | ppt     |
| Condições térmicas               | Temperatura                     | ōС      |
| Condições de oxigenação          | Taxa de saturação do oxigénio   | % sat   |
|                                  | Nitrato+nitrito                 | mg N/I  |
| Condições relativas a nutrientes | Azoto amoniacal                 | mg N/l  |
|                                  | Fosfato                         | mg P/I  |

De acordo com a DQA, para os elementos físico-químicos gerais devem ser definidos valores de fronteira que permitam estabelecer três classes de qualidade: Excelente (ou Máximo), Bom e Razoável. Os limiares de qualidade aplicáveis aos diferentes parâmetros são estabelecidos considerando a potencial influência de cada parâmetro sobre a qualidade do ecossistema, tendose, quando possível, integrado as orientações do Grupo de Trabalho da Estratégia Comum de Implementação da DQA relativo ao estado ecológico (ECOSTAT) no que respeita ao estabelecimento

de relações entre a qualidade observada ao nível dos elementos de qualidade biológicos e os valores dos parâmetros físico-químicos, com base em Phillips *et al.* (2018).

Adicionalmente aos parâmetros identificados nos quadros acima, a monitorização realizada no âmbito da DQA inclui ainda outros parâmetros que complementam a caracterização da qualidade, conforme consta do documento Critérios para a Monitorização das Massas de Água.

## 2.1.2.2 Poluentes específicos

De acordo com a DQA, consideram-se como poluentes quaisquer substâncias que, pela sua introdução nas águas, solos ou ar, sejam suscetíveis de provocar danos para a saúde humana, para os ecossistemas aquáticos ou para outros ecossistemas que deles dependam. Nos pontos 1 a 9 do Anexo VIII da DQA são listados, de forma indicativa, os principais poluentes a considerar neste contexto. Dentro destas substâncias poluentes, são denominados poluentes específicos as substâncias que, não sendo consideradas como prioritárias a nível comunitário (ou seja, não incluídas no âmbito da avaliação do estado químico das massas de água), são ainda assim descarregadas em quantidade significativa nas massas de água e apresentam capacidade potencial de influenciar a qualidade ecológica das massas de água, motivo pelo qual devem ser sujeitas a controlo de descargas, emissões e perdas. A avaliação da qualidade ecológica com base nestas substâncias é realizada com base em Normas de Qualidade Ambiental.

A lista de poluentes específicos, e respetivas NQA – publicadas no Decreto-Lei n.º 506/99, de 20 de novembro e no Decreto-Lei n.º 261/2003, de 21 outubro – foram atualizadas, no contexto dos trabalhos relativos aos PGRH do 3.º ciclo. Tendo por base as pressões identificadas no período 2014-2019, à lista de poluentes específicos existentes foram adicionadas duas novas substâncias: bisfenol A e lítio dissolvido.

# 2.1.3 Elementos hidromorfológicos de suporte aos biológicos

A hidromorfologia é considerada uma componente fundamental à avaliação da qualidade ecológica de uma massa de água. A dinâmica hidromorfológica de uma massa de água pode determinar e alterar as condições associadas aos elementos biológicos e aos parâmetros físico-químicos, através de fatores como a disponibilidade de habitat ou o fluxo de matéria orgânica e sedimentos.

No âmbito da avaliação da qualidade ecológica, aos elementos hidromorfológicos apenas se aplicam as classes de qualidade Excelente (ou Máximo) e Bom. Considera-se que as condições hidromorfológicas estão de tal forma interligadas com a componente biótica e com a componente físico-química, que as condições verificadas nestes elementos de qualidade irão refletir o facto das condições hidromorfológicas serem compatíveis com a classe de qualidade em que estes se encontram.

As componentes a considerar na avaliação da qualidade ecológica com base nos elementos hidromorfológicos variam de acordo com a categoria de massa de água, por forma a permitir detetar respostas à pressão nas suas características específicas. No Quadro 2.7 são apresentados os elementos hidromorfológicos utilizados na avaliação da qualidade ecológica, com indicação das componentes que integram estes elementos e dos respetivos indicadores.

Quadro 2.7 – Elementos hidromorfológicos de suporte aos elementos biológicos e respetivas componentes e indicadores a utilizar na avaliação da qualidade ecológica

| Categoria  | Elementos<br>hidromorfológicos | Componente                           | Indicador                                                    |  |
|------------|--------------------------------|--------------------------------------|--------------------------------------------------------------|--|
|            | Regime hidrológico             | Caudais e condições de<br>escoamento | River Habitat Survey (RHS)<br>ou                             |  |
| Rios       | Continuidade do rio            | Continuidade do rio                  | Índice de Qualidade                                          |  |
| 11103      |                                | Estrutura e substrato do leito       | Hidromorfológica para                                        |  |
|            | Condições morfológicas         | Estrutura da zona ripícola           | Grandes Rios (IQH <sub>GR</sub> ),<br>conforme o tipo de rio |  |
|            |                                | Caudais e condições de               |                                                              |  |
|            | Regime hidrológico             | escoamento                           | Indicadores de qualidade                                     |  |
| Albufeiras |                                | Tempo de residência                  | hidromorfológica em                                          |  |
|            | Condições morfológicas         | Variação da profundidade             | albufeiras (InQHA)                                           |  |
|            |                                | Estrutura das margens do lago        |                                                              |  |
|            |                                | Variação da profundidade             |                                                              |  |
|            | Condições morfológicas         | Quantidade, estrutura e              |                                                              |  |
| Águas de   |                                | substrato do leito                   | Avaliação qualitativa                                        |  |
| Transição  |                                | Estrutura da zona intermareal        | , manayao quantatira                                         |  |
|            | Regime de marés                | Fluxo de água doce                   |                                                              |  |
|            | 8                              | Exposição às vagas                   |                                                              |  |
|            |                                | Variação da profundidade             |                                                              |  |
|            | Condições morfológicas         | Estrutura e substrato do leito       |                                                              |  |
| Águas      |                                | Estrutura da zona intermareal        | Avaliação qualitativa                                        |  |
| costeiras  |                                | Direção das correntes                | Avanação quantativa                                          |  |
|            | Regime de marés                | dominantes                           |                                                              |  |
|            |                                | Exposição às vagas                   |                                                              |  |

# 2.2 Conceito de estado químico

No que diz respeito ao estado químico, a classificação é realizada tendo por base o cumprimento de normas de qualidade ambiental (NQA) estabelecidas para as substâncias prioritárias e outros poluentes identificados no âmbito da política da água, na Diretiva das Substâncias Prioritárias (Diretiva 2008/105/CE, alterada pela Diretiva 2013/39/UE, que se encontra transposta para a ordem jurídica nacional pelo Decreto-Lei n.º 103/2010, de 24 de setembro, alterado e republicado pelo Decreto-Lei n.º 218/2015, de 7 de outubro).

As NQA definidas para as substâncias prioritárias e outros poluentes constituem, assim, a base para a avaliação do estado químico das águas superficiais. Para que uma massa de água superficial seja classificada como estando em Bom estado químico é necessário que as concentrações das respetivas substâncias prioritárias e outros poluentes cumpram as NQA estabelecidas.

# 2.3 Estado da massa de água

A classificação do estado das massas de água superficiais resulta da integração dos resultados obtidos para a componente Ecológica e para a componente Química, sendo que, para que a massa de água seja considerada em Bom estado é necessário que todos os resultados associados a cada componente correspondam, no mínimo, à classe Bom.

A classificação é feita de acordo com o princípio "one out, all out", ou seja, as classes de qualidade associadas ao estado/potencial ecológico e ao estado químico são determinadas pelo elemento de qualidade ou substância que apresente a pior classificação, ou seja, pelo elemento mais afectado pela atividade humana.

Assim, para o estado/potencial ecológico a avaliação implica demonstrar que a qualidade geral do ecossistema não apresenta um desvio significativo relativamente à sua situação de referência/qualidade máxima; no estado químico a avaliação assenta no cumprimento das normas de qualidade ambiental estabelecidas pela Diretiva das Substâncias Prioritárias para as substâncias a avaliar.

Representa-se na Figura 2.1, de forma conceptual, o processo pelo qual as classificações dos diferentes elementos e substâncias devem ser combinados para classificar o estado ecológico e o estado químico e obter, por fim, o estado global da massa de água de superfície.

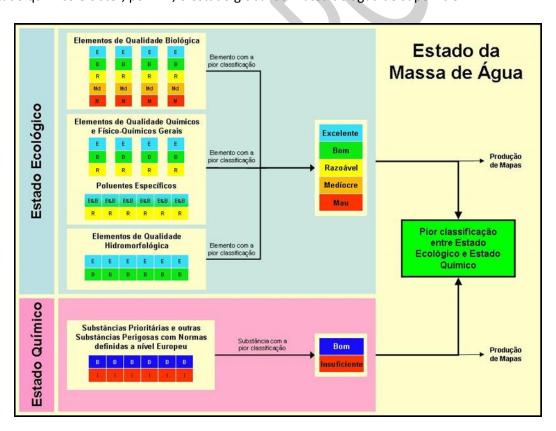



Figura 2.1 – Esquema conceptual do sistema de classificação no âmbito da DQA/Lei da Água (adaptado de UK TAG, 2007).

O Bom estado ecológico é alcançado por uma massa de água de superfície quando classificada como Bom ou Excelente nos termos das definições normativas que constam do ponto 1.2 do anexo V da DQA. Os elementos de qualidade a integrar na avaliação do estado ecológico variam, primeiramente, em função da categoria de massa de água que se pretende caracterizar, de acordo com o ponto 1.1 do anexo V da DQA.

A qualidade associada aos elementos de qualidade biológicos pode ser classificada numa de cinco classes, aqui referidas por ordem decrescente de qualidade: Excelente, Bom, Razoável, Medíocre e Mau. Os elementos físico-químicos e hidromorfológicos considerados para caracterização do estado ecológico de uma massa de água são denominados elementos "de suporte aos elementos biológicos" como forma de evidenciar a interligação e interdependência existente entre estes elementos e a componente biótica dos ecossistemas aquáticos (European Communities, 2005). Aos elementos físico-químicos são aplicáveis as classes Excelente, Bom e Razoável, enquanto aos resultados associados aos elementos hidromorfológicos são apenas aplicáveis as classes Excelente e Bom. Para efeitos de comunicação gráfica, às cinco classes em que o estado ecológico pode ser expresso correspondem, por ordem decrescente de qualidade, as cores: azul, verde, amarelo, laranja e vermelho (conforme disposto no ponto 1.4.2. do Anexo V da DQA).

Os critérios de classificação do estado ecológico, expressos na relação entre os diferentes elementos de qualidade, encontram-se representados na Figura 2.2 (European Communities, 2003a; European Communities, 2003b).

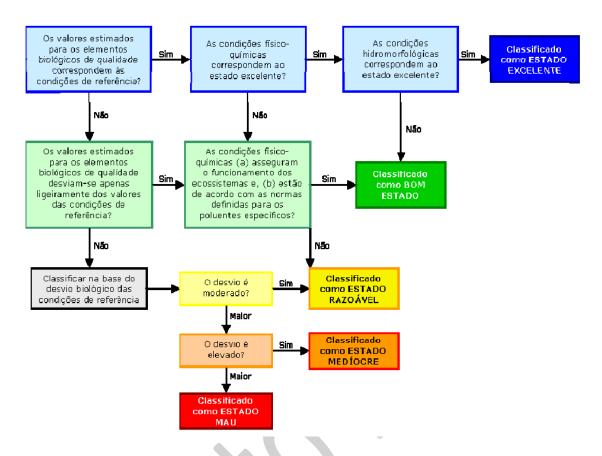



Figura 2.2 - Relação entre os diferentes elementos de qualidade que interferem na classificação do estado ecológico, de acordo com as definições normativas do ponto 1.2 do anexo V da DQA (European Communities, 2003a; European Communities, 2003b).

Por outro lado, conforme referido acima, em massas de água artificiais e massas de água fortemente modificadas, vigora o conceito de potencial ecológico, sendo que o Bom potencial ecológico é descrito, de forma geral, como um nível de qualidade ecológica em que ocorrem ligeiras modificações dos valores dos elementos de qualidade pertinentes em relação aos valores próprios do potencial ecológico Máximo, de acordo com o ponto 1.2.5 do anexo V da DQA.

Os elementos de qualidade a utilizar serão os aplicáveis à categoria de águas de superfície naturais que mais se assemelha à massa de água em questão. Para as MAFM, no caso da avaliação do potencial de massas de água interiores de características lóticas, consideram-se os elementos de qualidade associados à categoria rios (ponto 1.1.1 do Anexo V da DQA) e no caso da avaliação do potencial de albufeiras, consideram-se os elementos de qualidade associados à categoria lagos (ponto 1.1.2 do Anexo V da DQA). Paralelamente, os valores dos elementos de qualidade no potencial ecológico Máximo (PEM) devem refletir — tanto quanto possível, considerando as condições físicas resultantes das características artificiais ou fortemente modificadas da massa de água — os valores de referência associados ao tipo de massa de água natural mais semelhante.

A classificação das massas de água artificiais é realizada de acordo com limiares específicos de qualidade, conforme descrito no capítulo 4.3.

A qualidade associada aos elementos de qualidade biológicos pode ser classificada numa de cinco classes, aqui referidas por ordem decrescente de qualidade: Máximo, Bom, Razoável, Medíocre e Mau. Ressalva-se, contudo, que, nos termos da DQA, as classes Máximo e Bom podem ser agregadas como Bom e superior. Aos elementos físico-químicos são aplicáveis as classes Máximo (ou Bom e superior), Bom (ou Bom e superior) e Razoável, enquanto aos resultados associados aos elementos hidromorfológicos são apenas aplicáveis as classes Máximo e Bom (ou Bom e superior).

A relação entre os diferentes elementos de qualidade, que integram a classificação do potencial ecológico das MAFM encontra-se na Figura 2.3.

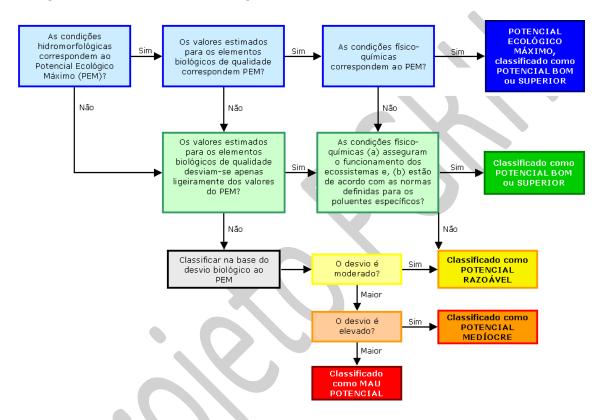



Figura 2.3 - Relação entre os diferentes elementos de qualidade, EQH, EQB e EQFQ, que interferem na classificação do potencial ecológico, de acordo com as definições normativas do anexo V, ponto 1.2 da DQA (European Communities, 2003a; European Communities, 2003b).

Para efeitos de comunicação gráfica, às classes em que o potencial ecológico se expressa corresponde, por ordem decrescente de qualidade, o código de cores "riscas verdes e cinzentas-escuras da mesma largura", "riscas amarelas e cinzentas-escuras da mesma largura", "riscas laranja e cinzentas-escuras da mesma largura" e "riscas vermelhas e cinzentas-escuras da mesma largura" (conforme disposto no ponto 1.4.2. do Anexo V da DQA).

# 3. Sistemas de classificação do estado ecológico - águas interiores

#### 3.1 Rios

Na avaliação da qualidade ecológica em rios são considerados os elementos de qualidade biológicos preconizados pela DQA, bem como os respetivos elementos de suporte. Relativamente aos primeiros, não foram produzidas alterações de maior aos sistemas de classificação já existentes, registando-se apenas alterações no que respeita a macrófitos, com a definição de valores-guia para três tipos de massas de água, e relativamente à fauna piscícola, com o alargamento do âmbito de aplicação do índice F-IBIP. Relativamente a elementos físico-químicos gerais foram definidos limiares para novos parâmetros e revistos os limiares já existentes, enquanto para os elementos de qualidade hidromorfológicos se procedeu também ao alargamento e revisão dos limiares.

Os critérios de classificação descritos de seguida aplicam-se às massas de água naturais. Em massas de água fortemente modificadas devem ser considerados estes mesmos sistemas de classificação, mas a avaliação do potencial ecológico é feita tendo por base a abordagem descrita no Capítulo 4.

# 3.1.1 Elementos de qualidade biológicos

#### 3.1.1.1 Fitobentos - diatomáceas

Por fitobentos (ou perifíton) entende-se o conjunto de todos os produtores primários existentes nos biofilmes que se formam sobre substratos rochosos, como pedras ou blocos, ou sobre vegetação aquática submersa ou outro qualquer outro tipo de substrato. O fitobentos é composto por bactérias, fungos, microfauna, cianobactérias, microalgas, entre outros, sendo as diatomáceas (classe *Bacillariophyceae*) geralmente as comunidades dominantes e mais frequentes.

As diatomáceas perifíticas são consideradas como relevantes na monitorização da qualidade ecológica sobretudo pelos seguintes motivos:

- são abundantes e frequentes desde a nascente até à foz do rio, apresentando uma distribuição ubíqua que permite comparações entre diversos habitats;
- respondem de forma diferenciada ao longo de um gradiente ambiental, integrando as modificações da qualidade da água;
- reagem rapidamente (em cerca de um mês) a alterações da qualidade da água;
- não dispõem de um ciclo de vida faseado, que as ausentaria dos sistemas aquáticos em determinados períodos;
- desenvolvem-se em habitats específicos, bem definidos e facilmente amostráveis;
- possuem parede celular siliciosa, o que evita a deterioração aquando da sua remoção dos substratos;
- a sua identificação e quantificação é relativamente rápida;
- existe uma extensa bibliografia sobre a ecologia das diatomáceas relativamente à sua sensibilidade/tolerância e ao seu valor como indicadoras.

Assim, nos rios, o elemento de qualidade fitobentos é avaliado considerando exclusivamente o grupo das diatomáceas.

As comunidades de diatomáceas respondem ao aumento de nutrientes (principalmente de azoto e de fósforo) na água, mediante alteração da sua estrutura (composição taxonómica e abundância) que, na maioria dos casos, conduz a uma diminuição da diversidade e ao aumento da biomassa. As diatomáceas são ainda capazes de mostrar alterações de qualidade da água relacionadas com contaminação orgânica, assim como alterações hidromorfológicas. O aumento de salinidade no sistema poderá provocar uma alteração da comunidade, passando esta a apresentar-se constituída maioritariamente por *taxa* tolerantes às novas condições.

A amostragem e a identificação de diatomáceas perifíticas devem ser realizadas de acordo com os procedimentos estabelecidos no respetivo manual de amostragem, considerando a versão mais recente, disponível em: <a href="https://www.apambiente.pt/dqa/fitobentos.html">https://www.apambiente.pt/dqa/fitobentos.html</a>. No manual podem ainda ser encontrados outros detalhes relativamente a este indicador de qualidade e a bibliografia de referência aplicável.

O índice adotado para avaliação da qualidade com base neste elemento de qualidade é o índice de Poluossensibilidade Específica (IPS), um índice amplamente utilizado a nível europeu. Este índice considera o valor indicador e a sensibilidade específica dos *taxa*, sobretudo relativamente à poluição por nutrientes. Para além dos valores indicadores e de sensibilidade, o IPS integra também a abundância das espécies presentes. Assim, este índice encontra-se em concordância com as definições normativas da DQA, tendo sido aprovado pela Comissão Europeia no âmbito do Exercício de Intercalibração.

O IPS é calculado segundo a seguinte expressão:

IPS = 
$$\frac{\sum_{i=1}^{n} A_{i} i_{i} v_{i}}{\sum_{i=1}^{n} A_{i} v_{i}}$$

Onde:

 $A_i$  – abundância relativa da espécie i;

 $i_i$  – valor de sensibilidade da espécie i face à degradação (varia de 1, para as espécies mais resistentes a 5, para as espécies mais sensíveis);

*vi* – valor indicador da espécie *i* (varia de 1 para *taxa* com larga distribuição ecológica a 3 para *taxa* com distribuição ecológica restrita)

Para o cálculo do IPS recomenda-se a utilização de *software* apropriado, nomeadamente o OMNIDIA (<u>www.omnidia.fr/en/order-omnidia/</u>). Do cálculo do IPS resultam cinco classes de qualidade de 1 (muito má qualidade) a 5 (muito boa qualidade), sendo posteriormente transformado numa escala de 1 a 20, para facilitar as comparações com outros índices.

Após cálculo do índice, o valor obtido é transformado em Rácio de Qualidade Ecológica com base na equação abaixo, isto é, ponderando o valor obtido pelo valor de referência do tipo de rio em análise.

$$RQE = \frac{Valor\ observado}{Valor\ de\ referência}$$

O Quadro 3.1 apresenta os valores de referência e as fronteiras de qualidade do índice IPS, em RQE, aplicáveis para a classificação do estado ecológico com base neste elemento de qualidade. Quando o valor do EQR corresponde ao valor-fronteira, considera-se a classe de qualidade superior (p.e., 0,960 no tipo M corresponde a Excelente).

Quadro 3.1 – Valores de referência e fronteiras de qualidade do índice IPS, aplicáveis em rios.

| Tipo nacional | Valor de<br>referência | Excelente/Bom | Bom/Razoável | Razoável/<br>Medíocre | Medíocre/Mau |
|---------------|------------------------|---------------|--------------|-----------------------|--------------|
| M             | 18,00                  | 0,960         | 0,720        | 0,480                 | 0,240        |
| N1 > 100 km2  | 19,00                  | 0,970         | 0,730        | 0,490                 | 0,240        |
| N1 ≤ 100 km2  | 19,00                  | 0,970         | 0,730        | 0,490                 | 0,240        |
| N2            | 17,45                  | 0,910         | 0,680        | 0,450                 | 0,230        |
| N3            | 17,45                  | 0,910         | 0,680        | 0,450                 | 0,230        |
| N4            | 18,50                  | 0,940         | 0,700        | 0,470                 | 0,230        |
| L             | 17,00                  | 0,980         | 0,730        | 0,490                 | 0,240        |
| S1 > 100 km2  | 16,35                  | 0,800         | 0,600        | 0,400                 | 0,200        |
| S1 ≤ 100 km2  | 16,35                  | 0,800         | 0,651        | 0,400                 | 0,200        |
| S2            | 18,50                  | 0,940         | 0,700        | 0,470                 | 0,230        |
| <b>S3</b>     | 16,35                  | 0,940         | 0,700        | 0,470                 | 0,230        |
| <b>S4</b>     | 16,35                  | 0,800         | 0,600        | 0,400                 | 0,200        |

A avaliação do nível de confiança no índice reveste-se de particular importância, uma vez que permite aferir a fiabilidade dos resultados obtidos para a classificação ecológica da massa de água em questão. Para atribuição da confiança à classificação obtida para este elemento de qualidade são considerados os critérios indicados no Quadro 3.2.

Quadro 3.2 – Níveis de confiança associados ao índice IPS.

| Níveis | de confiança                                                                                                   | Critério                                                                    |  |
|--------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| 1      | Muito elevada Resultados concordantes e com nível de confiança 2, em mais de 1 local mais de 1 campanha por MA |                                                                             |  |
| 2      | Resultados obtidos dentro da época de amostragem                                                               |                                                                             |  |
| 3      | Média                                                                                                          | Resultados obtidos até 1 mês fora da época de amostragem                    |  |
| 4      | Baixa                                                                                                          | Resultados obtidos mais de 1 mês para além do limite da época de amostragem |  |
| 5      | Muito baixa                                                                                                    | Resultados obtidos mais de 2 meses para além da época de amostragem         |  |

Os períodos de referência para a amostragem deste elemento de qualidade biológica são os referidos no respetivo protocolo de amostragem.

#### 3.1.1.2 Macrófitos

Os macrófitos são utilizados na classificação da qualidade ecológica em todos os rios de pequena a média-grande dimensão. O termo macrófitos engloba toda a vegetação aquática visível a olho nu, que se estabelece dentro de água, bem como em zonas húmidas dulçaquícolas, abrangendo macroalgas, briófitos, pteridófitos e angiospérmicas.

A amostragem e a identificação deste elemento biológico devem ser realizadas de acordo com os procedimentos estabelecidos no respetivo manual de amostragem, considerando a versão mais recente, disponível em: <a href="https://www.apambiente.pt/dqa/macrofitos.html">https://www.apambiente.pt/dqa/macrofitos.html</a>. No manual podem ainda ser encontrados outros detalhes relativamente a este indicador de qualidade e a bibliografia de referência aplicável.

Os macrófitos são classificados através do Índice Biológico de Macrófitos de Rio (IBMR), adotado por Portugal e outros Estados-Membros no âmbito dos trabalhos de intercalibração. Este índice baseia-se na ocorrência e abundância no meio aquático de espécies indicadoras, isto é, espécies sensíveis a poluição associada sobretudo a nutrientes. Uma vez que o IBMR integra a composição e abundância de macrófitos, através da sua determinação é dada resposta aos requisitos impostos pela Diretiva Quadro da Água.

O índice é calculado com base no inventário florístico dos diversos grupos de macrófitos, depois de feita a identificação dos *taxa* presentes na área de amostragem e a estimativa da respetiva cobertura relativa.

O IBMR é calculado de acordo com a equação seguinte:

$$IBMR = \frac{\sum_{i=1}^{N} (CS_{i} \cdot E_{i} \cdot K_{i})}{\sum_{i=1}^{N} (E_{i} \cdot K_{i})}$$

Sendo:

**Abundância do** taxon ( $K_i$ ) - percentagem de cobertura do troço de amostragem pelo taxon i, traduzida numa escala de 0-100, ou seja, cobertura relativa do taxon i. Esta cobertura é depois transposta para 5 classes, para cálculo do índice;

**Valor trófico** (CS<sub>i</sub>) - valor indicador do taxon i; valores entre 0 e 20.

Coeficiente de Estenoecidade ( $E_i$ ) - valor indicador da amplitude ecológica do taxon i; valores entre 1 (reduzida amplitude) e 3 (elevada amplitude).

Os valores absolutos do IBMR variam entre 0 a 20, sendo os valores mais elevados correspondentes a situações de oligotrofia (superior a 14) e os valores mais baixos (inferiores a 8) correspondentes a águas muito eutrofizadas.

Após cálculo do índice, o valor obtido é transformado em Rácio de Qualidade Ecológica com base na equação abaixo, isto é, ponderando o valor obtido pelo valor de referência do tipo de rio em análise.

$$RQE = \frac{Valor\ observado}{Valor\ de\ referência}$$

O Quadro 3.3 apresenta os valores de referência e as fronteiras de qualidade do índice IBMR, em RQE, aplicáveis para a classificação do estado ecológico com base neste elemento de qualidade. Quando o valor do EQR corresponde ao valor-fronteira, considera-se a classe de qualidade superior (p.e., 0,920 no tipo M corresponde a Excelente).

Quadro 3.3 – Valores de referência e fronteiras de qualidade do índice IBMR, aplicáveis em rios.

| Tipo nacional               | Valor de<br>referência | Excelente/Bom | Bom/Razoável | Razoável/<br>Medíocre | Medíocre/Mau |
|-----------------------------|------------------------|---------------|--------------|-----------------------|--------------|
| M                           | 12,68                  | 0,920         | 0,690        | 0,460                 | 0,230        |
| N1 > 100 km2                | 12,68                  | 0,920         | 0,690        | 0,460                 | 0,230        |
| N1 ≤ 100 km2                | 12,68                  | 0,920         | 0,690        | 0,460                 | 0,230        |
| N2                          | 12,68                  | 0,920         | 0,690        | 0,460                 | 0,230        |
| N3                          | 12,68                  | 0,920         | 0,690        | 0,460                 | 0,230        |
| N4 <sup>(1)</sup>           | 12,68                  | 0,920         | 0,690        | 0,460                 | 0,230        |
| L <sup>(1)</sup>            | 12,00                  | 0,930         | 0,700        | 0,460                 | 0,230        |
| S1 > 100 km2 <sup>(1)</sup> | 12,00                  | 0,930         | 0,700        | 0,460                 | 0,230        |
| S1 ≤ 100 km2                | 12,00                  | 0,930         | 0,700        | 0,460                 | 0,230        |
| <b>S2</b>                   | 12,68                  | 0,920         | 0,690        | 0,460                 | 0,230        |
| <b>S3</b>                   | 12,00                  | 0,930         | 0,700        | 0,460                 | 0,230        |
| <b>S4</b>                   | 12,00                  | 0,930         | 0,700        | 0,460                 | 0,230        |

<sup>(1)</sup> Valores-guia.

Para atribuição da confiança à classificação obtida para este elemento de qualidade são considerados os critérios indicados no Quadro 3.4.

Quadro 3.4 - Níveis de confiança associados ao índice IBMR.

| Níve | is de confiança | Critério                                                                                                |  |  |  |
|------|-----------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | Muito elevada   | Resultados concordantes e com nível de confiança 2, em mais de 1 local ou<br>mais de 1 campanha por MA  |  |  |  |
| 2    | Elevada         | Mais de 9 <i>taxa</i> indicadores                                                                       |  |  |  |
| 3    | Média           | 6 a 8 <i>taxa</i> indicadores                                                                           |  |  |  |
| 4    | Ваіха           | 4 a 5 <i>taxa</i> indicadores                                                                           |  |  |  |
| 5    | Muito baixa     | 1 a 3 <i>taxa</i> indicadores ou resultados obtidos mais de 2 meses para além da<br>época de amostragem |  |  |  |

Importa notar que as classificações obtidas com três ou menos *taxa* indicadores devem ser utilizadas com muita reserva.

#### 3.1.1.3 Macroinvertebrados bentónicos

As comunidades de macroinvertebrados bentónicos presentes nos rios permitem detetar um largo conjunto de pressões, nomeadamente pressões associadas com poluição química e orgânica, mas também alterações hidromorfológicas e degradação em geral.

A amostragem e a identificação deste elemento biológico devem ser realizadas de acordo com os procedimentos estabelecidos no respetivo manual de amostragem, considerando a versão mais recente, disponível em: <a href="https://www.apambiente.pt/dqa/invertebrados-bentonicos.html">https://www.apambiente.pt/dqa/invertebrados-bentonicos.html</a>. No manual podem ainda ser encontrados outros detalhes relativamente a este indicador de qualidade e a bibliografia de referência aplicável.

Para avaliação da qualidade dos rios de pequena a média-grande dimensão, Portugal adotou o Índice Português de Invertebrados Norte (IPtIN) e o Índice Português de Invertebrados Sul (IPtIS), sendo o primeiro aplicável nos rios dos tipos M, N1 > 100 km², N1  $\leq$  100 km², N2, N3, N4 e S2 e o segundo aplicável nos rios dos tipos L, S1 > 100 km2, S1  $\leq$  100 km², S3 e S4. Estes índices foram desenvolvidos no âmbito do Exercício de Intercalibração. Ambos permitem a avaliação da degradação geral de uma massa de água na comunidade de macroinvertebrados.

Cada um destes índices resulta do somatório de várias métricas ponderadas que integram os aspetos requeridos pela DQA para as comunidades de macroinvertebrados bentónicos: composição, diversidade, abundância e presença/ausência de *taxa* sensíveis.

As fórmulas de cálculo de cada um dos índices são apresentadas de seguida:

- IPtI<sub>N</sub> = N.º taxa x 0,25 + EPT taxa x 0,15 + Evenness x 0,1 + (IASPT − 2) x 0,3 + Log (Sel. ETD+1) x 0,2
- IPtI<sub>s</sub> = N.º taxa x 0,4 + EPT x 0,2 + (IASPT − 2) x 0,2 + Log (Sel. EPTCD+1) x 0,2

Em que:

N.º taxa: N.º total de taxa (maioritariamente Famílias).

EPT taxa: N.º de Famílias pertencentes às ordens Ephemeroptera, Plecoptera, Trichoptera;

**Evenness** (ou **Equitabilidade**): Corresponde ao índice de Pielou, consistindo no índice de diversidade de Shannon-Wiener (H) dividido pela diversidade máxima possível com esse número de *taxa*, i.e. H/Hmax;

IASPT: ASPT Ibérico, que corresponde ao BMWP Ibérico dividido pelo n.º de famílias;

**Log (Sel. ETD+1):** Log10 de 1 + soma das abundâncias de indivíduos pertencentes às famílias Heptageniidae, Ephemeridae, Brachycentridae, Goeridae, Odontoceridae, Limnephilidae, Polycentropodidae, Athericidae, Dixidae, Dolichopodidae, Empididae, Stratiomyidae;

**Log (Sel. EPTCD+1):** Log10 de 1 + soma das abundâncias de indivíduos pertencentes às famílias Chloroperlidae, Nemouridae, Leuctridae, Leptophlebiidae, Ephemerellidae, Philopotamidae, Limnephilidae, Psychomyiidae, Sericostomatidae, Elmidae, Dryopidae, Athericidae.

No cálculo, são realizados dois passos de normalização:

- antes das métricas intermédias serem multiplicadas pelo factor de ponderação;
- 2) após o somatório das métricas ponderadas, para que o valor final venha expresso na forma de Rácio de Qualidade Ecológica (RQE).

O primeiro passo de normalização das métricas de qualidade tem por base os valores de referência apresentados no Quadro 3.5 e no Quadro 3.6, sendo feito o quociente entre o valor observado e o valor de referência.

Quadro 3.5 – Valores de referência das métricas do índice IPtI<sub>N</sub> em rios.

| Tipo nacional | Índice de qualidade | N.º taxa | EPT taxa | Evenness | IASPT-2 | Log(Sel ETD+1) |
|---------------|---------------------|----------|----------|----------|---------|----------------|
| M             | IPtI <sub>N</sub>   | 29,0     | 16,0     | 0,65     | 4,48    | 1,86           |
| N1 > 100 km2  | IPtI <sub>N</sub>   | 26,0     | 13,0     | 0,63     | 3,97    | 1,68           |
| N1 ≤ 100 km2  | IPtI <sub>N</sub>   | 30,0     | 16,0     | 0,71     | 4,52    | 1,95           |
| N2            | IPtI <sub>N</sub>   | 31,5     | 14,0     | 0,64     | 3,80    | 1,48           |
| N3            | IPtI <sub>N</sub>   | 39,0     | 18,0     | 0,61     | 4,17    | 2,00           |
| N4            | IPtI <sub>N</sub>   | 30,5     | 12,0     | 0,64     | 3,67    | 1,73           |
| S2            | IPtI <sub>N</sub>   | 26,0     | 10,5     | 0,56     | 3,73    | 1,32           |
| M             | IPtI <sub>N</sub>   | 29,0     | 16,0     | 0,65     | 4,48    | 1,86           |

Quadro 3.6 - Valores de referência das métricas do índice IPtI<sub>s</sub> em rios.

| Tipo nacional | Índice de qualidade | N.º taxa | EPT taxa | IASPT-2 | Log(Sel EPTCD+1) |
|---------------|---------------------|----------|----------|---------|------------------|
| L             | IPtl <sub>s</sub>   | 20,0     | 8,0      | 3,60    | 2,57             |
| S1 > 100 km2  | <b>IPtI</b> s       | 21,0     | 9,0      | 3,37    | 2,57             |
| S1 ≤ 100 km2  | <b>IPtI</b> s       | 27,0     | 10,0     | 3,29    | 2,48             |
| S3            | <b>IPtI</b> s       | 22,0     | 10,0     | 3,48    | 2,45             |
| S4            | <b>IPtl</b> s       | 27,0     | 10,0     | 3,29    | 2,48             |

No segundo passo de normalização do índice é considerado o valor de referência apresentado no Quadro 3.7, seguindo a mesma lógica de cálculo atrás descrita. O Quadro 3.7 apresenta os valores de referência e as fronteiras de qualidade dos índices IPtI<sub>N</sub> e IPtI<sub>S</sub>, em RQE, aplicáveis para a classificação do estado ecológico com base neste elemento de qualidade. Quando o valor do EQR corresponde ao valor-fronteira, considera-se a classe de qualidade superior (p.e., 0,860 no tipo M corresponde a Excelente).

Quadro 3.7 – Valores de referência e fronteiras de qualidade dos índices IPtI<sub>N</sub> e IPtI<sub>S</sub>, aplicáveis em rios.

| Tipo nacional | Índice de<br>qualidade | Valor de<br>referência | Excelente/<br>Bom | Bom/<br>Razoável | Razoável/<br>Medíocre | Medíocre/<br>Mau |
|---------------|------------------------|------------------------|-------------------|------------------|-----------------------|------------------|
| M             | IPtIN                  | 0,98                   | 0,860             | 0,600            | 0,400                 | 0,200            |
| N1 > 100 km2  | IPtIN                  | 1,00                   | 0,880             | 0,676            | 0,440                 | 0,220            |
| N1 ≤ 100 km2  | IPtIN                  | 1,02                   | 0,870             | 0,678            | 0,440                 | 0,220            |
| N2            | IPtIN                  | 1,01                   | 0,830             | 0,693            | 0,410                 | 0,200            |
| N3            | IPtIN                  | 1,01                   | 0,850             | 0,686            | 0,400                 | 0,200            |
| N4            | IPtIN                  | 1,00                   | 0,860             | 0,640            | 0,420                 | 0,210            |
| L             | IPtIS                  | 0,99                   | 0,820             | 0,560            | 0,380                 | 0,190            |
| S1 > 100 km2  | IPtIS                  | 0,98                   | 0,740             | 0,560            | 0,370                 | 0,190            |

| Tipo nacional | Índice de<br>qualidade | Valor de<br>referência | Excelente/<br>Bom | Bom/<br>Razoável | Razoável/<br>Medíocre | Medíocre/<br>Mau |
|---------------|------------------------|------------------------|-------------------|------------------|-----------------------|------------------|
| S1 ≤ 100 km2  | IPtIS                  | 0,98                   | 0,973             | 0,705            | 0,480                 | 0,240            |
| S2            | IPtIN                  | 0,99                   | 0,970             | 0,710            | 0,470                 | 0,230            |
| <b>S3</b>     | IPtIS                  | 1,05                   | 0,961             | 0,708            | 0,440                 | 0,220            |
| <b>S4</b>     | IPtIS                  | 0,99                   | 0,950             | 0,700            | 0,470                 | 0,230            |

Para atribuição da confiança à classificação obtida para este elemento de qualidade são considerados os critérios indicados no Quadro 3.8.

Quadro 3.8 – Níveis de confiança associados aos índices IPtI<sub>N</sub> e IPtI<sub>S</sub>.

| Nívei           | is de confiança | Critério                                                                                               |  |  |  |
|-----------------|-----------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| 1 Muito elevada |                 | Resultados concordantes e com nível de confiança 2, em mais de 1 local ou<br>mais de 1 campanha por MA |  |  |  |
| 2               | Elevada         | Resultados obtidos dentro da época de amostragem                                                       |  |  |  |
| 3               | Média           | Resultados obtidos até 1 mês fora da época de amostragem                                               |  |  |  |
| 4               | Ваіха           | Resultados obtidos mais de 1 mês para além do limite da época de amostragem                            |  |  |  |
| 5               | Muito baixa     | Resultados obtidos mais de 2 meses para além da época de amostragem                                    |  |  |  |

Os períodos de referência para a amostragem deste elemento de qualidade biológica são os referidos no respetivo protocolo de amostragem.

### 3.1.1.4 Fauna piscícola

No que respeita ao elemento de qualidade fauna piscícola, a sua utilização no âmbito da monitorização da qualidade tem como principais vantagens o facto de estas comunidades evidenciarem alterações a escalas temporais e espaciais alargadas, por comparação com os restantes elementos biológicos, bem como a relativa facilidade de identificação dos indivíduos até à espécie e o conhecimento existente sobre os mesmos. A comunidade piscícola apresenta respostas a pressões decorrentes de poluição orgânica, mas também pressões hidromorfológicas e ainda pressões biológicas.

A amostragem e a identificação deste elemento biológico devem ser realizadas de acordo com os procedimentos estabelecidos no respetivo manual de amostragem, considerando a versão mais recente, disponível em: <a href="https://www.apambiente.pt/dqa/fauna-piscicola.html">https://www.apambiente.pt/dqa/fauna-piscicola.html</a>. No manual podem ainda ser encontrados outros detalhes relativamente a este indicador de qualidade e a bibliografia de referência aplicável.

Para avaliação da fauna piscícola aplica-se o Índice Piscícola de Integridade Biótica para Rios Vadeáveis de Portugal Continental (F-IBIP). Apesar de originalmente desenvolvido apenas para troços de rio vadeáveis, como indica a sua designação, novos desenvolvimentos permitiram concluir

que este é igualmente aplicável a troços não vadeáveis, sendo assim utilizado em todos os tipos de rios com exceção dos grandes rios.

Os valores de referência e fronteiras de qualidade aplicáveis à fauna piscícola não têm por referência os tipos nacionais (tipologia de rios), mas sim uma tipologia específica denominada agrupamentos piscícolas. Nos rios de pequena a média-grande dimensão aplicam-se os grupos piscícolas 1 a 6. A correspondência é atribuída com base em Sistemas de Informação Geográfica, estando a informação cartográfica relativa aos agrupamentos piscícolas disponível aqui: <a href="https://www.apambiente.pt/dqa/fauna-piscicola.html">https://www.apambiente.pt/dqa/fauna-piscicola.html</a>

Os agrupamentos piscícolas determinam igualmente as métricas consideradas no cálculo do índice, sendo que a cada uma se aplicam valores de referência que permitem a sua interpolação e conversão em RQE (Quadro 3.9).

Quadro 3.9 – Valores de referência das métricas do índice F-IBIP em rios.

| Agrupamento | Métrica                                                   | Valor    | Valor    |
|-------------|-----------------------------------------------------------|----------|----------|
| piscícola   |                                                           | superior | inferior |
|             | % indivíduos intolerantes                                 | 100      | 0        |
| Grupo 1     | % indivíduos exóticos                                     | 0        | 30       |
|             | % indivíduos omnívoros                                    | 0        | 72       |
|             | % indivíduos exóticos                                     | 0        | 27       |
| Curren 2    | % indivíduos intolerantes+intermédios                     | 100      | 7        |
| Grupo 2     | % indivíduos invertívoros (excluindo espécies tolerantes) | 103      | 19       |
|             | % indivíduos potamódromos (só espécies nativas)           | 76       | 0        |
|             | n.º espécies nativas                                      | 5        | 2        |
| Grupo 3     | % indivíduos exóticos                                     | 0        | 30       |
|             | n.º espécies intolerantes+intermédias                     | 3        | 1        |
|             | % indivíduos exóticos                                     | 0        | 30       |
| Cruso 4     | % indivíduos intolerantes+intermédios                     | 112      | 55       |
| Grupo 4     | % indivíduos com reprodução generalista+                  | 15       | 87       |
|             | indivíduos sem reprodução em meio dulçaquícola            | 15       | 07       |
|             | % indivíduos exóticos                                     | 0        | 30       |
| Cruso F     | % espécies ciprinícolas intolerantes+intermédias          | 100      | 0        |
| Grupo 5     | % indivíduos invertívoros (excluindo espécies tolerantes) | 69       | 0        |
|             | % indivíduos litofílicos                                  | 99       | 0        |
|             | % indivíduos exóticos                                     | 0        | 40       |
| Grupo 6     | % indivíduos intolerantes+intermédios                     | 58       | 0        |
|             | % indivíduos pelágicos (espécies nativas)                 | 95       | 0        |

Para efeitos de cálculo é ainda necessário aplicar equações de correção com base na altitude à percentagem de indivíduos invertívoros (excluindo espécies tolerantes) para o Grupo 2, e à percentagem de indivíduos intolerantes intermédios para o Grupo 4, conforme apresentado abaixo:

Equação de correção para a métrica "% de indivíduos invertívoros (excluindo espécies tolerantes)" (% INV- excl. ET) para o Grupo 2:

• % INV-excl. ET = [% INV-excl. ET (não corrigido) - (-44,6 + (44,7 x LOG10 (Altitude))) + 85]

Equação de correção para a métrica "% de indivíduos intolerantes intermédios" (% INTOL-INTER) para o Grupo 4:

% INTOL-INTER = [% INTOL-INTER (não corrigido) - (7,3 + (34,0 x LOG10 (Altitude))) + 106]

A normalização de cada métrica é realizada de acordo com a seguinte fórmula:

$$\label{eq:metrica} \mbox{M\'etrica normalizada} = \frac{(\mbox{Valor observado} - \mbox{Valor inferior})}{(\mbox{Valor superior} - \mbox{Valor inferior})}$$

No caso das métricas que requerem a aplicação de equações de correção, acima referidas, a normalização é aplicada ao valor obtido após cálculo das correções em causa.

O valor final do índice F-IBIP resulta do somatório das métricas normalizadas aplicáveis em cada agrupamento piscícola, sendo as classes de qualidade atribuídas considerando os limiares apresentados no Quadro 3.10. Quando o valor do EQR corresponde ao valor-fronteira, considera-se a classe de qualidade superior (p.e., 0,850 corresponde a Excelente).

Quadro 3.10 – Fronteiras de qualidade do índice F-IBIP, aplicáveis em rios.

| Tipo nacional                                                                  | Agrupamento piscícola | Índice de<br>qualidade | Excelente/<br>Bom | Bom/<br>Razoável | Razoável/<br>Medíocre | Medíocre/<br>Mau |
|--------------------------------------------------------------------------------|-----------------------|------------------------|-------------------|------------------|-----------------------|------------------|
| M, N1 ≤ 100, N1 ><br>100, N2, N3, N4, L,<br>S1 ≤ 100, S1 > 100,<br>S2, S3 e S4 | Grupos 1 a 6          | F-IBIP                 | 0,850             | 0,675            | 0,450                 | 0,225            |

Para atribuição da confiança à classificação obtida para este elemento de qualidade são considerados os critérios indicados no Quadro 3.11.

Quadro 3.11 – Níveis de confiança associados aos índices F-IBIP e F-IBIP<sub>GR</sub>.

| Níveis de confiança |               | Critério                                                                                                 |  |  |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------|--|--|
| 1                   | Muito elevada | Resultados concordantes e com nível de confiança 2, em mais de 1 local ou<br>mais de 1 campanha por MA   |  |  |
| 2                   | Elevada       | Resultados representativos, dentro da época de amostragem                                                |  |  |
| 3                   | Média         | Resultados representativos, até 1 mês fora da época de amostragem                                        |  |  |
| 4                   | Ваіха         | Resultados representativos, mais de 1 mês fora da época de amostragem                                    |  |  |
| 5                   | Muito baixa   | Resultados não representativos ou resultados obtidos mais de 2 meses para<br>além da época de amostragem |  |  |

Os períodos de referência para a amostragem deste elemento de qualidade biológica são os referidos no respetivo protocolo de amostragem. No que respeita à representatividade, para aplicação do índice F-IBIP considera-se que a amostra é representativa da comunidade piscícola quando contempla um mínimo de 30 exemplares, excetuando-se as amostras provenientes de

cursos de água muito pouco produtivos do Grupo 1, onde se aceita um menor número de exemplares (10).

# 3.1.2 Elementos físico-químicos de suporte aos biológicos

No que respeita aos elementos físico-químicos gerais, os desenvolvimentos conseguidos ao longo do último ciclo de planeamento permitiram um grande aumento no número de parâmetros integrados no sistema de avaliação, bem como do número de fronteiras estabelecidas. Desta forma, estão incluídos no sistema de classificação parâmetros associados com todas as componentes requeridas no Anexo V da DQA.

Nos rios de pequena a média-grande dimensão, os limiares de qualidade foram definidos considerando os agrupamentos de tipos já anteriormente estabelecidos, que se baseiam na dureza da água. Considera-se assim o agrupamento Norte (<50 mg CaCO<sub>3</sub>/L), que integra os rios dos tipos M, N1  $\leq$  100 km², N1 > 100 km², N2, N3 e N4; e o agrupamento Sul (>50 mg CaCO<sub>3</sub>/L), que integra os rios dos tipos L, S1  $\leq$  100 km², S1 > 100 km², S2, S3 e S4 (Quadro 3.12).

Quadro 3.12 – Fronteiras de qualidade dos parâmetros físico-químicos gerais aplicáveis em rios.

| Grupo de                   | Parâmetro                                                               | Unidades              | Agrupamento Norte |            | Agrupamento Sul |             |  |
|----------------------------|-------------------------------------------------------------------------|-----------------------|-------------------|------------|-----------------|-------------|--|
| parâmetros                 |                                                                         |                       | Excelente/        | Bom/       | Excelente/      | Bom/        |  |
| parametros                 |                                                                         |                       | Bom               | Razoável   | Bom             | Razoável    |  |
|                            | Fósforo Total                                                           | mg P/l                | 0,05              | 0,10       | 0,07            | 0,13        |  |
|                            | Fosfatos                                                                | mg PO₄/l              | 0,10              | 0,20       | 0,20            | 0,40        |  |
|                            | Azoto Total                                                             | mg N/l                | 1,00              | 4,50       | 1,00            | 4,50        |  |
| Condições                  | <b>Azoto Amoniacal</b>                                                  | mg NH4/I              | 0,20              | 0,40       | 0,30            | 0,50        |  |
| relativas a                | Amoníaco                                                                | mg NH₃/I              |                   | 0,025      |                 | 0,025       |  |
| nutrientes                 | Nitrato                                                                 | mg NO₃/I              | 5,0               | 10,0       | 5,0             | 10,0        |  |
|                            | Nitritos                                                                | mg NO₂/I              | 0,01              | 0,20       | 0,03            | 0,20        |  |
|                            | Sólidos                                                                 | mg/l                  | 12,5              | 25,0       | 12,5            | 25,0        |  |
|                            | Suspensos Totais                                                        | 1116/1                | 12,3              | 23,0       | 12,3            | 23,0        |  |
| Our die West de            | Carência<br>Bioquímica em<br>Oxigénio aos 5<br>dias (CBO <sub>5</sub> ) | mg O₂/l               | 3,0               | 4,0        | 3,0             | 5,0         |  |
| Condições de<br>oxigenação | Oxigénio<br>Dissolvido                                                  | mg O₂/l               | 8,0-12,0          | 6,0        | 8,0-12,0        | 5,0         |  |
|                            | Taxa de<br>saturação em<br>Oxigénio                                     | % O2                  | 80 - 115          | 70 - 125   | 70 - 115        | 60 - 125    |  |
| Estado de<br>acidificação  | рН                                                                      | escala de<br>Sorensen | 6,5-8,5           | 6,0 - 9,0  | 6,5-8,5         | 6,0 - 9,0   |  |
| Condições<br>térmicas      | Temperatura                                                             | °C                    |                   | 6,5 - 25,5 |                 | 10,0 - 27,0 |  |
| Salinidade                 | Condutividade                                                           | μS/cm                 |                   | 250        |                 | 1000        |  |

Os limiares indicados aplicam-se à média anual das amostras recolhidas, preconizando-se a amostragem com frequência trimestral, tal como requerido no Anexo V da DQA.

Relativamente aos parâmetros pH, condutividade e temperatura, os limiares indicados podem ser ultrapassados caso ocorram naturalmente.

Importa ainda considerar que os parâmetros sólidos suspensos totais, condutividade e temperatura são integrados na avaliação da qualidade dos elementos físico-químicos gerais de forma complementar, sendo apenas considerados como penalizadores quando a qualidade inferior a Bom é igualmente verificada para outro dos parâmetros apresentados no Quadro 3.12.

Relativamente aos parâmetros amoníaco, condutividade e temperatura não foi ainda estabelecido o limiar para a classe de qualidade Excelente. Contudo, caso os restantes parâmetros físico-químicos gerais atinjam esse resultado, a massa de água deve ser classificada como Excelente no que respeita a este grupo de elementos.

Relativamente aos poluentes específicos, a respetiva lista e NQA aplicáveis podem ser consultadas no capítulo 7 deste documento.

## 3.1.3 Elementos hidromorfológicos de suporte aos biológicos

Para a avaliação dos elementos hidromorfológicos nos rios de pequena a média-grande dimensão aplica-se a metodologia *River Habitat Survey* (RHS, versão 2003; Raven *et al.* 1997) e os respetivos índices do estado do habitat ribeirinho, nomeadamente o *Habitat Modification Score* (HMS, versão 2003) e o *Habitat Quality Assessment* (HQA, versão 2.1). O HMS permite avaliar o grau de artificialização do leito e margens, enquanto o HQA corresponde a uma medida de riqueza, raridade, diversidade e naturalidade da estrutura física do sistema fluvial, integrando os atributos do leito e do corredor ribeirinho.

A metodologia RHS abrange indicadores hidromorfológicos relativos ao leito e margens e indicadores estruturais do corredor ribeirinho a recolher ao longo de um troço de 500 m de comprimento, abrangendo uma faixa de 50 m de cada lado do rio.

Esta metodologia é aplicada seguindo a documentação original, nomeadamente a versão de 2003 da ficha e o manual de campo do RHS. Os critérios para pontuação dos indicadores registados aquando do levantamento de dados encontram-se elencados no respetivo manual de amostragem e análise, disponível em <a href="https://www.apambiente.pt/dqa/hidromorfologia.html">https://www.apambiente.pt/dqa/hidromorfologia.html</a>

Os valores obtidos para o índice HMS não dependem das características do sistema fluvial, possibilitando por isso a comparação de resultados obtidos em cursos de água de tipos distintos.

No decorrer do 2.º ciclo foi realizada a revisão dos limiares aplicáveis para classificação dos elementos de qualidade hidromorfológicos em rios, passando a aplicar-se os valores apresentados no Quadro 3.13.

Quadro 3.13 – Fronteiras de qualidade dos índices HMS e HQA, aplicáveis em rios.

| Tine regional | Limites para a classe Excelente |      |  |
|---------------|---------------------------------|------|--|
| Tipo nacional | HQA                             | HMS  |  |
| M             | >61                             |      |  |
| N1≤100        | >68                             | 0-16 |  |
| N1>100        | >60                             |      |  |
| N2            | >61                             |      |  |

| Tine perional | Limites para a classe Excelente |     |
|---------------|---------------------------------|-----|
| Tipo nacional | HQA                             | HMS |
| N3            | >65                             |     |
| N4            | >60                             | ]   |
| L             | >53                             |     |
| S1≤100        | >60                             |     |
| S1>100        | >60                             |     |
| S2            | >60                             |     |
| \$3           | >60                             |     |
| S4            | >55                             |     |

Após determinação dos índices de qualidade HQA e HMS, a classificação dos elementos de qualidade hidromorfológicos para a estação de amostragem em análise corresponderá à classe mais penalizadora, dentre as duas.

O número de Registos Nulos (RN) ou *Not visible* (NV) obtidos durante um recenseamento poderão ter um efeito significativo no valor final do índice HQA, reduzindo-o. Deste modo quando se apresentam resultados de classificações baseadas no HQA, estas devem ser acompanhadas com uma indicação do número de RN ou NV.

Para atribuição da confiança à classificação obtida para este elemento de qualidade são considerados os critérios indicados no Quadro 3.14, consoante o número de RN ou NV.

Quadro 3.14 - Níveis de confiança associados ao índice HQA.

| Níveis de confiança |               | Critério   |
|---------------------|---------------|------------|
| 1                   | Muito elevada | 0 a 1      |
| 2                   | Elevada       | 2 a 3      |
| 3                   | Média         | 4 a 9      |
| 4                   | Baixa         | 10 a 19    |
| 5                   | Muito baixa   | 20 ou mais |

#### 3.2 Grandes rios

Os sistemas de classificação aplicáveis em grandes rios são de desenvolvimento recente, resultando dos trabalhos realizados durante 2019 ao abrigo do projeto financiado pelo POSEUR atrás referido. A reduzida representatividade que estes rios têm a nível nacional (englobando apenas massas de água correspondentes aos rios Minho, Tejo e Guadiana) e a magnitude de pressões a que estão sujeitos têm impossibilitado a definição de situações de referência e consequentemente de sistemas de classificação robustos. Seguindo um trabalho recente de Borgwardt *et al.* (2019), optou-se neste

contexto por considerar conjuntamente os três tipos de grandes rios, sem diferenciação nos respetivos limiares, salvo exceções pontuais para os elementos físico-químicos gerais.

No que respeita sobretudo aos elementos de qualidade biológicos e hidromorfológicos as bases de dados disponíveis para efeitos de estabelecimento de limiares são ainda assim reduzidas, pelo que os sistemas estabelecidos poderão ser sujeitos a ajustes no curto a médio prazo.

Os sistemas de classificação desenvolvidos para os elementos de qualidade biológicos em grandes rios estão sujeitos aos procedimentos associados aos exercícios de intercalibração. Para fitoplâncton, fitobentos e macroinvertebrados bentónicos os respetivos processos de intercalibração estão em fase de finalização, enquanto no caso da fauna piscícola o processo de intercalibração se encontra numa fase mais inicial. Desta forma, destes processos pode ainda resultar a necessidade de futura revisão de limiares. Importa ainda notar que todos os sistemas de classificação desenvolvidos para os elementos de qualidade biológicos abrangem os indicadores requeridos no contexto da intercalibração, respeitando os requisitos normativos da DQA.

Os critérios de classificação descritos de seguida aplicam-se às massas de água naturais. Em massas de água fortemente modificadas devem ser considerados estes mesmos sistemas de classificação, mas a avaliação do potencial ecológico é feita tendo por base a abordagem descrita no Capítulo 4.

## 3.2.1 Elementos de qualidade biológicos

# 3.2.1.1 Fitoplâncton

O fitoplâncton apresenta ciclos de vida curtos (4/5 dias) e obtém os nutrientes necessários para o seu desenvolvimento diretamente da coluna de água, sendo o indutor e direto indicador biológico de alterações da concentração de nutrientes na coluna de água e de pressões associadas ao processo de eutrofização. A comunidade fitoplanctónica apresenta elevada sensibilidade a alterações de pequena escala nas condições ambientais, sendo a sua dinâmica, biomassa, composição e abundância regulados pelos seguintes fatores:

- Condições físicas e hidrológicas: luz, temperatura, tempo de residência da água, profundidade, área do espelho de água, volume;
- Características químicas da água: nutrientes e matéria orgânica, pH, alcalinidade, dureza, etc.;
- Fatores biológicos: filtradores planctófagos (zooplâncton e ictiofauna) e relações entre espécies (e.g. competição, efeito alelopático).

Nos rios de pequena a média-grande dimensão o caráter lótico das massas de água impossibilita o estabelecimento de comunidades fitoplânctónicas relevantes e que possam ser consideradas como indicadoras da qualidade da água. Nos grandes rios, por outro lado, o caráter mais lêntico dos sistemas permite que as comunidades sejam suficientemente estáveis e complexas.

A amostragem e a identificação deste elemento biológico devem ser realizadas de acordo com os procedimentos estabelecidos no respetivo manual de amostragem, considerando a versão mais recente, disponível em: <a href="https://www.apambiente.pt/dqa/fitoplancton.html">https://www.apambiente.pt/dqa/fitoplancton.html</a>. No manual podem ainda ser encontrados outros detalhes relativamente a este indicador de qualidade e a bibliografia de referência aplicável.

A avaliação é feita considerando seis amostragens, distribuídas da seguinte forma: três amostras recolhidas no verão e uma amostra em cada uma das restantes estações do ano.

Nos grandes rios a avaliação da qualidade com recurso ao elemento de qualidade fitoplâncton é feita pela aplicação do mesmo índice multimétrico aplicável em albufeiras, embora sejam aplicados valores de referência e limiares específicos para estes tipos de massas de água. Aplica-se assim o índice NMARSP (Novo Índice Mediterrânico de Avaliação do Fitoplâncton em Albufeiras), desenvolvido no decorrer dos trabalhos de intercalibração deste elemento de qualidade no âmbito do Grupo de Intercalibração Geográfico dos Lagos Mediterrânicos.

O NMARSP integra quatro métricas: duas de biomassa (clorofila *a* e biovolume total) e duas de composição e abundância (biovolume de cianobactérias e o Índice de Grupos de Algas), o que permite responder aos requisitos da DQA.

O cálculo do índice NMARSP envolve uma série de passos, sequenciais, listados abaixo:

- i. Cálculo de métricas que integram o índice NMARSP;
- ii. Cálculo dos Rácios de Qualidade Ecológica;
- iii. Transformação dos RQE em escalas numéricas equivalentes;
- iv. Cálculo do índice NMARSP.

#### i. Cálculo de métricas que integram o índice NMARSP

Dentro das métricas de biomassa, a concentração de clorofila a corresponde a uma medida indireta da biomassa fitoplanctónica, através da medição da concentração deste pigmento fotossintético, enquanto o biovolume total corresponde ao volume celular total das espécies fitoplanctónicas presentes na amostra. Cada uma destas métricas é calculada através da média dos respetivos resultados obtidos nas seis amostras anuais.

Relativamente às métricas de composição e abundância, o biovolume de cianobactérias permite avaliar, ainda que de forma rudimentar, a frequência e intensidade de *blooms* fitoplanctónicos. Corresponde ao biovolume que é atribuído às espécies de Cianobactérias, excluindo as espécies de *Chroococcales*, exceto os géneros *Microcystis* e *Woronichinia*, que devem ser contabilizados. O resultado desta métrica é igualmente calculado através da média dos resultados obtidos nas seis amostras anuais.

Nas métricas de composição e abundância inclui-se ainda o Índice de Grupo de Algas (IGA) (Catalan *et al.*, 2003), que é baseado em proporções de biovolume de distintos grupos fitoplanctónicos, atribuindo pesos e comparando os grupos de algas caraterísticos de sistemas eutróficos e grupos associados a ambientes menos produtivos.

O cálculo do IGA é efetudo para cada amostra aplicando a seguinte fórmula:

$$IGA = \frac{1 + 0.1 * Cr + Cc + 2 * (Dc + Chc) + 3 * Vc + 4 * Cia}{1 + 2 * (D + Cnc) + Chnc + Dnc}$$

Sendo:

D - Dinophyceae

Cnc - Chrysophyceae não coloniais
 Chnc - Chlorococcales não coloniais
 Dnc - Bacillariophyceae não coloniais

*Cr* - Cryptophyceae

Cc - Chrysophyceae coloniais
 Dc - Bacillariophyceae coloniais
 Chc - Chlorococcales coloniais

*Vc* - Volvocales coloniais

Cyanobacteria, em que "Cyanobacteria" corresponde a todas as espécies de cianobactérias, incluíndo as Chroococcales

A métrica é calculada através da média dos resultados das amostras anuais, devendo, contudo, notar-se que apenas serão integrados nesta média os resultados das amostras em que os grupos representados no IGA somam 70% ou mais do biovolume total. Assim, previamente ao cálculo do valor médio da métrica é necessário aferir, amostra a amostra, se o somatório dos biovolumes dos grupos considerados no IGA são inferiores ou superiores a 70% do biovolume total da amostra.

Caso não seja possível determinar o IGA para nenhuma das amostras, esta métrica não entrará no cálculo final do índice multimétrico.

#### ii. Cálculo dos Rácios de Qualidade Ecológica

O valor obtido para cada uma das métricas é seguidamente convertido em Rácio de Qualidade Ecológica, aplicando-se diferentes equações conforme a métrica em causa.

• Para a clorofila α, biovolume total e biovolume de cianobactérias, aplica-se a seguinte equação:

$$RQE = \frac{Valor\ Referência}{Valor\ Obtido}$$

• Para a métrica **Índice de Grupo de algas** (IGA) aplica-se a seguinte equação:

$$RQE = \frac{(400 - Valor\ Obtido)}{(400 - Valor\ Referência)}$$

Os valores de referência a considerar são os apresentados no Quadro 3.15.

Quadro 3.15 – Valores de referência das métricas e fronteira Bom/Razoável do índice NMARSP em grandes rios.

| Métrica                             | Valor de Referência | Bom/Razoável |
|-------------------------------------|---------------------|--------------|
| Clorofila a (mg/m³)                 | 1,10                | 7,83         |
| Biovolume total (mm³/L)             | 0,15                | 3,02         |
| Biovolume de Cianobactérias (mm³/L) | 0,001               | 1,45         |
| IGA                                 | 1,13                | 6,90         |

Neste passo importa notar que, sempre que o valor obtido da métrica é inferior ao valor de referência, deve ser-lhe atribuído um RQE igual a 1. Adicionalmente, no caso particular dos biovolumes de cianobactérias, todos os valores iguais a zero (ausência de cianobactérias) correspondem também a um RQE igual a 1.

#### iii. Transformação dos RQE em escalas numéricas equivalentes

Após o cálculo dos RQE das diferentes métricas é necessário normalizar os respetivos valores, de forma a torná-los comparáveis. A normalização dos RQE para cada métrica é efetuada através das transformações indicadas de seguida.

#### Para a métrica clorofila a

| Se o valor obtido (bruto) ≥ 7,83 (mg/m³): | RQE Normalizado = 4,2709 x RQE            |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 7,83 (mg/m³): | RQE Normalizado = (0,4654 x RQE) + 0,5346 |

#### Para a métrica Biovolume Total

| Se o valor obtido (bruto) ≥ 3,02 (mm³/L): | RQE Normalizado = 12,08 x RQE             |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 3,02 (mm³/L): | RQE Normalizado = (0,4209 x RQE) + 0,5791 |

#### Para a métrica Biovolume de Cianobactérias

| Se o valor obtido (bruto) ≥ 1,45 (mm³/L): | RQE Normalizado = 870,0 x RQE             |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 1,45 (mm³/L): | RQE Normalizado = (0,4003 x RQE) + 0,5997 |

#### Para a métrica Índice de Grupo de algas (IGA)

| Se o valor obtido (bruto) ≥ 6,90: | RQE Normalizado = 0,6088 x RQE              |  |
|-----------------------------------|---------------------------------------------|--|
| Se o valor obtido (bruto) < 6,90: | RQE Normalizado = (27,6513 x RQE) – 26,6513 |  |

- ➤ Para a determinação do RQE normalizado da componente biomassa é calculada a média aritmética entre os valores dos RQE normalizados da concentração de clorofila *a* e do biovolume total.
- O cálculo do RQE normalizado da componente composição e abundância é efetuado através da determinação da média aritmética entre os valores dos RQE normalizados do biovolume de cianobactérias e do índice de grupo de algas (IGA).

#### iv. Cálculo do índice NMARSP

Por fim, o cálculo do índice NMARSP é obtido através do cálculo da média aritmética da componente Biomassa, da média aritmética da componente Composição e Abundância e, finalmente, da média aritmética dos resultados destas duas componentes:

- 1. Para a determinação do RQE normalizado da componente Biomassa é calculada a média aritmética entre os valores dos RQE normalizados da concentração de clorofila *a* e do biovolume total.
- 2. O Cálculo do RQE normalizado da componente Composição e Abundância é efetuada através da determinação da média aritmética entre os valores dos RQE normalizados do biovolume de cianobactérias e do índice de grupo de algas (IGA). Em consequência das regras de cálculo aplicáveis ao IGA, podem ser obtidos resultados em que a componente

Composição e Abundância apenas é representada pela métrica biovolume de cianobactérias.

3. O resultado final do NMARSP obtém através do cálculo da média aritmética entre os valores de RQEs normalizados das componentes Biomassa e Composição e Abundância.

No Quadro 3.16 são apresentados os valores de fronteira para as classes de qualidade do índice NMARSP, expressos em RQE, para os grandes rios. Quando o valor do EQR corresponde ao valor-fronteira, considera-se a classe de qualidade superior (p.e., 0,80 corresponde a Excelente).

Quadro 3.16 – Fronteiras de qualidade do índice NMARSP em grandes rios.

| Tipo nacional                   | Excelente/ Bom | Bom/ Razoável | Razoável/ Mediocre | Medíocre/ Mau |
|---------------------------------|----------------|---------------|--------------------|---------------|
| GR Norte<br>GR Centro<br>GR Sul | 0,80           | 0,60          | 0,40               | 0,20          |

Para atribuição da confiança à classificação obtida para este elemento de qualidade são considerados os critérios indicados no Quadro 3.17.

Quadro 3.17 – Níveis de confiança associados ao índice NMARSP em grandes rios.

|   | Níveis de<br>confiança                                                                        | Critério                                                                                                                                                                                                       |  |  |  |
|---|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1 | 1 Muito elevada • Resultados concordantes e com nível de confiança 2, em mais de 1 ano por MA |                                                                                                                                                                                                                |  |  |  |
| 2 | Elevada                                                                                       | • 6 amostragens/ano (pelo menos 1 no outono, 1 no inverno, 1 na primavera, 3 no verão)                                                                                                                         |  |  |  |
| 3 | Média                                                                                         | <ul> <li>5 amostragens/ano</li> <li>(1 no outono, 1 no inverno, 1 na primavera, 2 no verão)</li> </ul>                                                                                                         |  |  |  |
| 4 | Ваіха                                                                                         | <ul> <li>4 amostragens/ano         (1 no outono, 1 no inverno, 1 na primavera, 1 no verão)</li> <li>4 ou 5 amostragens/ano         (distribuídas sem abranger o outono ou o inverno ou a primavera)</li> </ul> |  |  |  |
| 5 | Muito baixa                                                                                   | Número menor de amostras ou com outro tipo de distribuição pelas estações do ano                                                                                                                               |  |  |  |

## 3.2.1.2 Fitobentos – diatomáceas

Para os grandes rios, à semelhança do atrás referido para os rios de pequena a média-grande dimensão, a avaliação do fitobentos é feita com recurso ao grupo das diatomáceas, tendo por base os mesmos princípios teóricos, protocolos de amostragem e identificação, índice de qualidade – o Índice de Poluossensibilidade Específica (IPS) – e níveis de confiança.

Assim, importa apenas referir de forma específica o valor de referência e limiares de qualidade aplicáveis nestes tipos de rios, que constam no Quadro 3.18. Quando o valor do EQR corresponde ao valor-fronteira, considera-se a classe de qualidade superior (p.e., 0,900 corresponde a Excelente).

Quadro 3.18 – Fronteiras de qualidade do índice IPS em grandes rios.

| Tipo<br>nacional | Valor de<br>referência | Excelente/<br>Bom | Bom/<br>Razoável | Razoável/<br>Medíocre | Medíocre/<br>Mau |
|------------------|------------------------|-------------------|------------------|-----------------------|------------------|
| GR Norte         |                        |                   |                  |                       |                  |
| GR Centro        | 18,4                   | 0,900             | 0,670            | 0,450                 | 0,220            |
| GR Sul           |                        |                   |                  |                       |                  |

Os critérios para atribuição de níveis de confiança são os que constam na secção relativa aos rios de pequena a média-grande dimensão.

#### 3.2.1.3 Macroinvertebrados bentónicos

Nos grandes rios a amostragem de macroinvertebrados bentónicos difere da realizada para os rios de pequena a média-grande dimensão, devendo ser aplicados os procedimentos específicos descritos no respetivo manual de amostragem, considerando a versão mais recente, disponível em: <a href="https://www.apambiente.pt/dqa/invertebrados-bentonicos.html">https://www.apambiente.pt/dqa/invertebrados-bentonicos.html</a>. No manual podem ainda ser encontrados outros detalhes relativamente a este indicador de qualidade e a bibliografia de referência aplicável.

A avaliação da qualidade ecológica é feita com recurso ao Índice Português de Invertebrados Norte (IPtI<sub>N</sub>), cuja fórmula é atrás apresentada, na secção relativa aos rios de pequena a média-grande dimensão. O primeiro passo de normalização das métricas de qualidade tem por base os valores de referência apresentados no Quadro 3.19, sendo feito o quociente entre o valor observado e o valor de referência.

Quadro 3.19 – Fronteiras de referência das métricas do índice IPtI<sub>N</sub> em grandes rios.

| Tipo nacional                   | N.º taxa | EPT taxa | Evenness | IASPT-2 | Log(Sel ETD+1) |
|---------------------------------|----------|----------|----------|---------|----------------|
| GR Norte<br>GR Centro<br>GR Sul | 31,5     | 15,0     | 0,61     | 4,42    | 1,70           |

No segundo passo de normalização do índice é considerado o valor de referência apresentado no Quadro 3.20, seguindo a mesma lógica de cálculo atrás descrita. Nesta tabela são ainda apresentados os limiares de qualidade aplicáveis para classificação deste elemento de qualidade em grandes rios. Quando o valor do EQR corresponde ao valor-fronteira, considera-se a classe de qualidade superior (p.e., 0,849 corresponde a Excelente).

Quadro 3.20 – Fronteiras de qualidade do índice IPtI<sub>N</sub> em grandes rios.

| Tipo<br>nacional | Valor de<br>referência | Excelente/<br>Bom | Bom/<br>Razoável | Razoável/<br>Medíocre | Medíocre/<br>Mau |
|------------------|------------------------|-------------------|------------------|-----------------------|------------------|
| GR Norte         |                        |                   |                  |                       |                  |
| GR Centro        | 0,992                  | 0,849             | 0,637            | 0,425                 | 0,212            |
| GR Sul           |                        |                   |                  |                       |                  |

Os critérios para atribuição de níveis de confiança são os que constam na secção relativa aos rios de pequena a média-grande dimensão.

## 3.2.1.4 Fauna piscícola

Para efeitos de classificação do elemento de qualidade fauna piscícola foi desenvolvido um índice de qualidade conceptualmente similar ao índice F-IBIP, sendo este designado por Índice de Integridade Biótica para Grandes rios (F-IBIP<sub>GR</sub>).

Para caracterização da fauna piscícola em grandes rios são aplicados métodos de amostragem específicos, devendo os mesmos ser consultados no respetivo manual de amostragem, considerando a versão mais recente, disponível em: <a href="https://www.apambiente.pt/dqa/fauna-piscicola.html">https://www.apambiente.pt/dqa/fauna-piscicola.html</a>. No manual podem ainda ser encontrados outros detalhes relativamente a este indicador de qualidade e a bibliografia de referência aplicável.

Tal como no caso dos rios de pequena a média-grande dimensão, também neste caso os valores de referência e fronteiras de qualidade aplicáveis à fauna piscícola estão indexados a agrupamentos piscícolas, constituindo os grandes rios o 7.º grupo piscícola definido para os rios de Portugal continental. As métricas aplicáveis neste grupo, bem como os respetivos valores de referência que permitem a sua interpolação e conversão em RQE são os apresentados no Quadro 3.21.

Quadro 3.21 – Valores de referência das métricas do F-IBIP<sub>GR</sub> em grandes rios.

| Agrupamento piscícola | Métrica                                      | Valor superior | Valor inferior |
|-----------------------|----------------------------------------------|----------------|----------------|
|                       | % espécies diádromas nas espécies nativas    | 46             | 0              |
| Grupo 7               | % indivíduos nativos                         | 80             | 0              |
| (GR Norte, GR         | % indivíduos exóticos omnívoros e tolerantes | 0              | 64             |
| Centro, GR Sul)       | % espécies potamódromos nas espécies nativas | 46             | 0              |
|                       | n.º espécies nativas                         | 4              | 0              |

O valor final do índice F-IBIP<sub>GR</sub> resulta do somatório das métricas normalizadas e a classificação resulta dos limitares apresentados no Quadro 3.22. Quando o valor do EQR corresponde ao valor-fronteira, considera-se a classe de qualidade superior (p.e., 0,860 corresponde a Excelente).

Quadro 3.22 - Fronteiras de qualidade do índice F-IBIPGR, aplicáveis em grandes rios.

| Tipo nacional                  | Agrupamento piscícola                       | Índice de<br>qualidade | Excelente/<br>Bom | Bom/<br>Razoável | Razoável/<br>Medíocre | Medíocre/<br>Mau |
|--------------------------------|---------------------------------------------|------------------------|-------------------|------------------|-----------------------|------------------|
| GR Norte, GR<br>Centro, GR Sul | Grupo 7<br>(GR Norte, GR<br>Centro, GR Sul) | F-IBIP <sub>GR</sub>   | 0,860             | 0,600            | 0,400                 | 0,200            |

Os critérios para atribuição de níveis de confiança são os que constam na secção relativa aos rios de pequena a média-grande dimensão.

## 3.2.2 Elementos físico-químicos de suporte aos biológicos

Para os grandes rios foram desenvolvidos limiares para todas as componentes requeridas no Anexo V da DQA, conforme consta no Quadro 3.23.

Quadro 3.23 – Fronteiras de qualidade dos parâmetros físico-químicos gerais aplicáveis em grandes rios.

| Course de              |                                                                   |                       | Grandes rios                    |            |            |
|------------------------|-------------------------------------------------------------------|-----------------------|---------------------------------|------------|------------|
| Grupo de parâmetros    | Parâmetro                                                         | unidades              | Tipo nacional                   | Excelente/ | Bom/       |
| parametros             |                                                                   |                       | ripo nacionai                   | Bom        | Razoável   |
|                        | Fósforo Total                                                     | mg P/I                | GR Norte (rio Minho)            | 0,05       | 0,10       |
|                        | rusiulu lutai                                                     | IIIg F/I              | GR Centro e GR Sul              | 0,07       | 0,13       |
|                        | Fosfatos                                                          | mg PO <sub>4</sub> /I |                                 | 0,10       | 0,20       |
| Condições              | Azoto Total                                                       | mg N/I                |                                 | 1,50       | 2,00       |
| relativas a            | Azoto Amoniacal                                                   | mg NH <sub>4</sub> /I |                                 | 0,07       | 0,15       |
| nutrientes             | Amoníaco                                                          | mg NH₃/l              |                                 | -          | 0,025      |
|                        | Nitrato                                                           | mg NO₃/I              |                                 | 5,0        | 8,0        |
|                        | Nitritos                                                          | mg NO <sub>2</sub> /I |                                 | 0,03       | 0,08       |
|                        | Sólidos Suspensos Totais                                          |                       |                                 | 12,5       | 25,0       |
| Condições              | Carência Bioquímica em<br>Oxigénio aos 5 dias (CBO <sub>5</sub> ) | mg O <sub>2</sub> /I  | GR Norte, GR Centro e<br>GR Sul | 3,0        | 4,0        |
| de                     | Oxigénio Dissolvido                                               | mg O <sub>2</sub> /I  |                                 | 8,0-12,0   | 6,0        |
| oxigenação             | Taxa de saturação em<br>Oxigénio                                  | % O2                  |                                 | 80 -115    | 70 - 125   |
| Estado de acidificação | рН                                                                | escala de<br>Sorensen |                                 | 6,5-8,5    | 6,0-9,0    |
| Condições<br>térmicas  | Temperatura                                                       | °C                    |                                 |            | 8,5 - 23,5 |
|                        |                                                                   |                       | GR Norte (rio Minho)            |            | 150        |
| Salinidade             | Condutividade                                                     | μS/cm                 | GR Centro                       |            | 500        |
|                        |                                                                   |                       | GR Sul                          |            | 600        |

As regras de agregação e classificação dos parâmetros físico-químicos gerais aplicáveis em grandes rios são as mesmas atrás apresentadas para os rios de pequena a média-grande dimensão, referidas no ponto 3.1.2. Relativamente aos poluentes específicos, a respetiva lista e NQA aplicáveis podem ser consultadas no capítulo 7 deste documento.

# 3.2.3 Elementos hidromorfológicos de suporte aos biológicos

Para grandes rios foi desenvolvida uma metodologia de caracterização hidromorfológica adaptada às suas características particulares. Esta metodologia integra informação recolhida em gabinete e no terreno e permite desta forma caracterizar indicadores relacionados com continuidade, morfologia, regime hidrológico e outros indicadores de pressão. Os métodos adotados resultam da adaptação de metodologias de caracterização hidromorfológica internacionais, incluindo algumas componentes da metodologia RHS.

O trabalho de gabinete consiste na recolha de informações cartográficas, dados de fontes oficiais e análise dos dados recolhidos (gabinete e campo), de forma caraterizar os diferentes elementos hidromorfológicos. A generalidade das análises são feitas com recurso a Sistemas de Informação Geográfica e folhas de cálculo. O trabalho de campo segue a mesma lógica de avaliação aplicada no *River Habitat Survey* e assenta na caracterização de variáveis hidromorfológicas do leito e variáveis estruturais do corredor ribeirinho, ao longo de um troço de aproximadamente 2000 m de comprimento.

A classificação é feita através da determinação do Índice de Qualidade Hidromorfológica para Grandes Rios (IQH<sub>GR</sub>), que resulta da conversão dos dados relativos aos indicadores recenseados num gradiente de qualidade dividido em 5 classes. Para este efeito, a cada indicador é atribuída uma pontuação, de 1 a 5. A metodologia de amostragem, bem como as regras para atribuição das pontuações a cada indicador de qualidade constam do respetivo manual de amostragem e análise, disponível em <a href="https://www.apambiente.pt/dqa/hidromorfologia.html">https://www.apambiente.pt/dqa/hidromorfologia.html</a> A pontuação final obtida para o IQH<sub>GR</sub> corresponde ao somatório das pontuações dos vários indicadores, conforme explicitado no mesmo manual, sendo a classificação feita de acordo com os valores apresentados no Quadro 3.24.

Quadro 3.24 - Fronteiras de qualidade do índice IQHGR, aplicáveis em grandes rios.

| Tine residue! | Limites para a classe Excelente |
|---------------|---------------------------------|
| Tipo nacional | IQH <sub>GR</sub>               |
| GR Norte      |                                 |
| GR Centro     | 0 – 20                          |
| GR Sul        |                                 |

Para atribuição da confiança à classificação obtida para este elemento de qualidade são considerados os critérios indicados no Quadro 3.25, consoante o número de RN ou NV.

Quadro 3.25 – Níveis de confiança associados ao índice IQH<sub>GR</sub>.

| Níveis de confiança |               | Critério   |
|---------------------|---------------|------------|
| 1                   | Muito elevada | 0 a 1      |
| 2                   | Elevada       | 2 a 3      |
| 3                   | Média         | 4 a 9      |
| 4                   | Ваіха         | 10 a 19    |
| 5                   | Muito baixa   | 20 ou mais |

# 4. Sistemas de classificação do potencial ecológico – águas interiores

Os elementos de qualidade aplicáveis às massas de água fortemente modificadas são os aplicáveis à categoria de águas de superfície naturais que mais se assemelha à massa de água em questão. No caso das águas interiores, as massas de água fortemente modificadas lóticas são assim avaliadas

considerando os elementos aplicáveis em rios, enquanto as massas de água fortemente modificadas lênticas (albufeiras) são classificadas considerando os elementos aplicáveis em lagos.

## 4.1 Rios e grandes rios

Por definição, a avaliação do potencial ecológico está interligada com a implementação de medidas de mitigação e os seus efeitos sobre os ecossistemas. Esta interdependência é reforçada no Documento-Guia n.º 37 da Estratégia Comum de Implementação da DQA publicado em 2019 (CIS WFD, 2019), preconizando-se aí duas vias alternativas para o estabelecimento e avaliação das condições associadas com o potencial ecológico, ambas envolvendo a identificação e implementação de medidas, bem como a monitorização e avaliação dos elementos de qualidade aplicáveis.

Neste contexto, a avaliação do potencial ecológico em todos os tipos de rios engloba duas etapas principais:

- Avaliação dos elementos de qualidade biológicos, físico-químicos e hidromorfológicos, aplicando-se os limiares estabelecidos para as massas de água naturais;
- Avaliação da implementação das medidas de mitigação pertinentes, considerando o definido no Documento-Guia n.º 37 (CIS WFD, 2019), acima referido.

O esquema geral de combinação das duas componentes é ilustrado pela Figura 4.1. De forma geral, verificando-se a implementação das medidas de mitigação pertinentes, o resultado de qualidade obtido na avaliação do estado ecológico é majorado em uma classe; na sua ausência, a classificação da qualidade mantém-se tal como resulta da avaliação do estado ecológico.

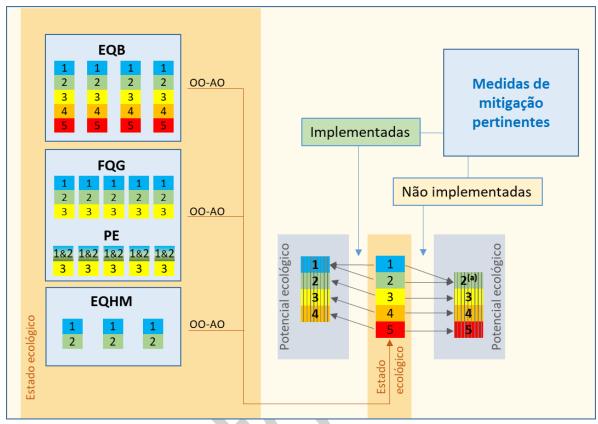



Figura 4.1 – Esquema conceptual do processo de avaliação do potencial ecológico das massas de água fortemente modificadas lóticas da categoria rios.

(a)Na ausência de medidas de mitigação implementadas, ainda que a massa de água atinja classes de qualidade compatíveis com o bom potencial ecológico é considerada como estando em risco de não atingir os objetivos de qualidade. (EQB – elementos de qualidade biológicos; FQG elementos físico-químicos gerais; PE – poluentes específicos; EQHM – elementos de qualidade hidromorfológicos; OO-AO – princípio "One out, all out")

Ressalva-se que, para a revisão da designação das massas de água fortemente modificadas, são considerados os resultados de qualidade obtidos, bem como as medidas de mitigação pertinentes, estando esta abordagem descrita em detalhe no documento Critérios para a identificação e designação das massas de água fortemente modificadas.

#### 4.2 Albufeiras

Para esta categoria de massas de água procedeu-se, ao longo do último ciclo de planeamento, ao estabelecimento de limiares para a classificação do elemento de qualidade fitoplâncton também em albufeiras dos tipos Sul e Curso Principal, alargando assim os limiares a todos os tipos de albufeira. No que respeita aos elementos físico-químicos gerais, foram definidos limiares para novos parâmetros e revistos os limiares já existentes. Procedeu-se ainda à identificação de indicadores de qualidade hidromorfológica, nos quais se inclui igualmente a implementação de medidas de mitigação.

Nas albufeiras aplica-se apenas o conceito de potencial ecológico, dado o seu caráter fortemente modificado, não existindo por isso a classe de qualidade excelente. Foram, no entanto, estabelecidos limiares para o máximo potencial ecológico, seguindo as definições normativas da DQA.

## 4.2.1 Elementos de qualidade biológicos

# 4.2.1.1 Fitoplâncton

A avaliação da qualidade com recurso ao elemento de qualidade fitoplâncton é feita pela aplicação do índice NMARSP, desenvolvido no decorrer dos trabalhos de intercalibração deste elemento de qualidade no âmbito do Grupo de Intercalibração Geográfico dos Lagos Mediterrânicos, e cujos princípios gerais se encontram descritos na secção relativa à avaliação deste elemento de qualidade em grandes rios.

A amostragem e a identificação deste elemento biológico devem ser realizadas de acordo com os procedimentos estabelecidos no respetivo manual de amostragem, considerando a versão mais recente, disponível em: <a href="https://www.apambiente.pt/dqa/fitoplancton.html">https://www.apambiente.pt/dqa/fitoplancton.html</a>. No manual podem ainda ser encontrados outros detalhes relativamente a este indicador de qualidade e a bibliografia de referência aplicável.

Nas albufeiras do tipo Norte a avaliação é feita considerando três amostras recolhidas no verão; nas albufeiras do Sul e de Curso Principal a avaliação é feita considerando 6 amostragens distribuídas da seguinte forma: três amostras recolhidas no verão e uma amostra em cada uma das restantes estações do ano.

Com atrás referido, o cálculo do índice NMARSP envolve os seguintes passos:

- i. Cálculo de métricas que integram o índice NMARSP;
- ii. Cálculo dos Rácios de Qualidade Ecológica;
- iii. Transformação dos RQE em escalas numéricas equivalentes;
- iv. Cálculo do índice NMARSP.

#### i. Cálculo de métricas que integram o índice NMARSP

O cálculo de cada uma das métricas que integra o NMARSP (clorofila a, biovolume total, biovolume de cianobactérias e Índice de Grupos de Algas) é feito seguindo os mesmos princípios elencados na secção relativa aos grandes rios, devendo contudo notar-se que nas albufeiras do tipo Norte são sempre consideradas as médias de verão (3 amostras), enquanto nos restantes tipos (Sul e Curso Principal) são consideradas média das 6 amostras anuais.

#### ii. Cálculo dos Rácios de Qualidade Ecológica

O cálculo dos RQE de cada métrica é feito considerando as equações indicadas na secção relativa aos grandes rios. Os valores de referência aplicáveis constam no Quadro 4.1.

Quadro 4.1 – Valores de referência das métricas e fronteira Bom/Razoável do índice NMARSP em albufeiras.

| Métrica                                   | Albufeiras             | do Norte         | lorte Albufeiras d     |                  | s do Sul Albufeiras c<br>Princij |                  |
|-------------------------------------------|------------------------|------------------|------------------------|------------------|----------------------------------|------------------|
| ivietrica                                 | Valor de<br>Referência | Bom/<br>Razoável | Valor de<br>Referência | Bom/<br>Razoável | Valor de<br>Referência           | Bom/<br>Razoável |
| Clorofila a (mg/m³)                       | 1,70                   | 7,90             | 1,74                   | 9,66             | 1,60                             | 7,88             |
| Biovolume total<br>(mm³/L)                | 1,20                   | 2,80             | 0,42                   | 5,84             | 0,63                             | 2,86             |
| Biovolume de<br>Cianobactérias<br>(mm³/L) | 0,02                   | 0,80             | 0,01                   | 4,33             | 0,002                            | 0,14             |
| IGA                                       | 2,00                   | 37,60            | 1,15                   | 14,37            | 1,00                             | 2,15             |

## iii. Transformação dos RQE em escalas numéricas equivalentes

A normalização dos EQR para cada métrica é efetuada através de transformações que diferem de acordo com o tipo de sistema em análise (Albufeiras do Norte, Albufeiras do Sul e Albufeiras de Curso Principal).

## > Albufeiras do Norte

## Para a métrica clorofila a

| Se o valor obtido (bruto) ≥ 7,90 (mg/m³): | RQE Normalizado = 2,7882 x RQE            |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 7,90 (mg/m³): | RQE Normalizado = (0,5097 x RQE) + 0,4903 |

## Para a métrica Biovolume Total

| Se o valor obtido (bruto) ≥ 2,80 (mm³/L): | RQE Normalizado = 1,4 x RQE                |
|-------------------------------------------|--------------------------------------------|
| Se o valor obtido (bruto) < 2,80 (mm³/L): | RQE Normalizado = $(0.7 \times RQE) + 0.3$ |

## Para a métrica Biovolume de Cianobactérias

| Se o valor obtido (bruto) ≥ 0,80 (mm³/L): | RQE Normalizado = 24 x RQE                |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 0,80 (mm³/L): | RQE Normalizado = (0,4103 x RQE) + 0,5897 |

## Para a métrica Índice de Grupo de algas (IGA)

| Se o valor obtido (bruto) ≥ 37,60: | RQE Normalizado = 0,6589 x RQE          |
|------------------------------------|-----------------------------------------|
| Se o valor obtido (bruto) < 37,60: | RQE Normalizado = (4,4719 x RQE) 3,4719 |

## > Albufeiras de Curso Principal

#### Para a métrica clorofila a

| Se o valor obtido (bruto) ≥ 7,88 (mg/m³): | RQE Normalizado = 2,9550 x RQE            |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 7,88 (mg/m³): | RQE Normalizado = (0,5019 x RQE) + 0,4981 |

#### Para a métrica **Biovolume Total**

| Se o valor obtido (bruto) ≥ 2,86 (mm³/L): | RQE Normalizado = 2,7238 x RQE            |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 2,86 (mm³/L): | RQE Normalizado = (0,5130 x RQE) + 0,4870 |

#### Para a métrica Biovolume de Cianobactérias

| Se o valor obtido (bruto) ≥ 0,14 (mm³/L): | RQE Normalizado = 41,8950 x RQE           |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 0,14 (mm³/L): | RQE Normalizado = (0,4058 x RQE) + 0,5942 |

## Para a métrica Índice de Grupo de algas (IGA)

| Se o valor obtido (bruto) ≥ 2,15: | RQE Normalizado = 0,6017 x RQE                |
|-----------------------------------|-----------------------------------------------|
| Se o valor obtido (bruto) < 2,15: | RQE Normalizado = (138,7826 x RQE) – 137,7826 |

# > Albufeiras do Sul

## Para a métrica clorofila a

| Se o valor obtido (bruto) $\geq 9,66$ (mg/m <sup>3</sup> ): | RQE Normalizado = 3,3310 x RQE            |
|-------------------------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 9,66 (mg/m³):                   | RQE Normalizado = (0,4879 x RQE) + 0,5121 |

## Para a métrica Biovolume Total

| Se o valor obtido (bruto) ≥ 5,84 (mm³/L): | RQE Normalizado = 8,3429 x RQE            |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 5,84 (mm³/L): | RQE Normalizado = (0,4310 x RQE) + 0,5690 |

## Para a métrica Biovolume de Cianobactérias

| Se o valor obtido (bruto) ≥ 4,33 (mm³/L): | RQE Normalizado = 259,8 x RQE             |
|-------------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 4,33 (mm³/L): | RQE Normalizado = (0,4009 x RQE) + 0,5991 |

## Para a métrica Índice de Grupo de algas (IGA)

| Se o valor obtido (bruto) ≥ 14,37: | RQE Normalizado = 0,6206 x RQE            |
|------------------------------------|-------------------------------------------|
| Se o valor obtido (bruto) < 14,37: | RQE Normalizado = (12,0681 x RQE) 11,0681 |

#### iv. Cálculo do índice NMARSP

Por fim, o cálculo do índice NMARSP é obtido através do cálculo da média aritmética entre os valores de RQE normalizados das componentes Biomassa e Composição e Abundância.

O valor do NMARSP obtém-se assim de acordo com a seguinte equação:

$$NMARSP = \frac{\left(\frac{RQEnorm\;(Cla) + RQE\;norm(BVt)}{2}\right) + \left(\frac{RQEnorm(IGA) + RQEnorm(BVcian)}{2}\right)}{2}$$

Onde:

 $RQE_{norm}(Cla)$  – RQE normalizado da concentração de clorofila a;

 $RQE_{norm}(BVt) - RQE$  normalizado do Biovolume Total;

RQE<sub>norm</sub> (IGA) – RQE normalizado do Índice de Grupo de Algas;

RQE<sub>norm</sub> (BVcian) – RQE normalizado do Biovolume Total de Cianobactérias.

No Quadro 4.2 são apresentados os valores de fronteira para as classes de qualidade do índice NMARSP, expressos em RQE, para as albufeiras. Quando o valor do EQR corresponde ao valor-fronteira, considera-se a classe de qualidade superior (p.e., 0,80 corresponde a Máximo potencial ecológico).

Quadro 4.2 – Fronteiras de qualidade do índice NMARSP em albufeiras.

| Tipo nacional                                                             | Máximo/ Bom | Bom/ Razoável | Razoável/ Medíocre | Medíocre/ Mau |
|---------------------------------------------------------------------------|-------------|---------------|--------------------|---------------|
| Albufeiras do Norte<br>Albufeiras de Curso Principal<br>Albufeiras do Sul | 0,80        | 0,60          | 0,40               | 0,20          |

Atendendo às diferenças no número de amostras integradas nos cálculos entre as albufeiras do Norte e as albufeiras de Curso Principal e do Sul, aplicam-se critérios diferenciados para atribuição da confiança à classificação, conforme o Quadro 4.3 e o Quadro 4.4.

Quadro 4.3 – Níveis de confiança associados ao índice NMARSP NMARSP em albufeiras do Norte.

| Níve                                                                                  | is de confiança | Critério                                                                    |  |
|---------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------|--|
| Muito elevada  Resultados concordantes e com nível de confiança 2, em mais de 1 an MA |                 | Resultados concordantes e com nível de confiança 2, em mais de 1 ano por MA |  |
| 2                                                                                     | Elevada         | 3 amostragens de verão/ano                                                  |  |
| 3                                                                                     | Média           | 2 amostragens de verão/ano                                                  |  |
| 4                                                                                     | Baixa           | 1 amostragem de verão/ano                                                   |  |
| 5                                                                                     | Muito baixa     | Não definido                                                                |  |

Quadro 4.4 – Níveis de confiança associados ao índice NMARSP em albufeiras de Curso Principal e albufeiras do Sul.

| Níveis de confiança |               | Critério                                                                                                                                                                                                       |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | Muito elevada | <ul> <li>Resultados concordantes e com nível de confiança 2, em mais de 1 ano por<br/>MA</li> </ul>                                                                                                            |
| 2                   | Elevada       | • 6 amostragens/ano (pelo menos 1 no outono, 1 no inverno, 1 na primavera, 3 no verão)                                                                                                                         |
| 3                   | Média         | <ul> <li>5 amostragens/ano</li> <li>(1 no outono, 1 no inverno, 1 na primavera, 2 no verão)</li> </ul>                                                                                                         |
| 4                   | Ваіха         | <ul> <li>4 amostragens/ano         (1 no outono, 1 no inverno, 1 na primavera, 1 no verão)</li> <li>4 ou 5 amostragens/ano         (distribuídas sem abranger o outono ou o inverno ou a primavera)</li> </ul> |
| 5                   | Muito baixa   | <ul> <li>Número menor de amostras ou com outro tipo de distribuição pelas<br/>estações do ano</li> </ul>                                                                                                       |

# 4.2.2 Elementos físico-químicos de suporte aos biológicos

Para as albufeiras foram desenvolvidos limiares para todas as componentes requeridas no Anexo V da DQA, conforme consta no Quadro 4.5.

Quadro 4.5 – Fronteiras de qualidade dos parâmetros físico-químicos gerais aplicáveis em albufeiras.

|                            |                                  |                       | Albufeiras do Norte |                  | Albufeiras do Sul |                  | Albufeiras de Curso Principal |                |                  |
|----------------------------|----------------------------------|-----------------------|---------------------|------------------|-------------------|------------------|-------------------------------|----------------|------------------|
| Grupo de parâmetros        | Parâmetro                        | Unidades              | Máximo/<br>Bom      | Bom/<br>Razoável | Máximo/<br>Bom    | Bom/<br>Razoável |                               | Máximo/<br>Bom | Bom/<br>Razoável |
|                            | Fósforo Total                    | mg P/I                | 0,020               | 0,040            | 0,050             | 0,070            |                               | 0,050          | 0,070            |
|                            | Fosfatos                         | mg PO <sub>4</sub> /I | 0,10                | 0,20             | 0,10              | 0,20             |                               | 0,10           | 0,20             |
|                            | Azoto Total                      | mg N/I                | 0,50                | 1,00             | 1,00              | 1,50             |                               | 1,50           | 2,00             |
| Condições relativas a      | Azoto Amoniacal                  | mg NH <sub>4</sub> /I | 0,10                | 0,20             | 0,20              | 0,40             | 1                             | 0,10           | 0,17             |
| nutrientes                 | Amoníaco                         | mg NH₃/I              |                     | 0,025            |                   | 0,05             | 1                             |                | 0,025            |
|                            | Nitrato                          | mg NO₃/I              | 2,0                 | 3,0              | 3,0               | 5,0              | 1                             | 3,0            | 5,0              |
|                            | Nitritos                         | mg NO₂/I              | 0,010               | 0,020            | 0,030             | 0,050            |                               | 0,030          | 0,100            |
|                            | SST                              | mg/l                  | 12,5                | 25,0             | 12,5              | 25,0             |                               | 12,5           | 25,0             |
| Condições de<br>oxigenação | CBO5                             | mg O₂/I               | 3,0                 | 4,0              | 3,0               | 5,0              |                               | 3,0            | 4,0              |
|                            | Oxigénio Dissolvido              | mg O₂/I               | 8,0-12,0            | 6,0              | 8,0-12,0          | 5,0              |                               | 8,0-12,0       | 6,0              |
|                            | Taxa de saturação em<br>Oxigénio | % O2                  | 80 - 115            | 70 - 125         | 70-130            | 60-140           |                               | 80 - 115       | 70 - 125         |
| Estado de<br>acidificação  | рН                               | escala de<br>Sorensen | 6,5-8,5             | 6,0-9,0          | 6,5-8,5           | 6,0-9,0          |                               | 6,5-8,5        | 6,0-9,0          |
| Condições de transparência | Transparência                    | m                     |                     | 2,3              |                   | 1,0              |                               |                | 1,5              |
| Condições térmicas         | Temperatura                      | °C                    | <b>-</b>            | 6,5 - 25,5       |                   | 10,0 - 27,0      |                               |                | 6,5 - 25,5       |
|                            |                                  |                       |                     |                  |                   |                  | Douro                         |                | 420              |
| Salinidade                 | Condutividade                    | μS/cm                 |                     | 100              |                   | 1000             | Tejo e<br>Guadiana            |                | 700              |

Os limiares indicados aplicam-se à média anual das amostras recolhidas, devendo a amostragem ser realizada em paralelo com a amostragem de fitoplâncton.

As restantes regras de agregação e classificação dos parâmetros físico-químicos gerais aplicáveis em albufeiras são as mesmas atrás apresentadas para os rios de pequena a média-grande dimensão, referidas no ponto 3.1.2. Adicionalmente, importa notar que também para o parâmetro transparência os limiares indicados podem ser ultrapassados caso ocorram naturalmente.

Os parâmetros sólidos suspensos totais, condutividade, transparência e temperatura são integrados na avaliação da qualidade dos elementos físico-químicos gerais de forma complementar, sendo apenas considerados como penalizadores quando a qualidade inferior a Bom é igualmente verificada para outro dos parâmetros apresentados no Quadro 4.5.

Os limiares de condutividade aplicáveis a albufeiras de Curso Principal diferem conforme os dados estejam associados a massas de água do rio Douro ou dos rios Tejo e Guadiana, dada a variabilidade natural deste parâmetro.

Relativamente aos poluentes específicos, a respetiva lista e NQA aplicáveis podem ser consultadas no capítulo 7 deste documento.

## 4.2.3 Elementos hidromorfológicos de suporte aos biológicos

Relativamente à qualidade hidromorfológica das albufeiras, a variabilidade das condições decorrentes dos usos e o seu caráter fortemente modificado têm vindo a condicionar o estabelecimento de metodologias de avaliação. No decorrer deste ciclo foi realizada a identificação de indicadores a considerar para diferenciar o Máximo potencial ecológico do Bom potencial ecológico em albufeiras, designados por Indicadores de qualidade hidromorfológica de albufeiras (InQHA). Os indicadores selecionados neste encontram-se agrupados em indicadores relativos a regime hidrológico, variações de nível, usos do solo e alterações na envolvente, medidas de gestão e mitigação e outras utilizações.

Os critérios para a determinação dos indicadores considerados na abordagem InQHA, bem como os respetivos limiares de qualidade podem ser consultados em <a href="https://www.apambiente.pt/dqa/hidromorfologia.html">https://www.apambiente.pt/dqa/hidromorfologia.html</a>

# 4.3 Massas de água artificiais

A classificação do estado das massas de águas artificiais foi baseada nos seguintes critérios:

- As normas de qualidade utilizadas tiveram como base os parâmetros e respetivos Valores Máximos Recomendados (VMR) constantes no Anexo XVI do Decreto Decreto-Lei n.º 236/98, de 1 de agosto, referentes às águas destinadas à rega, atualizadas pelos limiares usados no âmbito da DQA na classificação das massas de águas superficiais interiores, considerando a fronteira entre o estado Razoável e Medíocre.
- Os parâmetros foram classificados individualmente, com base na média aritmética dos resultados disponíveis para o período em avaliação (2014 a 2019), encontrando-se os parâmetros e respetivos limiares representados no Quadro 4.6.
- Nas massas de água sem monitorização, usaram-se os dados das respetivas origens de água superficiais.
- Nos resultados inferiores ao limite de quantificação, aplicou-se metade desse valor para o cálculo das médias, conforme o disposto no Art. 5.º, Decreto-Lei n.º 83/2011, de 20 de junho.
- Os resultados em que o limite de quantificação foi superior à norma, não foram utilizados.
- A classificação do estado químico teve por base os metais e respetivas normas de qualidade ambiental que derivam da Diretiva das Substâncias Prioritárias e que se encontram assinalados no Quadro 4.6.

- Os restantes parâmetros e limiares do Quadro 4.6. permitem efetuar a classificação do potencial ecológico destas massas de água.
- A classificação final da massa de água segue o princípio *one-out, all-out*. Quando todos os parâmetros cumprem as normas de qualidade, o estado é apresentado como "Bom", caso contrário é "Razoável".

Quadro 4.6 – Normas de qualidade para as massas de águas artificiais.

| Grupo de parâmetros               | Parâmetro                                   | Unidade              | Limiar  |
|-----------------------------------|---------------------------------------------|----------------------|---------|
|                                   | Temperatura                                 | °C                   | 10 a 27 |
|                                   | Azoto amoniacal                             | mg/l NH₄             | 2,5     |
|                                   | Azoto total                                 | mg/l N               | 8,0     |
|                                   | Carência Bioquímica de<br>Oxigénio (5 dias) | mg/l O <sub>2</sub>  | 7,0     |
|                                   | Cloretos                                    | mg/l                 | 70      |
| Pfotos ausfastas a                | Condutividade                               | μS/cm, 25 °C         | 1100    |
| Físico-químicos                   | Fosfato                                     | mg/l PO <sub>4</sub> | 1,0     |
| gerais                            | Fósforo total                               | mg/l P               | 0,6     |
|                                   | Nitratos                                    | mg/I NO <sub>3</sub> | 20      |
|                                   | Nitritos                                    | mg/I NO <sub>2</sub> | 0,7     |
|                                   | рН                                          | Escala pH            | 6 a 9   |
|                                   | Sólidos Dissolvidos Totais                  | mg/l                 | 640     |
|                                   | Sólidos Suspensos Totais                    | mg/l                 | 45      |
|                                   | Sulfatos                                    | mg/l                 | 575     |
| Elementos de qualidade biológicos | Clorofila a                                 | μg/l                 | 9,66    |
|                                   | Arsénio dissolvido                          | mg/l                 | 0,05    |
| Poluentes                         | Cobre dissolvido                            | mg/l                 | 0,0078  |
| específicos                       | Crómio dissolvido                           | mg/l                 | 0,0047  |
| especificos                       | Lítio dissolvido                            | mg/l                 | 2,5     |
|                                   | Zinco dissolvido                            | mg/l                 | 0,0078  |
| Outros poluentes                  | Alumínio                                    | mg/l                 | 5,0     |
|                                   | Ferro                                       | mg/l                 | 5,0     |
|                                   | Manganês                                    | mg/l                 | 0,2     |
| Substâncias                       | Cádmio dissolvido                           | mg/l                 | 0,00025 |
| prioritárias                      | Chumbo dissolvido                           | mg/l                 | 0,0012  |
| prioritarias                      | Níquel dissolvido                           | mg/l                 | 0,004   |

# 5. Sistemas de classificação do estado ecológico – águas de transição e costeiras

## 5.1 Elementos de qualidade biológicos

Conforme já foi referido, o processo de classificação permite indexar a cada massa de água uma classe de estado, que representará uma estimativa do grau de alteração do ecossistema devido às diferentes pressões antrópicas a que a massa de água se encontra sujeita.

Para assegurar a comparabilidade dos sistemas de classificação, os resultados dos elementos biológicos devem ser expressos em Rácios de Qualidade Ecológica (RQE). Estes rácios representam a relação entre os valores observados para um determinado parâmetro biológico numa determinada

massa de água e o valor desse parâmetro na condição de referência para o tipo de massa de água em questão. Os RQE devem ser expressos num valor numérico entre 0 (situação de degradação extrema) e 1 (situação de referência).



Figura 5.1 – Escala de classificação dos elementos de qualidade biológicos, ilustrando desvio face às condições de referência

Conforme também já foi referido, para efeitos de classificação do estado ecológico dos elementos biológicos, os RQE são divididos em 5 classes de qualidade: Excelente, Bom, Razoável, Medíocre e Mau (Figura 5.1). Os valores das fronteiras entre as classes de qualidade foram aferidos e validados através da participação no Exercício de Intercalibração.

Por outro lado, de acordo com a DQA, a cada classificação deverá corresponder um nível de confiança associado à classificação.

A classificação das massas de água com base em programas de monitorização está sujeita a erros derivados de: (i) não ser possível monitorizar toda a extensão da massa de água em todos os momentos e (ii) ocorrerem erros humanos e dos equipamentos durante os trabalhos de monitorização. Assim, haverá sempre algum erro associado ao processo de amostragem o que conduz a uma incerteza na estimativa do RQE.

Uma vez que as massas de água com estado inferior a bom devem ser sujeitas a um programa de medidas para a sua recuperação, os erros na classificação podem levar a que: (i) sejam desperdiçados recursos com massas de água classificadas num estado inferior ao que realmente apresentam; ou (ii) não sejam implementadas as medidas necessárias em massas de água classificadas com estado superior ao que realmente apresentam.

Desta forma, e para ajudar a compreender a classificação e gerir o risco de ter ocorrido uma classificação incorreta, foram definidos níveis de confiança associados a cada classificação.

De reforçar que a aplicação dos índices pressupõe o correto planeamento e cumprimento rigoroso dos protocolos de amostragem e processamento laboratorial estabelecidos, conforme apresentados no documento Critérios para a Monitorização das Massas de Água.

Descrevem-se de seguida os sistemas de classificação dos vários elementos biológicos em águas de transição e costeiras.

## 5.1.1 Fitoplâncton

Neste subcapítulo é apresentado o procedimento para avaliação do elemento de qualidade biológica fitoplâncton, em águas de transição e costeiras, nos termos da DQA, através da avaliação da biomassa pela concentração de clorofila-a (Brito et al., 2020a; Brito et al., 2012a; Brito et al., 2012b; Coutinho, et al., 2012). Esta métrica aplica-se a todas as tipologias de massas de água de transição e costeiras nacionais: A1 - Estuário mesotidal estratificado, A2 - Estuário mesotidal homogéneo com descargas irregulares de rio, A3 - Lagoas costeiras semifechadas, A4 - Lagoas costeiras abertas, A5 - Costa atlântica mesotidal exposta, A6 - Costa atlântica mesotidal moderadamente exposta e A7 - Costa atlântica abrigada. A metodologia aqui apresentada encontra-se intercalibrada para o tipo comum NEA11 (estuários tipo A1) e tipo comum NEA1/26e (águas costeiras tipo A5, A6 e A7). São aplicados sistemas de classificação nacionais para os estuários do tipo A2 e as lagoas costeiras dos tipos A3 e

A4. No caso dos estuários, foram definidas as subtipologias estreitos/largos e a classificação é realizada atendendo a classes de salinidade. No caso das lagoas costeiras há que ter em consideração se se encontram abertas ou fechadas ao mar (subtipologia aberta/fechada).

O fitoplâncton é composto por organismos unicelulares microscópicos, com capacidade fotossintética, que vivem em suspensão na coluna de água e que podem ser solitários ou coloniais, de dimensões inferiores a 1 µm até colónias maiores do que 500 µm. Devido à dependência que apresentam da luz solar habitam a zona eufótica, otimizando o tempo de residência nos estratos superiores da coluna de água através de diversas estruturas ou mecanismos (e.g., flagelos, vacúolos de gás, aumento da relação área superficial/volume). Abrange um conjunto de microorganismos diversificado do ponto de vista taxonómico, morfométrico e fisiológico, que apresentam diferentes requisitos e respostas a parâmetros físicos e químicos, como a luz, a temperatura, a alcalinidade e a concentração de nutrientes. Esta multiplicidade fisiológica do fitoplâncton permite a coexistência de diversas espécies em interação contínua num mesmo volume de água e uma distribuição espacial e sucessão sazonal da comunidade em resposta a variações dos parâmetros ambientais.

O fitoplâncton marinho e estuarino é frequentemente dominado por diatomáceas e dinoflagelados, sendo ainda de destacar os seguintes grupos: Cyanobacteria (cianobactérias), Chlorophyceae (algas verdes), Chrysophyceae (crisofíceas), Cryptophyceae (criptofíceas), Euglenophyceae (euglenofíceas) e Haptophyta (haptófitas).

O fitoplâncton apresenta ciclos de vida curtos (4/5 dias). Obtêm os nutrientes necessários para o seu desenvolvimento diretamente do meio envolvente, sendo, por isso, um indicador biológico indireto de alterações da sua concentração e de pressões associadas ao processo de eutrofização que ocorrem na coluna de água. A comunidade fitoplanctónica apresenta elevada sensibilidade a alterações de pequena escala nas condições ambientais, sendo a sua dinâmica, biomassa, composição e abundância, regulados por fatores físicos, químicos e biológicos.

O impacto da entrada de nutrientes em águas costeiras e de transição não está limitado ao aumento das concentrações disponíveis, também pode levar à alteração da proporção em que os diferentes elementos ocorrem. Estas alterações podem conduzir à modificação da estrutura e diversidade das comunidades. Por outro lado, alterações na composição das comunidades podem ter efeitos significativos na cadeia trófica. Por exemplo, a proliferação de microalgas de reduzidas dimensões pode levar ao colapso de níveis tróficos superiores, caso esses organismos não tenham capacidade de processar essa biomassa.

As definições normativas da DQA, relativas ao fitoplâncton, indicam que a degradação da qualidade ecológica está associada ao incremento da biomassa fitoplanctónica, às alterações na composição taxonómica e abundância dos grupos presentes, bem como ao aumento da frequência e intensidade de florescências fitoplanctónicas. Segundo o anexo V desta diretiva, devem ser considerados três atributos da comunidade fitoplanctónica para a avaliação da qualidade ecológica:

- Biomassa fitoplanctónica;
- Composição e abundância fitoplanctónicas;
- Intensidade e frequência de florescências fitoplanctónicas (*blooms*).

No entanto, atendendo às bases de dados disponíveis, durante os trabalhos de intercalibração ficou definido que a classificação do elemento de qualidade biológica fitoplâncton se faria apenas com base na avaliação da sua biomassa, através da avaliação da concentração de clorofila-a, um reconhecido indicador de biomassa fitoplanctónica. A definição da metodologia baseou-se em dados históricos, campanhas de monitorização, artigos científicos e avaliação pericial (*expert judgement*). A métrica escolhida foi o P90 (percentil 90) de forma a considerar a variabilidade natural e sazonal do fitoplâncton, que tem tipicamente um período de crescimento, com um ou vários picos anuais.

Na definição de condições de referência para as águas de transição (Quadro 5.3) foram consideradas as duas tipologias nacionais (A1 e A2). Esta divisão teve por base a influência climática existente que afeta particularmente as massas de água costeiras, e que por efeito da maré, têm uma influência

significativa nas massas de água de transição. Adicionalmente, estes grupos são ainda divididos em sistemas "estreitos" e "largos", visto que as condições de hidrodinâmica são distintas (Quadro 5.1).

Quadro 5.1 - Subtipologias dos sistemas estuarinos

| Subtipologia         | Sistemas estuarinos                                          |
|----------------------|--------------------------------------------------------------|
| A1.1 Norte-estreitos | Minho, Lima, Neiva*, Cávado, Ave, Leça*, Douro, Mondego, Lis |
| A1.2 Norte-largos    | Ria de Aveiro                                                |
| A2.1 Sul-estreitos   | Mira, Guadiana, Aljezur*, Arade*                             |
| A2.2 Sul-largos      | Tejo, Sado                                                   |

<sup>\*</sup>Sistemas não incluídos no tratamento de dados que originou as condições de referência

Os sistemas de transição são muito dinâmicos e complexos, sendo as suas propriedades físicoquímicas também muito variáveis temporal e espacialmente. Uma das propriedades mais importantes na ecologia destes sistemas é a salinidade, que é temporalmente muito dinâmica e pode ter uma forte influência na determinação da comunidade fitoplanctónica existente. Desta forma, para simplificar os critérios a usar nas áreas a classificar, foi efetuada a divisão das massas de água de transição de acordo com as três classes de salinidade seguintes: (i) 0-5; (ii) 5-25 e (iii) >25.

A avaliação do valor de referência da biomassa fitoplanctónica foi feita com base na determinação do índice percentil 90 das concentrações de clorofila-a (P90 Chl-a) para as várias tipologias definidas.

Para o cálculo do percentil 90 de clorofila-a nas massas de água de transição procede-se da seguinte forma:

- Para cada massa de água, criar ficheiro com valores de clorofila-a e salinidade para o ano ou conjunto de anos a avaliar;
- Eliminar todos os valores que correspondam aos meses de novembro, dezembro ou janeiro (ou seja, para o cálculo é considerado apenas o período de crescimento do fitoplâncton – meses de fevereiro a outubro);
- Caso existam valores <LQ, é considerado metade do valor do LQ. Se o LQ for superior ao valor de referência aplicável, os dados devem ser excluídos;
- Organizar o conjunto de dados por massa de água e classe de salinidade (<5, 5-25 ou ≥25);</li>
- Determinar o valor representativo de clorofila-a em cada campanha de amostragem, por massa de água e classe de salinidade. Caso só exista um ponto de amostragem (ou uma medida) na massa de água, o valor medido é considerado como representativo da massa de água. Caso a massa de água tenha mais do que um ponto de amostragem ou mais que uma medida na mesma data (e.g. preia-mar e baixa-mar), o valor representativo é calculado pela média dos valores medidos;
- O número de pontos de amostragem por massa de água ou a opção de amostrar marés diferentes dependem da dimensão e heterogeneidade da massa de água e objetivos da monitorização;
- Calcular o percentil 90 dos valores representativos de clorofila-a por ano(s), massa de água e classe de salinidade. No limite podem existir 3 valores de P90 (que vão originar 3 EQRs) para cada massa de água, correspondentes às 3 classes de salinidade, se estas estiverem todas presentes na mesma massa de água; se assim for, pode fazer-se a média ponderada dos resultados.

No caso das lagoas costeiras, ocorrem duas situações distintas: i) lagoas costeiras da tipologia nacional A3 que podem estar em situação "aberta" ou "fechada", isto é, podem ter ou não uma ligação direta ao mar, dependendo da época do ano ou intervenção humana; e ii) as lagoas costeiras da tipologia A4 que estão em ligação permanente com o mar (Quadro 5.2).

#### Quadro 5.2 - Tipologias das lagoas costeiras

| Tipologia | Lagoas costeiras                                                                |
|-----------|---------------------------------------------------------------------------------|
| A3        | Barrinha de Esmoriz, Lagoa de Óbidos, Lagoa de Albufeira e Lagoa de Santo André |
| A4        | Ria do Alvor e Ria Formosa                                                      |

No caso das lagoas que podem estar abertas ou fechadas, a sua dinâmica está fortemente influenciada pelas condições de circulação e troca de água com o mar, o que tem implicações nas condições físico-químicas do sistema (e.g., salinidade, concentrações de nutrientes) e, por consequência, no desenvolvimento das comunidades fitoplanctónicas. Desta forma, para estas lagoas, foram definidas condições de referência distintas para as fases "aberta" ou "fechada" (Quadro 5.4).

A avaliação do valor de referência da biomassa fitoplanctónica foi feita com base na determinação do índice percentil 90 das concentrações de clorofila a (P90 Chl-a) para as várias tipologias definidas.

Para o cálculo do percentil 90 de clorofila-a nestes tipos de massas de água procede-se da seguinte forma:

- Para cada massa de água, criar ficheiro com valores de clorofila-a e condição aberta/fechada para o ano ou conjunto de anos a avaliar;
- Eliminar todos os valores que correspondam aos meses de novembro, dezembro ou janeiro (ou seja, para o cálculo é considerado apenas o período de crescimento do fitoplâncton – meses de fevereiro a outubro);
- Caso existam valores <LQ, é considerado metade do valor do LQ. Se o LQ for superior ao valor de referência aplicável, os dados devem ser excluídos;
- Organizar o conjunto de dados por massa de água e condição aberta ou fechada;
- Determinar o valor representativo de clorofila-a em cada campanha de amostragem, por massa de água e condição aberta/fechada. Caso só exista um ponto de amostragem (ou uma medida) na massa de água, o valor medido é considerado como representativo da massa de água. Caso a massa de água tenha mais do que um ponto de amostragem ou mais que uma medida na mesma data (e.g. preia-mar e baixa-mar), o valor representativo é calculado pela média dos valores medidos;
- O número de pontos de amostragem por massa de água ou a opção de amostrar marés diferentes dependem da dimensão e heterogeneidade da massa de água e objetivos da monitorização;
- Calcular o percentil 90 dos valores representativos por ano(s), massa de água e condição aberta/fechada. No limite podem existir 2 valores de P90 (que vão originar 2 EQRs) para cada massa de água, correspondentes às 2 condições aberta ou fechada. Se assim for, pode fazerse a média ponderada dos resultados.

Para as águas costeiras de costa aberta foram consideradas as três tipologias nacionais (A5, A6 e A7). A avaliação do valor de referência da biomassa fitoplanctónica foi feita com base na determinação do índice percentil 90 das concentrações de clorofila a (P90 Chl-a) para as várias tipologias definidas (Quadro 5.5).

Para o cálculo do percentil 90 de clorofila-a nestes tipos de massas de água procede-se da seguinte forma:

- Para cada massa de água, criar ficheiro com valores de clorofila-a para o ano ou conjunto de anos a avaliar;
- Eliminar todos os valores que correspondam aos meses de novembro, dezembro ou janeiro (ou seja, para o cálculo é considerado apenas o período de crescimento do fitoplâncton – meses de fevereiro a outubro);

- Caso existam valores <LQ, é considerado metade do valor do LQ. Se o LQ for superior ao valor de referência aplicável, os dados devem ser excluídos.
- Determinar o valor representativo de clorofila-a em cada campanha de amostragem, por massa de água. Caso só exista um ponto de amostragem (ou uma medida) na massa de água, o valor medido é considerado como representativo da massa de água. Caso a massa de água tenha mais do que um ponto de amostragem ou mais que uma medida na mesma data (e.g. preia-mar e baixa-mar), o valor representativo é calculado pela média dos valores medidos.
- O número de pontos de amostragem por massa de água ou a opção de amostrar marés diferentes dependem da dimensão e heterogeneidade da massa de água e objetivos da monitorização.

Na avaliação do fitoplâncton, o valor do RQE é calculado dividindo o valor de referência para o tipo de massa de água em estudo pelo valor do percentil 90 dos dados obtidos na monitorização da massa de água:

#### RQE=REF/P90

Caso o valor do RQE seja superior a 1, considera-se 1. Caso exista mais do que um RQE para a massa de água faz-se a média (aritmética se o número de amostragens for o mesmo ou ponderada se o número de amostragens for diferente) dos RQE.

As fronteiras de qualidade que definem a classe de qualidade da massa de água são definidas por tipo de massa de água e apresentam-se nos quadros seguintes (Quadro 5.3, Quadro 5.4, Quadro 5.5).

Quadro 5.3 – Valores de referência e fronteiras de qualidade da métrica Clorofila-a, aplicáveis em águas de transição.

| Tipo nacional            | Classe de<br>Salinidade | Valor de<br>referência<br>(P90 Chla<br>ug/l) | Excelente/<br>Bom | Bom/<br>Razoável | Razoável/<br>Medíocre | Medíocre/<br>Mau |
|--------------------------|-------------------------|----------------------------------------------|-------------------|------------------|-----------------------|------------------|
| A1.1 Norte-<br>estreitos | 0-5<br>5-25<br>>25      | 6,67<br>6,67<br>6,00                         | 0,670             | 0,470            | 0,300                 | 0,200            |
| A1.2 Norte-<br>largos    | 0-5<br>5-25<br>>25      | 6,67<br>6,67<br>6,00                         | 0,670             | 0,440            | 0,300                 | 0,200            |
| A2.1 Sul-<br>estreitos   | 0-5<br>5-25<br>>25      | 8,00<br>6,67<br>5,30                         | 0,670             | 0,440            | 0,300                 | 0,200            |
| A2.2 Sul-largos          | 0-5<br>5-25<br>>25      | 8,00<br>8,00<br>6,67                         | 0,670             | 0,440            | 0,300                 | 0,200            |

Quadro 5.4 – Valores de referência e fronteiras de qualidade da métrica Clorofila-a, aplicáveis em lagoas costeiras.

| Tipo nacional | Lagoa<br>aberta/fechada | Valor de<br>referência | Excelente/<br>Bom | Bom/<br>Razoável | Razoável/<br>Medíocre | Medíocre/<br>Mau |
|---------------|-------------------------|------------------------|-------------------|------------------|-----------------------|------------------|
| А3            | aberta                  | 6,7                    | 0.670             | 0.440            | 0.300                 | 0.200            |
| AS            | fechada                 | 20,0                   | 0,670             | 0,440            | 0,300                 | 0,200            |
| A4            | aberta                  | 5,3                    | 0,670             | 0,440            | 0,300                 | 0,200            |

Quadro 5.5 – Valores de referência e fronteiras de qualidade da métrica Clorofila-a, aplicáveis em águas costeiras.

| Tipo nacional | Valor de<br>referência | Excelente/ Bom | Bom/ Razoável | Razoável/<br>Medíocre | Medíocre/ Mau |
|---------------|------------------------|----------------|---------------|-----------------------|---------------|
| A5            | 5,3                    | 0,670          | 0,440         | 0,300                 | 0,200         |
| A6            | 4                      | 0,670          | 0,440         | 0,300                 | 0,200         |
| A7            | 4                      | 0,670          | 0,440         | 0,300                 | 0,200         |

No caso do fitoplâncton, o nível de confiança (Quadro 5.6) na avaliação está diretamente relacionado com a frequência anual das amostragens e a sua distribuição temporal por época do ano. A amostragem para o elemento biológico fitoplâncton deve ter uma frequência de 6 colheitas anuais, devendo coincidir uma colheita por cada período sazonal (outono/primavera/verão) da época de crescimento (meses de fevereiro a outubro), sendo que três colheitas deveriam ter um intervalo mínimo de 3 semanas no período potencialmente crítico, normalmente, entre julho e setembro (período de maior probabilidade de ocorrência de blooms). Esta frequência permite contemplar a variabilidade sazonal e garantir uma precisão adequada na classificação da qualidade da massa de água.

Nas massas de água em que existam diversas classes de salinidade o índice de confiança para a totalidade da massa de água corresponderá ao índice de confiança mais elevado entre as classes de salinidade.

A interpretação dos resultados da aplicação do índice para classificação do fitoplâncton deve ter em consideração a variabilidade espacial e temporal da ocorrência destas espécies e os potenciais erros associados à aplicação destas metodologias.

Quadro 5.6 – Níveis de confiança associados à classificação do fitoplâncton.

| Níve | is de confiança | Critério                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Muito elevada   | Não definido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2    | Elevada         | Avaliação baseada em 6 ou mais amostragens realizadas num ano. Uma amostragem em cada período sazonal (outono/primavera/verão) da época de crescimento (fevereiro a outubro). Pelo menos 3 amostragens realizadas no período de julho a outubro, com intervalo mínimo de 3 semanas entre colheitas. Nota: no caso dos estuários todas as amostragens devem referir-se à mesma classe de salinidade; no caso das lagoas costeiras tipo A3 todas as amostragens devem referir-se à mesma condição: aberta ou fechada. |
| 3    | Média           | Avaliação baseada em 3 a 5 amostragens num ano, com pelo menos uma amostragem em cada período sazonal (outono/primavera/verão) da época de crescimento (fevereiro a outubro). Nota: no caso dos estuários todas as amostragens devem referir-se à mesma classe de salinidade; no caso das lagoas costeiras tipo A3 todas as amostragens devem referir-se à mesma condição: aberta ou fechada.                                                                                                                       |
| 4    | Baixa           | Avaliação baseada em 2 ou menos amostragens por ano, realizadas durante a época de crescimento (fevereiro a outubro). Nota: no caso dos estuários todas as amostragens devem referir-se à mesma classe de salinidade; no caso das lagoas costeiras tipo A3 todas as amostragens devem referir-se à mesma condição: aberta ou fechada.                                                                                                                                                                               |
| 5    | Muito baixa     | Não definido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Por forma a clarificar o procedimento de classificação do fitoplâncton, apresentam-se dois exemplos de cálculos do índice, um para estuários e outro para lagoas costeiras.

No que se refere aos estuários, apresenta-se um exemplo de uma situação hipotética para um estuário do tipo A2, subtipo largo, onde foram realizadas 3 campanhas de amostragem em 2 estações localizadas na mesma massa de água, nos meses de maio, agosto e setembro. Esta campanha produziu os dados fictícios constantes do Quadro 5.7.

Quadro 5.7 – Conjunto de dados para exemplo de cálculo em estuários

| Estação | Mês de<br>amostragem | Salinidade | Classe de<br>Salinidade | Chl a (ug/l) | Média Chl <i>a</i><br>(ug/L) |
|---------|----------------------|------------|-------------------------|--------------|------------------------------|
| Ponto 1 | Maio                 | 30,9       | >25                     | 8,52         | 6.27                         |
| Ponto 2 | Maio                 | 32,8       | >25                     | 4,02         | 6,27                         |
| Ponto 1 | Agosto               | 30,9       | >25                     | 4,31         | 2.42                         |
| Ponto 2 | Agosto               | 33,2       | >25                     | 2,53         | 3,42                         |
| Ponto 1 | Setembro             | 26,7       | >25                     | 5,81         | 4.40                         |
| Ponto 2 | Setembro             | 30,3       | >25                     | 3,15         | 4,48                         |

O primeiro passo consiste no cálculo da concentração média de clorofila-a por massa de água (Média ChI a (ug/L)) por mês de amostragem, calculada através da média dos valores obtidos em cada campanha nos 2 pontos de amostragem (caso só exista um ponto de amostragem na massa de água, esse valor é considerado representativo da mesma). A partir destas médias por massa de água é calculado o valor do percentil 90 dos dados de todas das campanhas (P90 anual). Uma vez que todos os dados se encontram na mesma classe de salinidade, é calculado apenas um RQE para a massa de água (caso os dados se encontrassem em classes de salinidades diferentes, as médias por massa de água e os percentis 90 teriam que ser calculados por classe de salinidade). Os resultados são os apresentados no Quadro 5.8.

Quadro 5.8 – Exemplo de cálculo num estuário

| Número de amostragens | Classe<br>Salinidade | Média Chl <i>a</i><br>(ug/L) | P90 Chl a | Referência<br>Chl a | RQE | EQS       | Confiança |
|-----------------------|----------------------|------------------------------|-----------|---------------------|-----|-----------|-----------|
|                       | >25                  | 6,27                         |           |                     |     |           |           |
| 3                     | >25                  | 3,42                         | 5,91      | 6,67                | 1   | EXCELENTE | MÉDIO     |
|                       | >25                  | 4,48                         |           |                     |     |           |           |

A partir do valor do P90 e do valor de referência, é calculado o RQE através da equação RQE= REF/P90. Ou seja, RQE = 6,67/5,91 = 1,13 = 1. Uma vez que o valor do RQE é superior a 0,67, a classificação é Excelente. O grau de confiança é determinado com base no número de amostragens.

Caso existisse mais do que uma classe de salinidade e, portanto, mais do que um RQE, o valor do RQE final seria obtido a partir da média ponderada dos RQE considerando o número de amostragens que contribuem para o cálculo.

Como exemplo de cálculo para uma lagoa costeira, apresenta-se uma situação hipotética para uma lagoa costeira do tipo A3 onde foram realizadas 5 campanhas de amostragem em 2 estações localizadas na mesma massa de água, nos meses de maio, julho, agosto, setembro e outubro. Em 3 das amostragens a lagoa estava em situação 'fechada' e em 2 amostragens estava em situação 'aberta'. Esta campanha produziu os dados fictícios constantes no Quadro 5.9.

Quadro 5.9 – Conjunto de dados para exemplo de cálculo em lagoas costeiras

| Estação | Mês de amostragem | Abertura ao mar | Chl a (ug/l) | Média Chl a (ug/L) |  |
|---------|-------------------|-----------------|--------------|--------------------|--|
| Ponto 1 | Maio              | Fechada         | 15,81        | 10.41              |  |
| Ponto 2 | Maio              | Fechada         | 21,01        | 18,41              |  |
| Ponto 1 | Julho             | Aberta          | 5,31         | г 02               |  |
| Ponto 2 | Julho             | Aberta          | 6,33         | 5,82               |  |
| Ponto 1 | Agosto            | Aberta          | 9,89         | 10.22              |  |
| Ponto 2 | Agosto            | Aberta          | 10,54        | 10,22              |  |
| Ponto 1 | Setembro          | Fechada         | 15,66        | 15.05              |  |
| Ponto 2 | Setembro          | Fechada         | 16,23        | 15,95              |  |
| Ponto 1 | Outubro           | Fechada         | 19,98        | 20.15              |  |
| Ponto 2 | Outubro           | Fechada         | 20,31        | 20,15              |  |

O primeiro passo consiste no cálculo da concentração média de clorofila-a por massa de água (Média ChI a (ug/L)) por mês de amostragem, calculada através da média dos valores obtidos em cada campanha nos dois pontos de amostragem. A partir destas médias por massa de água são calculados os valores do percentil 90 dos dados de todas das campanhas (P90 anual), para cada situação: lagoa aberta ou fechada. Os resultados são os apresentados no Quadro 5.12.

Quadro 5.10 – Exemplo de cálculo em lagoas costeiras

| Número de amostragens | Abertura ao<br>mar | Média Chl <i>a</i><br>(ug/L) | P90 Chl a | Referência<br>Chl a | RQE  | EQS       | Confiança |
|-----------------------|--------------------|------------------------------|-----------|---------------------|------|-----------|-----------|
|                       | Fechada            | 18,41                        |           |                     |      |           |           |
| 3                     | Fechada            | 15,95                        | 19,80     | 20                  | 1    | EXCELENTE | MÉDIO     |
|                       | Fechada            | 20,15                        |           |                     |      |           |           |
| 2                     | Aberta             | 5,82                         | 0.79      | 6.67                | 0.60 | EXCELENTE | BAIXO     |
| 2                     | Aberta             | 10,22                        | 9,78      | 6,67                | 0,68 | EXCELENTE | BAIXO     |

A partir do valor do P90 e do valor de referência, é calculado o RQE através da equação RQE= REF/P90. Ou seja, RQE fechada = 20/19,80 = 1,01 =1 e RQE aberta = 6,67/9,78=0,68. Ambos os valores são superiores a 0,67, o que se traduz numa classificação de Excelente, que para uma situação de lagoa aberta, quer para a situação de lagoa fechada.

Para o cálculo do RQE final, procede-se à determinação da média ponderada dos RQE em situação lagoa aberta e lagoa fechada, o que neste caso resulta num RQE=0,87 (Excelente). A utilização da média ponderada permite ter em consideração o peso relativo de cada um dos RQE (neste caso devido ao número diferente de amostragens que o determinam). O grau de confiança é determinado com base no número de amostragens.

## 5.1.2 Macroalgas oportunistas

Neste subcapítulo é apresentado o procedimento para avaliação do elemento de qualidade biológica macroalgas oportunistas, em águas de transição e lagoas costeiras, nos termos da DQA, através da aplicação do índice BMI – Blooming Macroalgae Index (Neto et al., 2020a; Patricio et al., 2007; Scalan et al., 2007). Este índice aplica-se às águas de transição das tipologias A1 - Estuário mesotidal estratificado e A2 - Estuário mesotidal homogéneo com descargas irregulares de rio e às lagoas costeiras das tipologias A3 - Lagoas costeiras semifechadas e A4 - Lagoas costeiras abertas. O exercício de intercalibração encontra-se concluído para o tipo comum NEA11 (estuários tipo A1), embora os resultados ainda não tenham sido publicados em decisão de intercalibração. É aplicado o sistema de classificação nacional para os estuários dos tipos A2 e as lagoas costeiras dos tipos A3 e A4.

As macroalgas, juntamente com o subelemento das angiospérmicas (ervas marinhas e vegetação de sapal), integram o elemento biológico outra flora aquática.

As macroalgas oportunistas são organismos que normalmente podem ser encontrados integrados nas comunidades de macroalgas costeiras e estuarinas, em densidades razoavelmente baixas que podem, inclusive, não ser das mais abundantes no seio da comunidade. No entanto, quando as condições ambientais assim o permitem, como a existência de uma boa luminosidade, temperatura elevada e concentração de nutrientes, há macroalgas que conseguem tirar vantagem relativamente à maioria das outras macroalgas da comunidade. Proliferam e apresentam uma abundância elevada, formando normalmente espessos mantos, que muitas vezes se depositam sobre as restantes, dominando-as.

As macroalgas oportunistas são maioritariamente formadas por indivíduos da Família Ulvaceae e, embora outras também possam ser encontradas em abundâncias comparavelmente elevadas (e.g., Gracilariaceae), quando estimuladas pelas condições ótimas e favoráveis, desenvolvem-se a um ritmo acima da sua taxa normal de crescimento. O excesso de nutrientes, combinado com fatores abióticos como sendo a temperatura, hidrodinamismo e tipo de substrato promove a proliferação de macroalgas oportunistas.

O índice BMI é composto pelas seguintes métricas:

- **Composição taxonómica** confirmação da presença de *taxa* identificados como macroalgas oportunistas acumulados no intermareal das massas de água a avaliar;
- Área total de intermareal disponível estimativa da área intermareal disponível (ha) obtida
  por intermédio de fotos verticais ou outra ferramenta SIG. São áreas intermareais que
  correspondem a substratos de areia fina, areia vasosa, vasa, vasa cascalhenta ou bancos de
  conchas, devendo ser excluídas as áreas onde o crescimento de macroalgas não é possível ou
  as áreas com um uso específico que modifique consideravelmente a dinâmica geral do sistema
  (e.g., tanques, ilhas, reservatórios, etc.);
- Área ocupada corresponde ao número de hectares (ha) efetivamente ocupados por macroalgas oportunistas obtida após a subtração das áreas correspondentes aos espaços vazios no interior das sua manchas. Deverão ser registadas as subáreas que apresentam diferentes densidades de cobertura (e.g., 1-25%, 26-50%, 51-75%, 76-100%), de forma a permitir a quantificação efetiva da área coberta por macroalgas oportunistas, como mostra a equação 1:

$$A (ha) = (a*(1+25)/100/2) + (b*(26+50)/100/2) + (c*(51+75)/100/2) + (d*(76+100)/100/2)$$

Onde: A = área ocupada, em ha; a = área com densidade de cobertura de 1-25%; b = área com densidade de cobertura de 26-50%; c = área com densidade de cobertura de 51-75%; d = área com densidade de cobertura de 76-100%.

 Percentagem de cobertura de oportunistas (%) – corresponde à área de macroalgas oportunistas relativamente à área total de intermareal disponível, que se obtém seguindo a equação 2:

$$P(\%) = A*100 / ID$$

Onde: P = percentagem de cobertura de oportunistas, expresso em %; A = área ocupada por oportunistas, expresso em ha; ID = área total de intermareal disponível, expresso em ha.

As condições de referência para o estado Excelente relativo às métricas Percentagem de Cobertura de Oportunistas e Área Ocupada são apresentadas no Quadro 5.11.

| Métrica                      | Condições de Referência |
|------------------------------|-------------------------|
| Percentagem de Cobertura (%) | <5%                     |

| Métrica           | Condições de Referência |
|-------------------|-------------------------|
| Área Ocupada (ha) | <100 ha                 |

Embora o índice BMI tenha sido desenvolvido com dados provenientes maioritariamente de sistemas estuarinos, devido à semelhança verificada no comportamento do elemento biológico, propõe-se que se faça uso dos mesmos valores e condições para as lagoas costeiras, onde a maré possibilite o aparecimento de uma área intermareal significativa, que permita a eventual expressão de macroalgas oportunistas.

A classificação das macroalgas oportunistas é calculada pela aplicação das seguintes equações:

#### • Aplicação da Equação 1: Cálculo da área ocupada

A (ha) = 
$$(a*(1+25)/100/2) + (b*(26+50)/100/2) + (c*(51+75)/100/2) + (d*(76+100)/100/2)$$

Onde: A = área ocupada, em ha; a = área com densidade de cobertura de 1-25%; b = área com densidade de cobertura de 26-50%; c = área com densidade de cobertura de 51-75%; d = área com densidade de cobertura de 76-100%.

#### • Aplicação da Equação 2: Cálculo da percentagem de cobertura

$$P(\%) = A*100 / ID$$

Onde: P = percentagem de cobertura de oportunistas, expresso em %; A = área ocupada por oportunistas, expresso em ha; ID = área total de intermareal disponível, expresso em ha.

A partir dos resultados da percentagem de cobertura por macroalgas oportunistas é possível determinar o EQS\_base (estado de qualidade base). No entanto, pode ser necessário o cálculo do RQE-base.

#### • Aplicação da Equação 3: Cálculo do RQE\_base

 $RQE_base = 1 - A/ID$ 

A partir destes resultados é determinado o EQS\_base, de acordo com o Quadro 5.12.

Quadro 5.12 – Classificação da massa de água de acordo com o índice BMI

| Percentagem<br>Cobertura (%) | RQE_base    | EQS_base  | Área Ocupada<br>(ha) | Depreciação<br>EQS_base |
|------------------------------|-------------|-----------|----------------------|-------------------------|
| <5                           | 0,951-1,000 | EXCELENTE | <100                 | EQS_base 0 classes      |
| 5-15                         | 0,851-0,950 | BOM       | 100-499              | EQS_base 0 classes      |
| 16-25                        | 0,751-0,850 | RAZOÁVEL  | 500-999              | EQS_base 1 classes      |
| 26-75                        | 0,251-0,750 | MEDÍOCRE  | 1000-2500            | EQS_base 2 classes      |
| >75                          | 0,000-0,250 | MAU       | >2500                | EQS_base 3 classes      |

Esta abordagem foi selecionada porque permite estimar que parte do sistema está afetada pela proliferação e acumulação de macroalgas oportunistas nas suas plataformas intermareais, em comparação com a área total disponível da massa de água. Sistemas com uma grande parte da sua superfície intermareal coberta por macroalgas oportunistas estarão em piores condições do que os sistemas que apresentem uma menor área afetada.

Após a determinação do EQS-base, verifica-se se há lugar a depreciação do EQS\_base usando a métrica Área Ocupada. Desta forma, é tida em consideração a área efetivamente ocupada por estas macroalgas, ajustando-se a classificação em função disto. Assim, se a área ocupada for inferior a 500 ha, não há lugar a depreciação na classificação. Se área ocupada pelas macroalgas oportunistas for igual a superior a 500 ha, há lugar a depreciação de acordo com o Quadro 5.12.

No caso das macroalgas oportunistas, o nível de confiança na avaliação (Quadro 5.13) depende da capacidade de deteção e caracterização dos *blooms* destas espécies. A interpretação dos resultados da aplicação do índice deve ter em consideração a variabilidade espacial e temporal da ocorrência destas espécies e os potenciais erros associados à aplicação destas metodologias.

Quadro 5.13 – Níveis de confiança associados ao índice BMI.

| Níve | is de confiança | Critério                                                                                                                   |  |
|------|-----------------|----------------------------------------------------------------------------------------------------------------------------|--|
| 1    | Muito elevada   | Não definido                                                                                                               |  |
| 2    | Elevada         | Avaliação baseada em 3 ou mais anos de amostragem. Monitorização realizada dentro da época de crescimento (abril a junho)  |  |
| 3    | Média           | Avaliação baseada em menos de 3 anos de amostragem. Monitorização realizada dentro da época de crescimento (abril a junho) |  |
| 4    | Baixa           | Avaliação baseada em menos de 3 anos de amostragem. Monitorização ealizada fora da época de crescimento (abril a junho)    |  |
| 5    | Muito baixa     | Não definido                                                                                                               |  |

Por forma a clarificar o processo de classificação, apresenta-se como exemplo o cálculo do BMI para uma massa de água de transição. A área intermareal disponível estimou-se em cerca de 75 ha, tendo sido feito o levantamento das condições da mancha de macroalgas oportunistas pelo método direto (com GPS no terreno). Como resultado desta avaliação, registou-se uma área ocupada de 0,616 ha com 26-50% de cobertura e uma área 0,070 ha com 76-100% de cobertura.

Substituindo aqueles valores na equação 1: A (ha) = (0\*(1+25)/100/2) + (0,616\*(26+50)/100/2) + (0\*(51+75)/100/2) + (0,070\*(76+100)/100/2) = 0,295

Obtém-se uma área ocupada de 0,295 ha. Substituindo este valor e o da área intermareal disponível, na equação 2: P (%) = 0,295 \* 100 / 75 = 0,393%

Assim, obtém-se um valor de 0,393 % de área coberta por macroalgas oportunistas. A partir deste resultado poderia chegar-se à conclusão de que o EQS\_base seria Excelente, uma vez que P<5%.

Calculando o RQE\_base através da equação 3, obtém-se RQE\_base = 1 - (0.295/75), obtém-se o valor 0,996, que corresponde a um EQS\_base de Excelente.

Sendo a área ocupada <100 ha, verifica-se que não há depreciação da classificação inicial (EQS\_base). A massa de água obtém uma classificação de Excelente.

## 5.1.3 Macroalgas de substrato rochoso

Neste subcapítulo é apresentado o procedimento para avaliação do elemento de qualidade biológica macroalgas de substrato rochoso, em águas costeiras, nos termos da DQA, através da aplicação do índice P-MarMAT - *Portuguese Marine Macroalgae Assessment Tool* (Gaspar *et al.*, 2020; Neto *et al.*, 2012; Orfanidis *et al.*, 2011). Este índice aplica-se às águas costeiras das tipologias A5 - Costa atlântica mesotidal exposta, A6 - Costa atlântica mesotidal moderadamente exposta e A7 - Costa atlântica abrigada, onde existam praias com áreas de intertidal rochoso, necessário ao desenvolvimento destas macroalgas. Este método foi Intercalibrado o tipo comum NEA1/26 (correspondente às águas costeiras dos tipos nacionais A5, A6 e A7).

As macroalgas são organismos essencialmente sésseis que vivem fixos a um substrato, e, como tal, refletem a qualidade da água onde estão mergulhados ao longo do tempo.

A composição taxonómica é, de um modo geral, muito diversa em Portugal continental. Ao longo da linha de costa faz-se sentir um pronunciado gradiente latitudinal, verificando-se, de norte para sul do país, uma diminuição da exposição à ondulação, uma diminuição dos nutrientes dissolvidos, um aumento da temperatura superficial da água e um aumento da radiação fotossinteticamente ativa; por sua vez, estes fatores influenciam fortemente a distribuição das comunidades macroalgais ao longo do país.

As comunidades de macroalgas respondem às pressões antropogénicas, como a poluição por nutrientes ou contaminantes, a sedimentação ou o pisoteio, através de alterações na composição taxonómica e na abundância das suas espécies. A resposta a um aumento de poluição orgânica no meio é, muitas vezes, manifestada através da diminuição do número de espécies ou através do aumento da cobertura de espécies oportunistas.

O método é baseado no princípio de que as pressões causadas pelas atividades antropogénicas podem alterar a composição e abundância de espécies de macroalgas que ocorrem nas zonas costeiras, refletindo-se estas alterações no valor do índice.

O índice P-MarMAT é composto por 7 métricas, representativas das características estruturais e funcionais das comunidades de macroalgas de substratos rochosos de zonas do intermareal de águas costeiras:

- Métrica 1: Riqueza taxonómica Número de espécies. Métrica relacionada com a complexidade e diversidade dos habitats. Uma redução do número de espécie é representativa de perda ou degradação de habitats.
- **Métrica 2: Proporção de** *taxa* **de Chlorophyta** Razão entre o número de *taxa* de chlorophytas e a riqueza taxonómica, calculado através da equação:

Proporção de CHLOROPHYTA = 
$$\frac{\text{Número de CHLOROPHYTA}}{\text{Riqueza taxonómica}}$$

- Métrica 3: Número de taxa de Rhodophyta Número de taxa de rhodophytas
- Métrica 4: Rácio de Grupo de estado ecológico proporção entre o número de taxa dos grupos de estado ecológico ESG I e ESG II (Tabela I) e refere-se à proporção de formas perenes (ESG I) e formas anuais ou efémeras com estratégias oportunistas (ESG II):

Ratio ESG = 
$$\frac{\text{Número de ESG 1}}{\text{Número de ESG 2}}$$

• **Métrica 5: Proporção de** *taxa* **oportunistas** – razão entre o número de *taxa* considerados oportunistas e a riqueza taxonómica

Proporção de Oportunistas 
$$=$$
  $\frac{\text{Número de Oportunistas}}{\text{Riqueza taxonómica}}$ 

- **Métrica 6: percentagem de cobertura de** *taxa* **oportunistas** percentagem de cobertura dos *taxa* considerados oportunistas na zona intermareal de substrato rochoso
- **Métrica 7: Descrição do local de amostragem** fator de correção para as diferentes características dos locais amostrados.

As condições de referência para as métricas do P-MarMAT são comuns a todas as tipologias nacionais de águas costeiras (Quadro 5.14).

| Quadro 5.14 – Condi | ções de referência | para o índice P-MarMAT |
|---------------------|--------------------|------------------------|
|---------------------|--------------------|------------------------|

| Métrica                                             | Condição de referência |
|-----------------------------------------------------|------------------------|
| Métrica 1 - Riqueza taxonómica*                     | ≥28                    |
| Métrica 2 - Proporção de <i>taxa</i> de Chlorophyta | <0,1 (<10%)            |

| Métrica                                                    | Condição de referência |
|------------------------------------------------------------|------------------------|
| Métrica 3 - Número de <i>taxa</i> de Rhodophyta            | ≥18                    |
| Métrica 4 - Rácio de Grupo de estado ecológico             | ≥2,0                   |
| Métrica 5 - Proporção de taxa oportunistas                 | <0,1 (<10%)            |
| Métrica 6 - Percentagem de cobertura de taxa oportunistas* | <10%                   |
| Métrica 7 - Descrição do local de amostragem               | ≤7                     |

<sup>\*</sup>estas métricas são ponderadas com um fator de 2

#### O cálculo do P-MarMAT é realizado da seguinte forma:

- A partir da ficha de campo com a lista das espécies identificadas, é feita a correspondência com a Lista Reduzida de Taxa (RTL) constante do Anexo II e determinada a estrutura da comunidade.
- A partir desta lista RTL são calculadas as métricas: Métrica 1 Riqueza taxonómica, Métrica 2
   Proporção de taxa de CHLOROPHYTA, Métrica 3 Proporção de taxa de RHODOPHYTA, Métrica 4 Ratio de Grupo de estado ecológico e Métrica 5 Proporção de taxa oportunistas.
- A Métrica 6 Percentagem de cobertura de taxa oportunistas é determinada seguindo a metodologia descrita no protocolo de amostragem desenvolvido para a monitorização deste elemento biológico no âmbito da DQA (documento Critérios para a Monitorização das Massas de Água)
- A Métrica 7 Descrição do local de amostragem realiza-se durante a amostragem de cada local, através do preenchimento da ficha constante do Anexo II (e de acordo com o estabelecido no protocolo de amostragem).
- A partir do Quadro 5.15, é feita a correspondência entre os valores das métricas e a pontuação obtida. O P-MarMAT é o somatório das pontuações das várias métricas. Note-se que as métricas 1 Riqueza taxonómica e 6 Percentagem de cobertura de taxa oportunista são duplamente valoradas na sua contribuição para a pontuação final.

Quadro 5.15 – Esquema de pontuações associadas ao índice P-MarMAT

| Métricas                                                     | Estado de Qualidade Ecológica |          |          |           |       |  |
|--------------------------------------------------------------|-------------------------------|----------|----------|-----------|-------|--|
| ivietricas                                                   | EXCELENTE                     | вом      | RAZOÁVEL | MEDÍOCRE  | MAU   |  |
| 1 - Riqueza taxonómica*                                      | ≥28                           | 21-27    | 14-20    | 7-13      | 0-6   |  |
| 2 - Proporção de <i>taxa</i> de<br>Chlorophyta               | <0,1                          | 0,1-0,19 | 0,2-0,29 | 0,30-0,39 | ≥0,4  |  |
| 3 - Número de <i>taxa</i> de Rhodophyta                      | ≥18                           | 13-17    | 9-12     | 4-8       | 0-3   |  |
| 4 - Rácio de Grupo de Estado<br>Ecológico                    | ≥2                            | 1-1,99   | 0,5-0,99 | 0,25-0,49 | <0,24 |  |
| 5 - Proporção de <i>taxa</i> oportunistas                    | <0,1                          | 0,1-0,19 | 0,2-0,29 | 0,3-0,39  | ≥0,4  |  |
| 6 - Cobertura de <i>taxa</i> oportunistas<br>em percentagem* | <10%                          | 10-19%   | 20-29%   | 30-70%    | >70%  |  |
| 7 - Descrição do local de<br>amostragem                      | 1-7                           | 8-11     | 12-14    | 15-18     |       |  |
| Pontuação                                                    | 4                             | 3        | 2        | 1         | 0     |  |
| Soma de pontuações                                           | 0-7                           | 8-14     | 15-21    | 22-28     | 29-36 |  |

Note-se que as pontuações das métricas "Riqueza taxonómica" e "Cobertura de Oportunistas" são contabilizadas duas vezes (x2) nas pontuações finais. O P-MarMAT será o valor resultante da soma das pontuações. Para a determinação do RQE, este valor é por 36 (valor máximo que o P-MarMAT pode assumir).

No caso do P-MarMAT, o valor do RQE é calculado a partir do índice através da fórmula:

#### RQE=P-MarMAT/P-MarMAT max.

A partir do valor do RQE e de acordo com o Quadro 5.16, é determinado o estado de qualidade da massa de água (EQS): excelente, bom, razoável, medíocre ou mau.

Quadro 5.16 – Fronteiras de qualidade do índice P-MarMAT, aplicável em águas costeiras.

| Tipo nacional | Excelente/ Bom | Bom/ Razoável | Razoável/<br>Medíocre | Medíocre/ Mau |
|---------------|----------------|---------------|-----------------------|---------------|
| A5            | 0,860          | 0,600         | 0,430                 | 0,300         |
| A6            | 0,860          | 0,600         | 0,430                 | 0,300         |
| A7            | 0,860          | 0,600         | 0,430                 | 0,300         |

Caso exista mais do que um local de amostragem na mesma massa de água, a classificação da massa de água é dada pela média aritmética dos RQEs calculados para os vários pontos de amostragem.

No caso das macroalgas de substrato rochoso, o nível de confiança (Quadro 5.17) na avaliação depende da capacidade de determinação das métricas que compõem o P-MarMAT. A interpretação dos resultados da aplicação do índice deve ter em consideração a variabilidade espacial e temporal da ocorrência destas espécies e os potenciais erros associados à aplicação destas metodologias.

Quadro 5.17 – Níveis de confiança associados ao índice P-MarMAT.

| Níve | is de confiança | Critério                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1    | Muito elevada   | Não definido                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2    | Elevada         | (i) Classificação baseada em 3 ou mais anos de amostragem por cada ciclo de 6 anos de avaliação; (ii) Monitorização realizada dentro da época de amostragem recomendada (junho setembro); (iii) Utilização no terreno de 3 estações de amostragem por massa de água, sempre que a distribuição do substrato rochoso disponível o permita; (iv) Avaliação realizada por peritos com experiência de trabalho no sistema em avaliação. |  |
| 3    | Média           | Cumpre pelo menos 2 dos critérios anteriores                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 4    | Baixa           | Cumpre menos de 2 dos critérios anteriores                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 5    | Muito baixa     | Não definido                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

Para exemplificar o cálculo do P-MarMAT, considerou-se o conjunto de dados de campo do Quadro 5.18. Ao conjunto de 47 taxa registados, correspondem 35 entradas na Lista Reduzida de Taxa (RTL), já que alguns taxa identificados no campo são contabilizados por uma mesma entrada na RTL (por exemplo, a presença dos taxa Ceramium spp., Callithamnion tetricum e Halurus equisetifolius identificados no campo são contabilizados pela mesma entrada na RTL denominada por Ceramiales; a espécie Rhodothamniella floridula não foi contabilizada uma vez que não tem correspondência na RTL). Cada entrada da RTL corresponde a um dado Filo, um dado EGS e característica oportunista.

# Quadro 5.18 – Conjunto de dados para exemplo de cálculo do P-MarMAT

| <i>Taxa</i> registados na<br>amostragem | Entradas correspondentes<br>na RTL           | Filo        | ESG      | Oportunista |
|-----------------------------------------|----------------------------------------------|-------------|----------|-------------|
| Codium eretos                           | Codium eretos                                | CHLOROPHYTA | II       |             |
| Ulvales laminares                       | Ulvales                                      | CHLOROPHYTA | II       | sim         |
| Ulvales tubulares                       | Ulvales                                      | CHLOROPHYTA | II       | sim         |
| Bifurcaria bifurcata                    | Bifurcaria bifurcata                         | OCHROPHYTA  | ı        | <b>5</b>    |
| Castanhas filamentosas,                 | Castanhas filamentosas,                      |             |          |             |
| Ectocarpales                            | Ectocarpales                                 | OCHROPHYTA  | II       | sim         |
| Cladostephus spongiosus                 | Cladostephus spongiosus                      | OCHROPHYTA  | II       |             |
|                                         | Cystoseira / Carpodesmia /                   | OCUPORUNTA  |          |             |
| Treptacantha baccata                    | Treptacantha spp.                            | OCHROPHYTA  |          |             |
| Dictyopteris polypodioides              | Dictyopteris polypodioides                   | OCHROPHYTA  | 1        |             |
| Dictyota dichotoma                      | Dictyota dichotoma                           | OCHROPHYTA  | II       |             |
| Halopteris scoparia                     | Halopteris spp.                              | OCHROPHYTA  | II       |             |
| Saccorhiza polyschides                  | Saccorhiza polyschides                       | OCHROPHYTA  | И        |             |
| Sargassum muticum                       | Sargassum muticum                            | OCHROPHYTA  | 1        |             |
| Undaria pinnatifida                     | Undaria pinnatifida                          | OCHROPHYTA  |          |             |
| Anhfeltiopsis devoniensis               | Anhfeltiopsis devoniensis                    | RHODOPHYTA  | II       |             |
| Corallina spp./Ellisolandia             |                                              | DUOD ODUNTA |          |             |
| elongata                                | Calcarias eretas                             | RHODOPHYTA  |          |             |
| Lithophyllum incrustans                 | Calcarias crostosas                          | RHODOPHYTA  | <b>7</b> |             |
| Calliblepharis jubata                   | Calliblepharis spp.                          | RHODOPHYTA  | I        |             |
| Caulacanth usustulatus                  | Caulacanthus ustulatus                       | RHODOPHYTA  | II       |             |
| Ceramium spp.                           | Ceramiales                                   | RHODOPHYTA  | II       |             |
| Callithamnion tetricum                  | Ceramiales                                   | RHODOPHYTA  | II       |             |
| Halurus equisetifolius                  | Ceramiales                                   | RHODOPHYTA  | II       |             |
| Gastroclonium ovatum                    | Champiaceae                                  | RHODOPHYTA  | II       |             |
| Chondracanthus acicularis               | Chondracanthus spp.                          | RHODOPHYTA  | II       |             |
| Chondracanthus teedei                   | Chondracanthus spp.                          | RHODOPHYTA  | II       |             |
| Chondrus crispus                        | Chondrus crispus                             | RHODOPHYTA  | I        |             |
| Cryptopleura ramosa                     | Delesseriaceae                               | RHODOPHYTA  | II       |             |
| Hypoglossum                             | Dall seed on the                             | DUODODUNTA  |          |             |
| hypoglossoides                          | Delesseriaceae                               | RHODOPHYTA  | II       |             |
| Gelidium pulchellum                     | Gelidiales                                   | RHODOPHYTA  | I        |             |
| Gigartina pistillata                    | Gigartina pistillata                         | RHODOPHYTA  | II       |             |
| Gracilaria gracilis                     | Gracilaria spp.                              | RHODOPHYTA  | I        |             |
| Gracilara multipartita                  | Gracilaria spp.                              | RHODOPHYTA  | I        |             |
| Grateloupia filicina                    | Grateloupia spp.                             | RHODOPHYTA  | 11       |             |
| Grateloupia turuturu                    | Grateloupia turuturu                         | RHODOPHYTA  | 11       |             |
| Hildenbrandia spp.                      | Hildenbrandia spp.                           | RHODOPHYTA  | II       |             |
| Osmundea pinnatifida                    | Laurencia spp., Osmundea spp., Chondria spp. | RHODOPHYTA  | II       |             |
| Chondria coerulescens                   | Laurencia spp., Osmundea spp., Chondria spp. | RHODOPHYTA  | II       |             |
| Chondria<br>scintillans/dasyphylla      | Laurencia spp.,Osmundea spp.,Chondria spp.   | RHODOPHYTA  | 11       |             |
| Lomentaria articulata                   | Lomentaria articulata                        | RHODOPHYTA  | II       |             |
| Mastocarpus stellatus                   | Mastocarpus stellatus                        |             |          |             |
| (Incluindo fase <i>Petrocelis</i>       | (Incluindo fase Petrocelis                   | RHODOPHYTA  | ı        |             |
| cruenta)                                | cruenta)                                     |             | ,        |             |
| Ophidocladus<br>simpliciusculus         | Outras Rhodomelaceae                         | RHODOPHYTA  | II       |             |
| Polysiphonia spp.                       | Outras Rhodomelaceae                         | RHODOPHYTA  | II       |             |
| Pterosiphonia complanata                | Outras Rhodomelaceae                         | RHODOPHYTA  | II       |             |

| Taxa registados na amostragem                 | Entradas correspondentes<br>na RTL | Filo       | ESG | Oportunista |
|-----------------------------------------------|------------------------------------|------------|-----|-------------|
| Vertebrata spp. (V. fruticulosa/V. thuyoides) | Outras Rhodomelaceae               | RHODOPHYTA | II  |             |
| Peyssonelia spp.                              | Peyssonelia spp.                   | RHODOPHYTA | I   |             |
| Plocamium cartilagineum                       | Plocamium cartilagineum            | RHODOPHYTA | I   |             |
| Porphyra spp.                                 | Porphyra spp.                      | RHODOPHYTA | П   | sim         |
| Rhodothamniella floridula                     | Sem Correspondência                |            |     |             |

A partir do Quadro 5.18, organiza-se a estrutura da comunidade através da determinação da riqueza taxonómica (aqui entendida como o número de entradas na tabela RTL), número de CHLOROPHYTA, número de OCHROPHYTA, número de RHODOPHYTA, número de Oportunistas, número de taxa ESG I e o número de taxa ESG II (Quadro 5.19).

Quadro 5.19 - Exemplo de cálculo do P-MarMAT

| Estrutura da comunidade |    |  |  |  |
|-------------------------|----|--|--|--|
| Riqueza taxonómica      | 35 |  |  |  |
| Número de CHLOROPHYTA   | 2  |  |  |  |
| Número de OCHROPHYTA    | 10 |  |  |  |
| Número de RHODOPHYTA    | 23 |  |  |  |
| Número de Oportunistas  | 3  |  |  |  |
| ESG 1                   | 14 |  |  |  |
| ESG 2                   | 21 |  |  |  |

A partir da estrutura da comunidade são calculadas as métricas: Métrica 1 - Riqueza taxonómica, Métrica 2 - Proporção de *taxa* de CHLOROPHYTA, Métrica 3 - Proporção de *taxa* de RHODOPHYTA, Métrica 4 - Ratio de Grupo de estado ecológico e Métrica 5 - Proporção de *taxa* oportunistas (Quadro 5.20.

Quadro 5.20 – Resultados do cálculo das métricas do P-MarMAT

| Métrica                                        | Resultado                                     |  |
|------------------------------------------------|-----------------------------------------------|--|
| Métrica 1 - Riqueza taxonómica                 | 35                                            |  |
| Métrica 2 - Proporção de taxa de Chlorophyta   | N.º CHLOROPHYTA / Riqueza taxonómica = 0,057  |  |
| Métrica 3 - Número de taxa de Rhodophyta       | 23                                            |  |
| Métrica 4 - Rácio de Grupo de estado Ecológico | ESG 1 / ESG 2 = 0,667                         |  |
| Métrica 5 - Proporção de taxa oportunistas     | N.º Oportunistas / Riqueza taxonómica = 0,086 |  |

Para o cálculo da Métrica 6 – Percentagem de cobertura de taxa oportunistas, são utilizados os registos fotográficos de uma área de  $0.20 \times 0.20 \,\mathrm{m}$  (subdividida em 16 áreas de  $0.05 \times 0.05 \,\mathrm{m}$ ) obtidos no trabalho de campo (ver protocolo de amostragem).

Para cada uma das réplicas de 0,20 x 0,20 m (T1R1, T1R2, ... etc.) foram calculadas as respetivas áreas sem cobertura de macroalgas (EQ), as áreas com cobertura de macroalgas oportunistas (QCO) e a respetiva cobertura de oportunistas em % (CO), usando a equação:

$$CO(\%) = QCO \times 100 / (16 - EQ)$$

O valor final da métrica resulta da média aritmética de todas as réplicas do local (Quadro 5.23). Notese que, para cada réplica de 0,20 x 0,20 m, é utilizada uma resolução de ¼ de cada subárea de 0,05 x 0,05 m para os cálculos. Por exemplo, na réplica T1R7, a área ocupada por macroalgas oportunistas

(neste caso Ulva spp.) era vestigial e correspondia a cerca de  $\frac{1}{2}$  de uma subárea de 0,05 x 0,05 cm, sendo assim contabilizada como 0,25, e a área vazia, i.e. sem quaisquer macroalgas, corresponde a 0,5 (que corresponde a metade de uma subárea de 0,05 x 0,05 m).

Quadro 5.21 – Conjunto de dados para cálculo da métrica cobertura de oportunistas

| Réplica | EQ               | QCO                         | CO (%) |
|---------|------------------|-----------------------------|--------|
| T1R1    | 0,5              | 15                          | 97     |
| T1R2    | 3,5              | 10                          | 80     |
| T1R3    | 1                | 8                           | 53     |
| T1R4    |                  | 3,5                         | 22     |
| T1R5    |                  | 2                           | 13     |
| T1R6    |                  | 3                           | 19     |
| T1R7    | 0,5              | 0,25                        | 1,6    |
| T2R1    |                  | 16                          | 100    |
| T2R2    | 1                | 14                          | 93     |
| T2R3    |                  | 5                           | 31     |
| T2R4    |                  | 2,5                         | 16     |
| T2R5    |                  | 3                           | 19     |
| T2R6    |                  | 1,5                         | 9,4    |
| T2R7    |                  | 0                           | 0      |
| T3R1    |                  | 16                          | 100    |
| T3R2    | 2                | 4                           | 29     |
| T3R3    |                  | 7                           | 44     |
| T3R4    |                  | 5                           | 31     |
| T3R5    |                  | 4                           | 25     |
| T3R6    |                  | 1                           | 6,3    |
| T3R7    |                  | 2                           | 13     |
|         | Média aritmética | (Cobertura de Oportunistas) | 38,1   |

Para a determinação do valor da Métrica 7 - Descrição do local de amostragem, preencheu-se a ficha de campo constante do Anexo II e somou-se a pontuação obtida (ver protocolo de amostragem no documento Critérios para a Monitorização das Massas de Água). Note-se que os campos "biota dominante" e "comentários" são informações extra que não entram para os cálculos. No caso deste exemplo de aplicação, o somatório dos campos da ficha resultou num valor de 13 para a métrica 7.

Realizados os cálculos dos valores das 7 métricas, estes são comparados com a tabela de referência para atribuição das respetivas pontuações no índice final. Os resultados finais deste exemplo de aplicação são apresentados no Quadro 5.24.

Quadro 5.22 – Cálculo final do P-MarMAT, determinação do RQE e do estado de qualidade

| Métricas                         | Valor        | Pontuações | Fator x2 | Pontuações finais |
|----------------------------------|--------------|------------|----------|-------------------|
| 1- Riqueza taxonómica            | 35           | 4          | x2       | 8 (4x2)           |
| 2- Proporção de CHLOROPHYTA      | 0,057        | 4          |          | 4                 |
| 3- Número de RHODOPHYTA          | 23           | 4          |          | 4                 |
| 4-Rácio ESG                      | 0,7          | 2          |          | 2                 |
| 5- Proporção de Oportunistas     | 8,6          | 4          |          | 4                 |
| 6- Cobertura de Oportunistas     | 38,1         | 1          | x2       | 2                 |
| 7- Descrição local de amostragem | 13           | 2          |          | 2                 |
| тот                              | 26           |            |          |                   |
|                                  | 26/36 = 0,72 |            |          |                   |
|                                  | ВОМ          |            |          |                   |

#### 5.1.4 Ervas marinhas

Este subcapítulo apresenta o procedimento para avaliação do elemento de qualidade biológica ervas marinhas (ou prados marinhos), em águas de transição e lagoas costeiras, nos termos da DQA, através da aplicação do índice SQI - Seagrass Quality Index (Neto et al., 2020b; Neto et al., 2013). Este índice aplica-se às águas de transição das tipologias A1 - Estuário mesotidal estratificado e A2 - Estuário mesotidal homogéneo com descargas irregulares de rio e às lagoas costeiras das tipologias A3 - Lagoas costeiras semifechadas e A4 - Lagoas costeiras abertas. O índice encontra-se intercalibrado para o tipo comum NEA11 (estuários tipo A1). Para os estuários do tipo A2 e as lagoas costeiras dos tipos A3 e A4 foi definido o sistema de classificação nacional.

No contexto da DQA, as ervas marinhas, juntamente com a vegetação de sapais constituem o subelemento das angiospérmicas, que com as macroalgas integram o elemento biológico outra flora aquática.

O elemento biológico ervas marinhas é um dos elementos de qualidade avaliados no âmbito da DQA mais sensíveis às pressões antropogénicas e relevante em termos de conservação e preservação para os ambientes estuarinos e costeiros. Dependendo das espécies, os prados marinhos desenvolvem-se em plataformas arenosas desde as zonas intermédias das áreas expostas na maré baixa até às zonas sempre submersas mais superficiais dos sistemas estuarinos e costeiros. São organismos perfeitamente adaptados à submersão em água salgada, podendo surgir a maiores ou menores profundidades conforme a transparência da água e o nível de luminosidade apresentado junto ao fundo. Conferem abrigo e alimento a inúmeras espécies que habitam estes sistemas, principalmente a organismos juvenis que as utilizam como berçário (nursery), sendo também reconhecidos como importantes agentes de proteção da costa e de sequestro de carbono.

Contudo, dada a sua localização preferencial em estuários e sistemas costeiros abrigados, zonas estas que normalmente se encontram próximas de aglomerados urbanos ou industriais extensos, encontram-se muitas vezes sob a ameaça de diferentes formas de pressão (e.g., nutrientes, turbidez, hidrodinamismo).

Os prados marinhos são um elemento biológico de resposta variável face às alterações ocorridas no meio aquático, oscilando o seu tempo de reação entre meses (e.g., *Zostera noltei*) a décadas (e.g., *Posidonia oceanica*), e estão normalmente associadas a ambientes aquáticos saudáveis. Estas plantas podem ser usadas como indicador para alguns tipos de alterações provocadas por pressões antropogénicas, sendo unanimemente consideradas como um elemento de grande importância na avaliação do estado ecológico das massas de água de transição e costeiras (incluindo lagoas costeiras).

Os prados marinhos podem desaparecer quando a degradação ambiental é grande, com o aumento da turbidez da coluna de água, ou por competição direta com macroalgas oportunistas que proliferam rapidamente sobre as plantas em consequência do enriquecimento em nutrientes da coluna de água.

O excesso de nutrientes constitui uma pressão antropogénica dominante neste tipo de sistemas, que além de se poder traduzir numa forma direta de toxicidade para as plantas, pode igualmente promover o excessivo desenvolvimento de macroe microalgas na coluna de água e na superfície das plantas e do substrato. Como consequência, verifica-se a alteração no ambiente luminoso nestes ecossistemas aquáticos, com a redução na penetração da luz na coluna de água e junto ao fundo, o que acaba por promover a degradação das pradarias de fanerogâmicas.

O índice SQI é uma ferramenta multimétrica que combina três métricas distintas:

- Composição taxonómica de ervas marinhas, definida como o número de taxa identificados durante a amostragem; compara o número de espécies observadas com o número de espécies presentes nos registos históricos;
- Área coberta área intermareal ocupada pelos prados marinhos (ha), definida como a área total que apresenta uma densidade de manchas de vegetação acima de 5% da área superficial

de sedimento. Deverão ser registadas as sob áreas que apresentam diferentes densidades de cobertura (e.g., 5-25%, 25-50%, 50-75%, 75-100%), de forma a poder ser avaliada a evolução da pradaria entre monitorizações. Avalia a área de prados marinhos ganha ou perdida na massa de água.

• Densidade de rebentos densidade de indivíduos/meristemas foliares, definida como o número de rebentos por m2, quantificado a partir de réplicas representativas das diferentes partes da mancha dos prados marinhos (pelo menos 3 réplicas; e.g., tubo de amostragem de sedimentos móveis Ø 0,136 m; quadrado de amostragem – lado = 0,2 m).

Dada a falta frequente de dados históricos relativos a algumas das métricas que constituem a SQI, as condições de referência correspondem basicamente às Melhores Condições Atingíveis, ou seja, são equivalentes à condição ecológica expectável para um local sob a menor perturbação, se as melhores práticas de gestão forem usadas por um período de tempo. Note-se que, apesar de se terem definido as condições de referência para as massas de água onde existem prados marinhos, baseadas no melhor conhecimento à época, estas não são definitivas e podem sofrer atualização ao longo do tempo. A recolha de novos dados, aumentando as séries temporais, podem ajudar a definir melhor os valores das condições de referência em cada sistema.

Assim, as condições de referência, no geral, podem ser definidas da seguinte forma:

- Composição taxonómica corresponde ao número máximo de espécies de ervas marinhas alguma vez registado na massa de água;
- Área coberta corresponde à área coberta, de maiores dimensões alguma vez registada para
  o sistema, ocupada por manchas de prados marinhos com densidade superior a 5%. Em
  alternativa, enquanto não há registos históricos de confiança, poder-se-á usar o valor de 5%
  da área intermareal disponível na massa de água para TW, tal como ficou definido na IC. Para
  as lagoas costeiras entendeu-se adequado elevar essa percentagem para 25%.
- Densidade de rebentos corresponde ao percentil 90 do número de rebentos por m² recolhidos aleatoriamente em pradarias saudáveis. Definiu-se o valor de referência de 12000 ind/m² para as águas de transição, tal como na IC, e de 15000 ind/m² para as lagoas costeiras.

Os valores das condições de referência definidos para as métricas incluídas no SQI são os constantes do Quadro 5.23.

Quadro 5.23 - Condições de referência do índice SQI

| Massa de Água  | Área intermareal<br>disponível (ha) | Composição<br>Taxonómica | Área Coberta<br>(m²) | Densidade<br>Rebentos (ind/m²) |
|----------------|-------------------------------------|--------------------------|----------------------|--------------------------------|
| Minho-WB1      | 75                                  | 1                        | 37318*               | 12000                          |
| Lima-WB2       | 71                                  | 1                        | 35480                | 12000                          |
| Ria Aveiro-WB1 | 376                                 | 1                        | 400000               | 12000                          |
| Ria Aveiro-WB2 | 5205                                | 1                        | 2602500*             | 12000                          |
| Ria Aveiro-WB3 | 949                                 | 1                        | 474500*              | 12000                          |
| Ria Aveiro-WB5 | 21                                  | 1                        | 10625                | 12000                          |
| Mondego-WB1    | 114                                 | 1                        | 57000*               | 12000                          |
| Mondego-WB2    | 134                                 | 1                        | 166629               | 12000                          |
| Tejo-WB2       | 15129                               | 1                        | 7564375              | 12000                          |
| Sado-WB2       | 1682                                | 1                        | 841000               | 12000                          |
| Sado-WB4       | 1117                                | 1                        | 558500               | 12000                          |
| Sado-WB5       | 10793                               | 1                        | 5396500              | 12000                          |
| Sado-WB6       | 5346                                | 1                        | 2673000              | 12000                          |
| Mira-WB1       | 100                                 | 1                        | 49971                | 12000                          |
| Mira-WB2       | 171                                 | 1                        | 85332                | 12000                          |
| Arade-WB1      | 312                                 | 1                        | 155955*              | 12000                          |
| Guadiana-WB1   | 537                                 | 1                        | 268409*              | 12000                          |
| Ria do Alvor   | 326                                 | 1                        | 814866**             | 15000                          |

| Massa de Água   | Área intermareal<br>disponível (ha) | Composição<br>Taxonómica | Área Coberta<br>(m²) | Densidade<br>Rebentos (ind/m²) |
|-----------------|-------------------------------------|--------------------------|----------------------|--------------------------------|
| Ria Formosa WB1 | 320                                 | 1                        | 798775**             | 15000                          |
| Ria Formosa WB2 | 2250                                | 1                        | 5623975**            | 15000                          |
| Ria Formosa WB3 | 1705                                | 1                        | 4263550**            | 15000                          |
| Ria Formosa WB4 | 670                                 | 1                        | 1674250**            | 15000                          |
| Ria Formosa WB5 | 421                                 | 1                        | 1053525**            | 15000                          |

<sup>\*</sup>condições de referência para a métrica Área Coberta estimada a partir da área quantificada para o intermareal (5% da área intermareal disponível, no caso das águas de transição).

O cálculo do SQI é realizado através da aplicação da seguinte equação:

$$SQI = (T/T_ref) * 0.2 + (C/C_ref) * 0.3 + (D/D_ref) * 0.5$$

#### Onde:

- T é a composição taxonómica;
- C é a área coberta por prados marinhos na massa de água;
- D é a densidade de rebentos (média representativa da mancha de prados marinhos);
- ref é o valor de referência da métrica correspondente.

Caso seja amostrado mais do que um ano, o estado de qualidade final será o resultado da média aritmética das classificações existentes (média dos RQE anuais).

O valor do RQE é calculado a partir do índice através da fórmula:

A partir do valor do RQE e de acordo com a tabela abaixo, é determinado o estado de qualidade da massa de água (EQS): Excelente, Bom, Razoável, Medíocre ou Mau (Quadro 5.24).

Quadro 5.24 – Fronteiras de qualidade do índice SQI

| Tipo nacional | Excelente/ Bom | Bom/ Razoável | Razoável/<br>Medíocre | Medíocre/ Mau |
|---------------|----------------|---------------|-----------------------|---------------|
| A1            | 0,80           | 0,60          | 0,40                  | 0,20          |
| A2            | 0,80           | 0,60          | 0,40                  | 0,20          |
| A3            | 0,80           | 0,60          | 0,40                  | 0,20          |
| A4            | 0,80           | 0,60          | 0,40                  | 0,20          |

No caso das ervas marinhas, o nível de confiança na avaliação Quadro 5.25 depende do grau de conhecimento das condições de referência para cada sistema ecológico e da capacidade de determinação das métricas que compõem o SQI. A interpretação dos resultados da aplicação do índice deve ter em consideração a variabilidade espacial e temporal da ocorrência destas espécies e os potenciais erros associados à aplicação destas metodologias.

Quadro 5.25 – Níveis de confiança associados ao índice SQI

| Níveis de confiança          |         | Critério                                                                                    |
|------------------------------|---------|---------------------------------------------------------------------------------------------|
| 1 Muito elevada Não definido |         | Não definido                                                                                |
| 2                            | Elevada | Todas as métricas avaliadas e condições de referência para área baseada em dados históricos |

<sup>\*\*</sup>condições de referência para a métrica Área Coberta estimada a partir da área quantificada para o intermareal (25% da área intermareal disponível, no caso das lagoas costeiras).

| Níveis de confiança |             | Critério                                                                       |
|---------------------|-------------|--------------------------------------------------------------------------------|
| 3                   | Média       | Todas as métricas avaliadas, mas condições de referência sem registo histórico |
| 4                   | Baixa       | Alguma das métricas estimadas e condições de referência sem registo histórico  |
| 5                   | Muito baixa | Não definido                                                                   |

Para clarificação, apresenta-se um exemplo do cálculo do SQI para uma massa de água estuarina.

Dos resultados de campo estimou-se a área intermareal disponível em cerca de 537ha, tendo sido feito o levantamento das condições da pradaria pelo método direto (com GPS no terreno). Foi amostrada uma pradaria e recolheram-se 3 réplicas para quantificação do número médio de rebentos que caracterizam esta mancha de vegetação. Como resultado desta avaliação, registou-se a presença de uma única espécie de erva arinha no intermareal (*Zostera noltei*), com uma área coberta de 113514m² e uma densidade de rebentos (média das 3 réplicas recolhidas) de 8223 ind/m².

Usando as condições de referência T = 1; C = 268409m²; D = 12000 ind/m² e aplicando os dados recolhidos no sistema à equação de cálculo do SQI obtém-se:

$$SQI = (1/1) * 0.2 + (113514/268409) * 0.3 + (8223/12000) * 0.5 = 0.669$$

O valor de SQI (=RQE) obtido é então comparado com as fronteiras que definem as classes de qualidade. Verifica-se que se enquadra no intervalo definido pelos valores 0,60 - 0,79 o que corresponde a um EQS de Bom para a massa de água em questão.

## 5.1.5 Sapais

Neste subcapítulo é apresentado o procedimento de avaliação do elemento de qualidade biológica sapais, em águas de transição e lagoas costeiras, nos termos da DQA, através da aplicação do índice AQuA-Index - Angiosperm Quality Assessment Index (Caçador et al., 2020; Caçador et al., 2013). Este índice aplica-se às águas de transição das tipologias A1 - Estuário mesotidal estratificado e A2 - Estuário mesotidal homogéneo com descargas irregulares de rio e às lagoas costeiras das tipologias A3 - Lagoas costeiras semifechadas e A4 - Lagoas costeiras abertas. O índice encontra-se Intercalibrado para o tipo comum NEA11 (estuários tipo A1) e existem sistemas de classificação nacionais para os estuários do tipo A2 e as lagoas costeiras dos tipos A3 e A4.

Em Portugal, o elemento biológico – outra flora aquática, inclui para além das macroalgas, as angiospérmicas, compostas pelos prados marinhos (ervas marinhas) e pela vegetação de sapais.

O elemento biológico angiospérmicas — vegetação de sapais — é um dos mais importantes na preservação dos ambientes estuarinos e costeiros. Os sapais desenvolvem-se nas margens dos estuários e em zonas costeiras, em condições de baixo hidrodinamismo, onde a sedimentação permite que solos imaturos e instáveis sejam colonizados por uma sucessão de plantas tolerantes a períodos frequentes de imersão em água salgada. Distinguem-se três zonas de plantas superiores com comunidades associadas características: a zona pioneira ou baixo sapal, que se encontra na cota mais baixa e onde poucas espécies podem crescer; o sapal do meio ou mais maduro, que se encontra numa cota intermédia e mais consolidada que apresenta uma flora mais rica que a anterior; e a zona alta do sapal, mais estruturada e onde as suas espécies são parcialmente substituídas por espécies características de habitats não salgados ou por halófitas que suportam curtos e não frequentes períodos de submersão.

A vegetação de sapais não é um elemento biológico de resposta rápida face às alterações ocorridas no meio aquático sendo, por isso, mais adequado à deteção de pressões de atuação mais prolongada

no tempo. Estas plantas podem ser usadas como indicadoras para alguns tipos de alterações provocadas por pressões antropogénicas, que atuam de forma mais permanente sobre os sistemas aquáticos onde se encontram, como por exemplo, o aumento de matéria orgânica e consequente eutrofização, dando informação sobre condições degradativas a que o meio possa estar sujeito, bem como sobre a recuperação que possa ocorrer nos sistemas em que estão presentes, através do estudo da sua estrutura florística.

O movimento de sedimentos – por consequência de pressões urbanísticas, dragagens, alteração do regime de marés, contaminação dos sapais, alteração da sua morfologia – traz graves consequências sobre o sapal, levando à sua degradação e à redução da biodiversidade.

O AQuA-Index é composto por 5 métricas representativas da estrutura do sapal calculadas através da abundância relativa das espécies de plantas de sapal em cada massa de água:

- **Métrica 1** Índice de Diversidade de Shannon (H'): Calculado pela fórmula H' =  $-\sum$  pi log2 pi, onde pi = ni/N; ni número de indivíduos da espécie i; N número total de indivíduos
- **Métrica 2** Diversidade Máxima de Shannon (H'max): Calculado pela fórmula H'max=ln(S) onde S = número de espécies amostradas
- Métrica 3 Índice de Equitabilidade de Pielou (J): Calculado pela fórmula J'=H'/H'max onde H'max=In(S) = diversidade máxima; S = número de espécies amostradas
- Métrica 4 índice de Diversidade de Margalef (d) onde d=(S-1)/lnN; S número de espécies;
   N número total de indivíduos
- **Métrica 5** Riqueza específica (S) número total de espécies vegetais presentes na massa de água a avaliar.

Os estudos que estiveram na base do desenvolvimento do AQuA-Index, usando dados dos principais estuários e lagoas costeiras nacionais (Caçador *et al.*, 2013), permitiram mostrar os valores entre os quais oscilam as métricas selecionadas na perspetiva geral dos sistemas estuarinos (máximo, média e mínimo), bem como calcular o valor das ponderações associadas a cada uma destas métricas, conforme o Quadro 5.26.

Quadro 5.26 – Condições de referência para o índice AQuA-Index

| Métricas                       | Ponderação | Máximo | Mínimo | Média |
|--------------------------------|------------|--------|--------|-------|
| Índice Diversidade Shannon     | 0,410      | 1,977  | 0,110  | 1,416 |
| Diversidade Máxima Shannon     | 0,406      | 2,708  | 1,099  | 2,182 |
| Índice Equitabilidade Pielou   | 0,293      | 0,844  | 0,100  | 0,645 |
| Índice Diversidade de Margalef | 0,368      | 1,044  | 0,151  | 0,636 |
| Riqueza Específica             | 0,397      | 15     | 3      | 9,455 |

Os valores máximos e mínimos são os valores de referência para cada métrica usada no AQuA-Index. Quando harmonizados e operados com o valor de ponderação, a sua variação ocorre entre 0 e 1, (conforme preconizado na DQA), e corresponde ao RQE gerado para o elemento biológico.

No cálculo do valor do AQuA-Index não se consideram os valores absolutos das variáveis ecológicas, mas sim o seu valor ponderado por um valor determinado (peso), usando como base os estuários da costa portuguesa (Caçador *et al.*, 2013). Este valor (peso) foi obtido através de uma análise de componentes principais (PCA) e correspondem ao eigenvalue obtido para cada variável (Quadro 5.26). Assim, o AQuA-Index pode ser calculado da seguinte forma:

$$AQuA - Index = \sum_{i=1}^{n} W_i E_i$$

onde Wi é o valor do peso da variável ecológica determinado pela PCA e Ei o seu respetivo valor normalizado entre 0 e 1.

Para a normalização aplicou-se uma equação sigmoidal com a forma:

$$E = \frac{a}{1 + \left(\frac{x}{x_0}\right)^b},$$

onde a é um valor normalizador de 0,535 para que o índice final composto por 5 variáveis varie entre 0 e 1; X0 é o valor médio para a variável em causa; x é o valor da variável; b é o declive da equação (-2,5).

O AQuA-Index final será calculado como:

$$AQua - Index = 0,410 \times E_{H'} + 0,406 \times E_{H'}{}_{max} + 0,397 \times E_S + 0,368 \times E_{Margalef} + 0,293 \times E_J$$

No caso do AQuA-Index, o valor do RQE é igual ao valor do índice, uma vez que este já varia de 0 a 1:

A partir do valor do RQE e de acordo com o Quadro 5.27, é determinado o estado de qualidade da massa de água (EQS): excelente, bom, razoável, medíocre ou mau.

Quadro 5.27 - Fronteiras de qualidade para o índice AQuA-Index

| Tipo nacional | Excelente/ Bom | Bom/ Razoável Razoável/<br>Medíocre |      | Medíocre/ Mau |
|---------------|----------------|-------------------------------------|------|---------------|
| A1            | 0,80           | 0,60                                | 0,40 | 0,20          |
| A2            | 0,80           | 0,60                                | 0,40 | 0,20          |
| A3            | 0,80           | 0,60                                | 0,40 | 0,20          |
| A4            | 0,80           | 0,60                                | 0,40 | 0,20          |

No caso dos sapais, o nível de confiança na avaliação (Quadro 5.28) depende do grau de conhecimento das condições de referência dos sistemas ecológicos e da capacidade de determinação das métricas que compõem o AQuA-Index. A interpretação dos resultados da aplicação do índice deve ter em consideração a variabilidade espacial e temporal da ocorrência destas espécies e os potenciais erros associados à aplicação destas metodologias.

Quadro 5.28 – Níveis de confiança associados ao índice AQuA-Index

| Níve | is de confiança | Critério                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1    | Muito elevada   | Não definido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2    | Elevada         | (i) Escolha prévia e criteriosa da área de sapal representativa da mancha a estudar através da utilização de fotografia aérea e a utilização no terreno de pelo menos 3 transetos por massa de água para a determinação da cobertura e sociabilidade das espécies presentes; (ii) Monitorização realizada uma vez a cada 3 anos, condições de referência para área baseadas em dados históricos; (iii) Todas as métricas avaliadas com dados de campo e dentro da época de amostragem recomendada (verão); (iv) Avaliação realizada por peritos com experiência de trabalho no sistema em avaliação. |  |
| 3    | Média           | Cumpre pelo menos 3 dos critérios anteriores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 4    | Baixa           | Cumpre dois ou menos dos critérios anteriores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 5    | Muito baixa     | Não definido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

Para clarificiação do processo de classificação, apresenta-se como exemplo um cálculo do AQua-Index para uma massa de água onde ocorrem áreas de sapal. Depois de amostrada, a massa de água apresenta uma determinada lista de espécies, com as respetivas áreas de cobertura por espécie e, relativamente à área total do sapal, as abundâncias relativas de cada uma das espécies registadas. Os valores de cobertura e abundância relativos obtidos são os apresentados no Quadro 5.29.

Quadro 5.29 – Conjunto de dados para exemplo de cálculo do AQuA-Index

| Espécies                   | Cobertura (m²) | Abundância relativa (%) |
|----------------------------|----------------|-------------------------|
| Arthrocnemum macrostachyum | 1214,8         | 1                       |
| Halimione portulacoides    | 4859,3         | 4                       |
| Juncus maritimus           | 8503,8         | 7                       |
| Limonium vulgare           | 1214,8         | 1                       |
| Sarcocornia fruticosa      | 87468,1        | 72                      |
| Sarcocornia perennis       | 12148,3        | 10                      |
| Spartina maritima          | 3644,5         | 3                       |
| Suaeda vera                | 1214,8         | 1                       |
| Salicornia ramosissima     | 1214,8         | 1                       |
|                            | 121483,2       | 100                     |

A abundância de uma espécie relativamente à área total do sapal existente na massa de água é obtida do valor correspondente à soma das áreas ocupadas por essa mesma espécie em cada tipo de mancha de vegetação que se identifique no sapal. Desta forma, somam-se todas as parcelas correspondentes à área ocupada pela espécie em cada um dos diferentes tipos de mancha de vegetação (com diferentes composições específicas) e calcula-se a proporção relativamente à área total ocupada pelo sapal. Concretizando para a espécie *Sarcocornia fruticosa*, por exemplo, verifica-se que após somar todas as parcelas correspondentes à sua presença nos diferentes tipos de vegetação, se obtém uma área total 87468,1m², num total de 121483,2m² para todo o sapal nessa massa de água (soma da área de todas as espécies registadas no sapal). Proporcionalmente ao total, a área de *Sarcocornia fruticosa* representa uma abundância relativa de 72%.

Com base nos dados de abundância relativa, são calculados os valores correspondentes a cada métrica que integra o AQuA-Index que, operados segundo a equação descrita acima para a normalização das métricas, dão origem ao score normalizado de cada métrica. Estes scores normalizados são em seguida operados com os valores de ponderação das respetivas métricas, para que, quando somados, originem o valor do RQE (entre 0 e 1) correspondente ao elemento biológico (Quadro 5.30).

Quadro 5.30 – Exemplo de cálculo do AQuA-Index

| Métricas                               | Valor | Score<br>Normalizado | AQuA-Index   | EQS      |
|----------------------------------------|-------|----------------------|--------------|----------|
| Índice de Diversidade de Shannon (H')  | 1,07  | 0,18                 |              |          |
| Diversidade Máxima de Shannon (H'max)  | 2,2   | 0,27                 |              |          |
| Índice de Equitabilidade de Pielou (J) | 2,05  | 0,51                 | 0,5378612684 | RAZOÁVEL |
| Índice de Diversidade de Margalef (d)  | 0,68  | 0,29                 |              |          |
| Riqueza específica (S)                 | 9     | 0,25                 |              |          |

Concretizando para a riqueza específica (S), o score normalizado E será estimado usando a fórmula apresentada anteriormente E = a/(1 + (x/xo)|b). Assim, com a = 0,535; b = -2,5; x = 9 espécies registadas; e xo = 9,455 (correspondente ao valor médio estimado para a riqueza específica dos sapais Portugueses) obtém-se o resultado de 0,25 para valor do score normalizado da riqueza específica. Este valor é multiplicado pelo valor da ponderação estimada para a riqueza específica (0,397), de

forma que somado com todos os outros valores ponderados das métricas que integram o AQuA-Index, dão origem ao valor do RQE = 0,538 (correspondente a uma classificação Razoável).

#### 5.1.6 Macroinvertebrados bentónicos

Neste subcapítulo é apresentado o procedimento para avaliação do elemento de qualidade biológica macroinvertebrados bentónicos, em águas de transição e costeiras, nos termos da DQA, através da aplicação do índice BAT — Benthic Assessment Tool (Neto *et al.*, 2020c; Teixeira *et al.*, 2009). Este índice aplica-se a todas as tipologias de massas de água de transição e costeiras nacionais: A1 - Estuário mesotidal estratificado, A2 - Estuário mesotidal homogéneo com descargas irregulares de rio, A3 -Lagoas costeiras semifechadas, A4 - Lagoas costeiras abertas, A5 - Costa atlântica mesotidal exposta, A6 - Costa atlântica mesotidal moderadamente exposta e A7 - Costa atlântica abrigada. O índice foi Intercalibrado para o tipo comum NEA11 (estuários tipo A1) e o tipo comum NEA1/26 (águas costeiras dos tipos A5, A6 e A7). Para as restantes tipologias foram definidos sistemas de classificação nacionais (estuários do tipo A2 e as lagoas costeiras dos tipos A3 e A4). São definidos subtipos de massas de água, para efeitos de cálculos (Anexo III).

O elemento biológico macroinvertebrados bentónicos é um dos mais importantes na estruturação dos habitats estuarinos e costeiros. As comunidades macrobentónicas desenvolvem-se em estreita associação com os leitos dos estuários e de todas as zonas costeiras, sofrendo influência direta das condições físicas e físico-químicas apresentadas pela coluna de água (e.g., salinidade, hidrodinamismo, partículas em suspensão) e pelo sedimento (e.g., granulometria, mineralogia, acumulação de matéria orgânica), bem como pelas condições biológicas (e.g., cobertos vegetais, fitobentos).

Os macroinvertebrados bentónicos apresentam uma enorme diversidade de organismos, com ciclos de vida que vão desde os relativamente rápidos (meses) até aos mais longos (anos), e de sensibilidade também muito variável em relação às pressões ambientais que os rodeiam. Podem ser usados como indicador para alguns tipos de alterações provocados por pressões antropogénicas, que atuam de forma mais permanente ou intermitente sobre os sistemas aquáticos onde se encontram, como por exemplo, o aumento de matéria orgânica e consequente eutrofização do meio.

São organismos que, pela baixa mobilidade que no geral apresentam, acumulam os efeitos das pressões ambientais a que estão expostos, principalmente as de origem antropogénica. Verifica-se que os *taxa* mais sensíveis apresentam uma redução na abundância, podendo mesmo desaparecer quando as alterações no meio aquático atingem alguma magnitude, e que o contrário poderá acontecer com espécies mais tolerantes ou pouco sensíveis a determinados tipos de pressão. Neste contexto, o elemento biológico macroinvertebrados bentónicos apresenta-se como um dos mais relevantes na avaliação da qualidade dos sistemas aquáticos, dando respostas concretas, tanto quando o sistema se encontra em regressão, como quando em recuperação da sua boa condição ecológica.

O elemento biológico macroinvertebrados bentónicos pode ser encontrado em todas as categorias e diferentes tipologias de massa de água, pelo que constitui um elemento fundamental na avaliação de qualidade no âmbito da DQA. Este reconhecimento conferiu-lhe grande projeção e importância na avaliação do estado ecológico das massas de água de transição, costeiras e lagoas costeiras.

Os parâmetros usados na determinação da classificação do "estado ecológico" são indicadores sobre a composição taxonómica, a densidade das diferentes espécies e a sensibilidade que demonstram perante diferentes níveis de pressão antropogénica.

O BAT é um índice multimétrico que articula os resultados de três métricas ecológicas:

 Métrica 1 - Índice de Margalef (d) mede a riqueza específica, articulando o número de espécies e a abundância total de indivíduos amostrados • Métrica 2 - Índice de Shannon-Wiener [H'(log2)] centra-se essencialmente na abundância proporcional das espécies na comunidade

Equação 2: H' =  $-\sum$  pi log2 pi, onde pi = ni/N, ni – número de indivíduos da espécie i, N – número total de indivíduos

• **Métrica 3 - Índice AMBI AZTI's Marine Biotic Index** baseia-se na presença relativa de espécies sensíveis e indicadoras de perturbação numa comunidade.

Equação 3: BC = [(0)(%GI)+(1,5)(%GII)+(3)(%GIII)+(4,5)(%GIV)+(6)(%GV)]/100

### **Grupos Ecológicos:**

- GI: espécies muito sensíveis ao enriquecimento orgânico e presentes em condições não poluídas
- GII: espécies indiferentes ao enriquecimento, presentes sempre em densidades baixas e sem variações significativas ao longo do tempo
- GIII: espécies tolerantes ao enriquecimento excessivo de matéria orgânica, podendo ocorrer em condições normais, mas sendo estimuladas pelo enriquecimento orgânico
- GIV: espécies oportunistas de segunda-ordem, maioritariamente poliquetas de pequenas dimensões
- GV: espécies oportunistas de primeira-ordem, essencialmente detritívoros.

A aplicação das metodologias de avaliação, no âmbito da DQA, tem de ter um valor máximo, expectável, para cada uma das métricas que a constituem, e que corresponde ao valor obtido por uma réplica representativa de um local que se encontra em excelentes condições ambientais, ou onde os desvios face a estas condições são insignificantes. Este valor de referência (de excelente condição ecológica) é o que vai balizar superiormente o estado de qualidade e é em relação e ele que vão ser determinados os desvios da comunidade a avaliar e, consequentemente, o valor de qualidade que depois poderá alcançar a classificação do elemento biológico. Para os macroinvertebrados bentónicos, tanto as condições ambientais (coluna de água e sedimento), como as condições em que decorrem as amostragens (área de amostragem e malha do crivo), poderão condicionar de forma determinante os valores de cada métrica que integra a ferramenta de avaliação. Por este motivo, as condições de referência são específicas para habitats submareais, de características vasosas / arenosas e para cada gama de salinidade existente nos sistemas (segundo o Sistema de Veneza). O Quadro 5.31 mostra os valores de referência definidos para as métricas (Margalef, Shannon-Wiener e AMBI) que integram a metodologia BAT.

Quadro 5.31 – Condições de referência para o índice BAT

| Tipologia    | Ecótopo | Salinidade  | Margalef | Shannon-<br>Wiener | АМВІ |
|--------------|---------|-------------|----------|--------------------|------|
|              |         | Oligohalino | 1,9      | 2,30               | 2,50 |
|              | Aronoso | Mesohalino  | 2,1      | 2,40               | 2,40 |
|              | Arenoso | Polihalino  | 4,0      | 4,00               | 1,50 |
| A1.1 - Norte |         | Euhalino    | 5,0      | 4,10               | 0,80 |
| estreitos    | Vasoso  | Oligohalino |          |                    |      |
|              |         | Mesohalino  |          |                    |      |
|              |         | Polihalino  | 4,0      | 4,00               | 1,00 |
|              |         | Euhalino    | 5,0      | 4,10               | 0,80 |
|              |         | Oligohalino | 1,9      | 2,30               | 2,50 |
| A4 2 Nove    | Arenoso | Mesohalino  | 2,1      | 2,40               | 2,40 |
| A1.2 - Norte |         | Polihalino  | 4,1      | 2,80               | 1,00 |
| largos       |         | Euhalino    | 5,6      | 3,80               | 0,60 |
|              | Vasoso  | Oligohalino | 1,9      | 1,80               | 2,90 |

| Tipologia         | Ecótopo             | Salinidade  | Margalef | Shannon-<br>Wiener | АМВІ |
|-------------------|---------------------|-------------|----------|--------------------|------|
|                   |                     | Mesohalino  | 2,1      | 2,30               | 2,60 |
|                   |                     | Polihalino  | 3,8      | 3,00               | 1,50 |
|                   |                     | Euhalino    | 4,2      | 3,20               | 1,20 |
|                   |                     | Oligohalino | 1,9      | 2,30               | 2,50 |
|                   | Aronoso             | Mesohalino  | 2,1      | 2,40               | 2,40 |
|                   | Arenoso             | Polihalino  | 4,1      | 3,20               | 1,00 |
| A2.1 - Sul        |                     | Euhalino    | 8,2      | 4,40               | 0,60 |
| estreitos         |                     | Oligohalino | 2,5      | 2,80               | 2,90 |
|                   | \/                  | Mesohalino  | 2,5      | 2,80               | 2,60 |
|                   | Vasoso              | Polihalino  | 4,1      | 3,00               | 1,50 |
|                   |                     | Euhalino    | 6,6      | 4,40               | 1,20 |
|                   |                     | Oligohalino | 1,9      | 2,30               | 2,50 |
|                   | Arenoso             | Mesohalino  | 2,1      | 2,40               | 2,40 |
|                   |                     | Polihalino  | 4,1      | 3,20               | 1,00 |
| 400 6 11          |                     | Euhalino    | 10,9     | 4,40               | 0,60 |
| A2.2 - Sul largos | Vasoso              | Oligohalino |          |                    |      |
|                   |                     | Mesohalino  | 2,5      | 2,80               | 2,60 |
|                   |                     | Polihalino  | 4,6      | 3,00               | 1,50 |
|                   |                     | Euhalino    | 9,0      | 4,40               | 1,20 |
|                   |                     | Oligohalino | 1,9      | 2,30               | 2,50 |
| 40.4              | Arenoso /           | Mesohalino  |          |                    |      |
| A3.1              | Vasoso              | Polihalino  | 2,1      | 2,50               | 3,00 |
|                   |                     | Euhalino    | 1,7      | 1,60               | 0,15 |
| A3.2              | Arenoso /<br>Vasoso | Euhalino    | 6,1      | 4,20               | 0,60 |
| A4                | Arenoso /<br>Vasoso | Euhalino    | 6,4      | 4,30               | 0,40 |
| A5                | Arenoso /<br>Vasoso | Euhalino    | 5,0      | 4,10               | 0,00 |
| А6                | Arenoso /<br>Vasoso | Euhalino    | 5,0      | 4,10               | 0,00 |
| А7                | Arenoso /<br>Vasoso | Euhalino    | 5,0      | 4,10               | 0,00 |

Após a determinação dos valores dos índices de Margalef, Shannon-Wiener e AMBI para cada réplica, estes são submetidos a uma análise fatorial (FA), que tem a análise de componentes principais (PCA) como método de extração dos 'factor scores'. Como forma de aumentar a resolução dos valores obtidos, é usado o método de rotação 'varimax' (Statgraphics Plus 5.1) e os 'factor loadings' são utilizados no processo de extração dos 'scores'.

Para cada uma das métricas indicadas foram definidos os valores de referência Excelente e Mau entre os quais é de esperar a sua variação, para comunidades bentónicas submareais de substrato móvel. Estes são incluídos nas análises, quer no processo acima descrito, quer no passo seguinte que corresponde à projeção da comunidade representada por cada réplica sobre um eixo virtual que liga os pontos correspondentes aos estados de Mau e Excelente. São estes que definem o espectro de valores possíveis de serem encontradas para o Elemento Biológico no habitat definido da Tipologia em causa, podendo ser calculados com recurso à folha de cálculo auxiliar e que usa os valores dos "factor scores" calculados para projetar as réplicas na escala 0-1 do RQE.

Estes dois pontos marcam os extremos do referencial, distam de uma unidade, e o rácio entre a situação de referência (Excelente) e o valor da comunidade (réplica) em análise, determina a posição (distância) a que cada ponto (réplica) se encontra da origem do referencial (distância euclidiana). Este valor constitui o chamado rácio de qualidade ecológica (RQE), que, por sua vez, permitirá a obtenção

do EQS. Quanto mais próximo de zero, pior será o EQS da amostra, verificando-se o contrário para amostras que apresentem valores de RQE mais elevados, mais próximos do excelente (RQE = 1).

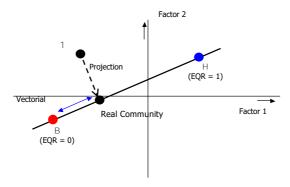



Figura 5.2 - Análise fatorial para cálculo do BAT

No caso do BAT, o valor do RQE é calculado a partir do índice através da fórmula:

**RQE=BAT** 

A partir do valor do RQE e de acordo com o Quadro 5.32, é determinado o estado de qualidade da massa de água (EQS): excelente, bom, razoável, medíocre ou mau.

Quadro 5.32 - Fronteiras de qualidade para o índice BAT

| Tipo nacional | Excelente/ Bom | Bom/ Razoável | Razoável/<br>Medíocre | Medíocre/ Mau |
|---------------|----------------|---------------|-----------------------|---------------|
| A1.1          | 0,790          | 0,530         | 0,440                 | 0,270         |
| A1.2          | 0,840          | 0,600         | 0,440                 | 0,270         |
| A2.1          | 0,790          | 0,530         | 0,440                 | 0,270         |
| A2.2          | 0,840          | 0,600         | 0,440                 | 0,270         |
| A3.1          | 0,790          | 0,530         | 0,440                 | 0,270         |
| A3.2          | 0,840          | 0,600         | 0,440                 | 0,270         |
| A4            | 0,840          | 0,600         | 0,440                 | 0,270         |
| A5            | 0,790          | 0,580         | 0,440                 | 0,270         |
| A6            | 0,790          | 0,580         | 0,440                 | 0,270         |
| A7            | 0,790          | 0,580         | 0,440                 | 0,270         |

No caso dos macroinvertebrados bentónicos, o nível de confiança na avaliação (Quadro 5.33) depende do grau de conhecimento das condições de referência para cada sistema ecológico e da capacidade de determinação das métricas que compõem o BAT. A interpretação dos resultados da aplicação do índice deve ter em consideração a variabilidade espacial e temporal da ocorrência destas espécies e os potenciais erros associados à aplicação destas metodologias.

Quadro 5.33 - Níveis de confiança associados ao índice BAT

| Níveis de confiança |               | Critério                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | Muito elevada | Não definido                                                                                                                                                                                                                                                                                                                                                                   |
| 2                   | Elevada       | Classificação baseada em 3 ou mais anos de amostragem, num ciclo de avaliação de 6 anos; Monitorização realizada dentro da época de amostragem recomendada (CW inverno; CWL e TW metade final do verão); Número mínimo de estações de amostragem (E) adequado à área (A) da massa de água (A/E = R; tipologia A1.1 R<5; A1.2 R<20; A2.1 R<5; A2.2 R<50; A3.1 R<1; A3.2 R<2; A4 |

| Níve | is de confiança          | Critério                                                                                                                                                 |
|------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                          | R<20). Nos sistemas com uma só massa de água deverão existir, no mínimo, 2 estações de amostragem; Condições de referência baseadas em dados históricos. |
| 3    | Média                    | Cumpre pelo menos 2 dos critérios anteriores                                                                                                             |
| 4    | Baixa                    | Cumpre menos de 2 dos critérios anteriores                                                                                                               |
| 5    | Muito baixa Não definido |                                                                                                                                                          |

## 5.1.7 Fauna piscícola

Neste subcapítulo é apresentado o procedimento para monitorização e avaliação do elemento de qualidade biológica fauna piscícola, em águas de transição, nos termos da DQA, através da aplicação do índice EFAI – Estuarine Fish Assessment Index (Fonseca et al., 2020; Cabral et al., 2012; Fraco et al., 2012; Froese et al., 2019; Luenda et al., 2009; Venice System, 1958). Este índice aplica-se às águas de transição das tipologias A1 - Estuário mesotidal estratificado e A2 - Estuário mesotidal homogéneo com descargas irregulares de rio. O índice foi intercalibrado para o tipo comum NEA11 (estuários tipo A1) e foi desenvolvido um sistema de classificação nacional para os estuários do tipo A2 (adotaram-se os mesmos valores de referência e fronteiras de qualidade definidos para a tipologia A1). Foram ainda adotadas classes de salinidade oligohalina, mesohalina e polihalina para efeitos de definição das condições de referência.

A importância da fauna piscícola como elemento indicador de qualidade biológica está diretamente relacionada com os aspetos fundamentais da biologia e ecologia destes organismos. Os peixes apresentam uma vasta dispersão no ambiente aquático, diversidade de unidades funcionais, uma elevada importância ecológica na teia alimentar e na estrutura das comunidades aquáticas, um ciclo de vida suficientemente longo para refletir efeitos deletérios de longo prazo e um papel de relevo para as comunidades humanas como fonte de alimento.

De entre os elementos usados na DQA para a avaliação do estado ecológico, os peixes são o elemento de qualidade biológica que apresenta maior mobilidade, podendo ser residentes em zonas de transição, ou organismos que apenas fazem uso desses locais para se alimentarem, reproduzirem ou encontrarem abrigo temporário. Consequência da sua capacidade locomotora, os peixes podem responder a perturbações que se fazem sentir nos sistemas estuarinos, simplesmente evitando-os, e/ou deslocando-se para locais que apresentem condições menos degradadas.

As metodologias de análise do estado ecológico para os peixes dependem fortemente da diversidade específica, da abundância de determinados grupos de espécies com elevada importância ecológica (e.g., espécies residentes, espécies que utilizam as zonas de transição como berçário ou viveiro), da presença de espécies sensíveis a perturbações ambientais e de espécies indicadoras de pressões antropogénicas, conforme os critérios definidos na DQA. Assim, a avaliação da qualidade ecológica dos peixes em águas de transição centra-se na ponderação de múltiplas métricas de caracterização funcional e estrutural da comunidade ictíica, de acordo com as definições normativas da DQA.

O índice EFAI foi inicialmente desenvolvido para ser aplicado aos estuários como um todo, tendo depois sido adaptado para ser aplicado à escala da massa de água. Neste processo consideraram-se massas de água com características polihalinas, mesohalinas ou oligohalinas por forma a incluir todas as massas de água nacionais.

O EFAI é composto por 6 métricas representativas das características estruturais e funcionais das comunidades piscícolas de zonas de transição:

- **Métrica 1 Riqueza específica:** Número total de espécies. Métrica relacionada com a complexidade e diversidade dos habitats. Uma redução do número de espécie é representativa de perda ou degradação de habitats.
- Métrica 2 Percentagem de indivíduos que utilizam o estuário como viveiro: Percentagem
  do número total de indivíduos de espécies de Peixes marinhos que utilizam o estuário como
  área de viveiro, face ao total de indivíduos capturados. Uma das funções mais importantes
  dos estuários é o seu papel como área de viveiro para Peixes. Nos estuários portugueses os
  indivíduos presentes destas espécies são representados quase exclusivamente por juvenis,
  pelo que esta métrica representa a função de viveiro das águas de transição estudadas.
- Métrica 3 Percentagem de indivíduos de espécies residentes: Percentagem do número total de indivíduos de espécies que completam todo o seu ciclo de vida no ambiente estuarino. São normalmente espécies abundantes nos sistemas de transição, sendo que a sua dominância ou pequena representatividade percentual do total da comunidade ictíica podem indicar perturbações nos sistemas.
- Métrica 4 Espécies piscívoras: Combina duas sub-métricas: (4.1) relativa ao número de espécies que se alimentam de Peixes, mas que podem não ser estritamente piscívoras; e (4.2) referente à percentagem de indivíduos das espécies estritamente piscívoras. Esta métrica avalia a complexidade da cadeia trófica e a presença ou abundância de indivíduos dos níveis tróficos superiores.
- Métrica 5 Espécies diádromas: Refere-se ao número de espécies e abundância de peixes migradores diádromos. As espécies migradoras constituem uma componente importante da fauna piscícola e são habitualmente sensíveis a perturbações de origem humana, apesar de usarem o ambiente estuarino por um período limitado; i.e. muitas vezes, apenas durante as suas migrações para áreas a montante (espécies anádromas) ou a jusante (espécies catádromas). Como a captura de exemplares destas espécies é relativamente ocasional ou rara em águas estuarinas, a sua avaliação é feita através da apreciação pericial.
- Métrica 6 Espécies sensíveis a perturbações: Avalia o número de espécies e abundância de Peixes que são, habitualmente, sensíveis a perturbações de origem humana, em particular a perda e/ou degradação de habitat. De entre as espécies residentes nos estuários portugueses, o grupo considerado como indicador foi o dos Peixes pertencentes à família Syngnathidae. A captura de exemplares destas espécies é relativamente ocasional, ou limitada a áreas restritas, pelo que a sua avaliação é efetuada através da apreciação por peritos.

As métricas selecionadas para integrarem o EFAI descrevem diferentes aspetos das associações de peixes, em particular a sua composição e riqueza específica, diversidade funcional e padrão de utilização do habitat. Foram ainda integradas métricas referentes a espécies-chave que são indicadoras de impactes antrópicos específicos.

A análise de dados históricos foi insuficiente para estabelecer condições de referência para os peixes nos estuários nacionais, pelo que os valores de referência das métricas basearam-se na apreciação de peritos a partir do conjunto de dados históricos disponível. Assim, foram definidas características TEÓRICAS que as associações de Peixes de águas de transição, no estado de qualidade Excelente, deveriam apresentar. Os restantes estados de qualidade foram estabelecidos como desvios a essas condições ideais.

Neste contexto, como condição de referência para a avaliação da qualidade ecológica de um estuário, considerou-se um estuário HIPOTÉTICO que apresentasse as seguintes características:

- Riqueza específica: superior a 28 espécies;
- Percentagem de indivíduos que utilizam o estuário como viveiro: superior a 60%;
- Percentagem de indivíduos residentes: entre 30% e 50%;
- Percentagem de indivíduos piscívoros (exclusivamente ou não): entre 40% e 60%; e Número de espécies piscívoras (exclusivamente ou não): superior a 5

- Número de espécies piscívoras (exclusivamente ou não): superior a 12; e Percentagem de indivíduos piscívoros (exclusivamente ou não): não inferior a 20% ou não superior a 80%;
- Espécies diádromas: com possibilidade de completarem os seus ciclos de vida; sem redução na abundância; sem redução no número de espécies;
- Espécies sensíveis a perturbações: sem redução na abundância; sem redução no número de espécies.

#### O cálculo do EFAI é realizado da seguinte forma:

- Cada métrica é pontuada em 1, 3 ou 5 conforme disposto no Quadro 5.34.
- A métrica 1 Riqueza específica é calculada através do número de espécies encontrado no conjunto dos arrastos;
- As métricas 2 Percentagem de indivíduos que utilizam o estuário como viveiro e 3 -Percentagem de indivíduos residentes são calculadas a partir do número de indivíduos de cada grupo ecológico (ver tabela do Anexo IV)
- A métrica 4 Espécies piscívoras é calculada a partir do número de indivíduos de cada grupo funcional (ver tabela do Anexo IV). Como esta métrica é composta por duas sub-métricas, o valor a considerar é obtido da seguinte forma: 1 quando ambas as sub-métricas têm valor 1; 3 quando uma das sub-métricas tem o valor 1 e a outra 3 ou 5; 5 quando uma das sub-métricas tem valor 5 e a outra tem, pelo menos, um valor de 3.
- As métricas 5 Espécies diádromas e 6 Espécies sensíveis a perturbações apresentam limitações quanto a uma avaliação quantitativa uma vez que a captura destas espécies através de metodologias não especificas de amostragem é ocasional ou limitada a áreas específicas. Desta forma, a avaliação destas métricas é realizada através da consulta a peritos no estudo destas espécies que dispõem de dados mais representativos da estrutura populacional e abundância destas espécies em cada estuário.

O EFAI é o somatório das pontuações das várias métricas e o EFAI max é o valor que o EFAI teria se todas as métricas tivessem pontuação máxima.

Quadro 5.34 – Condições de referência para o índice EFAI (aplicação ao nível do estuário)

|     | Métrica                                                                |                                                                                          | Pontuação                   |               |
|-----|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------|---------------|
|     | Wellica                                                                | 1                                                                                        | 3                           | 5             |
| 1   | Riqueza específica                                                     | ≤16                                                                                      | 17 - 28                     | >28           |
| 2   | Percentagem de indivíduos que utilizam o estuário como viveiro         | ≤20%                                                                                     | >20% - 60%                  | >60%          |
| 3   | Percentagem de indivíduos residentes                                   | ≤10% e<br>>90%                                                                           | >10% - <30% e<br>>50% - 90% | 30% - 50%     |
| 4   | Espécies piscívoras (exclusivamente ou não)                            | 1&1                                                                                      | 1&3; 1&5; 3&1;<br>3&3; 5&1  | 3&5; 5&3; 5&5 |
| 4.1 | Espécies piscívoras (exclusivamente ou não): Percentagem de indivíduos | ≤20% e<br>>80%                                                                           | >20% <40% e<br>>60% - 80%   | 40% - 60%     |
| 4.2 | Espécies piscívoras (exclusivamente ou não): Número de espécies        | ≤5                                                                                       | 6-12                        | >12           |
| 5   | Espécies diádromas                                                     | Redução no número de<br>espécies /<br>Impossibilidade de<br>completar o ciclo de<br>vida | Redução na<br>abundância    | Sem redução   |
| 6   | Espécies sensíveis a perturbações                                      | Redução no número de espécies                                                            | Redução na<br>abundância    | Sem redução   |

No caso do EFAI, o valor do RQE é calculado a partir do índice através da fórmula:

#### RQE=EFAI/EFAI max.

A partir do valor do RQE e de acordo com a tabela abaixo, é determinado o estado de qualidade da massa de água (EQS): Excelente, Bom, Razoável, Medíocre ou Mau (Quadro 5.35).

Quadro 5.35 – Fronteiras de qualidade para o índice EFAI (aplicação ao nível do estuário)

| Tipo nacional | Excelente/ Bom | Bom/ Razoável | Razoável/<br>Medíocre | Medíocre/ Mau |
|---------------|----------------|---------------|-----------------------|---------------|
| A1            | 0,860          | 0,600         | 0,430                 | 0,300         |
| A2            | 0,860          | 0,600         | 0,430                 | 0,300         |

Para a realização da classificação por massa de água, as condições de referência e os cálculos das métricas foram adaptados às classes de salinidade polihalina, mesohalina e oligonalina.

Assim, como condição de referência para a avaliação da qualidade ecológica de uma massa de água polihalina, considerou-se uma massa de água hipotética que apresentasse as seguintes características:

- Riqueza específica: superior a 20 espécies;
- Percentagem de indivíduos que utilizam o estuário como viveiro: superior a 60 %;
- Percentagem de indivíduos residentes entre 30 % e 50 %;
- Percentagem de indivíduos piscívoros (exclusivamente ou não) entre 40 % e 60 %; e Número de espécies piscívoras (exclusivamente ou não) superior a 2

OU

- Número de espécies piscívoras (exclusivamente ou não) superior a 5; e Percentagem de indivíduos piscívoros (exclusivamente ou não) não inferior a 20 % ou não superior a 80 %;
- Espécies diádromas: com possibilidade de completarem os seus ciclos de vida; sem redução na abundância; sem redução no número de espécies;
- Espécies sensíveis a perturbações: sem redução na abundância; sem redução no número de espécies.

O Quadro 5.36 apresenta a descrição das métricas que constituem o EFAI, quando aplicado a massas de água polihalinas, e as pontuações aplicadas a cada métrica, de acordo com os resultados da amostragem. As pontuações para cada métrica são 1, 3 ou 5 pontos e o valor máximo do EFAI é 30 (6 métricas x 5 pontos).

Quadro 5.36 – Condições de referência para o índice EFAI (massas de água polihalinas)

|         | Métrica                                                                | Pontuação        |                            |               |  |
|---------|------------------------------------------------------------------------|------------------|----------------------------|---------------|--|
| Metrica |                                                                        | 1                | 3                          | 5             |  |
| 1       | Riqueza específica                                                     | ≤ 10             | 11-20                      | > 20          |  |
| 2       | Percentagem de indivíduos que utilizam o estuário como viveiro         | ≤ 20%            | > 20% 60%                  | > 60%         |  |
| 3       | Percentagem de indivíduos residentes                                   | ≤ 10% e<br>> 90% | > 10% < 30% e<br>> 50% 90% | 30% 50%       |  |
| 4       | Espécies piscívoras (exclusivamente ou não)                            | 1&1              | 1&3; 1&5; 3&1;<br>3&3; 5&1 | 3&5; 5&3; 5&5 |  |
| 4.1     | Espécies piscívoras (exclusivamente ou não): Percentagem de indivíduos | ≤ 20% e<br>> 80% | > 20% < 40% e<br>> 60% 80% | 40% 60%       |  |
| 4.2     | Espécies piscívoras (exclusivamente ou não): Número de espécies        | ≤ 2              | 3-5                        | > 5           |  |

| Métrica |                                   |                                                                                          | Pontuação                |             |
|---------|-----------------------------------|------------------------------------------------------------------------------------------|--------------------------|-------------|
|         |                                   | 1                                                                                        | 3                        | 5           |
| 5       | Espécies diádromas                | Redução no número de<br>espécies /<br>Impossibilidade de<br>completar o ciclo de<br>vida | Redução na<br>abundância | Sem redução |
| 6       | Espécies sensíveis a perturbações | Redução no número de espécies                                                            | Redução na<br>abundância | Sem redução |

A partir dos valores do EFAI, é calculado o RQE a partir da fórmula RQE=EFAI/EFAI max. A partir do valor do RQE e de acordo com o Quadro 5.37, é determinado o estado de qualidade da massa de água (EQS): Excelente, Bom, Razoável, Medíocre ou Mau.

Quadro 5.37 – Fronteiras de qualidade para o índice EFAI (massas de água polihalinas)

| Tipo nacional | Excelente/ Bom | Bom/ Razoável | Razoável/<br>Medíocre | Medíocre/ Mau |
|---------------|----------------|---------------|-----------------------|---------------|
| A1            | 0,860          | 0,600         | 0,430                 | 0,300         |
| A2            | 0,860          | 0,600         | 0,430                 | 0,300         |

Como condições de referência para a avaliação da qualidade ecológica de uma massa de água mesohalina, considerou-se uma massa de água hipotética que apresentasse as seguintes características:

- Riqueza específica: superior a 15 espécies;
- Percentagem de indivíduos que utilizam o estuário como viveiro: superior a 60 %;
- Percentagem de indivíduos residentes: entre 30 % e 50 %;
- Percentagem de indivíduos piscívoros (exclusivamente ou não) entre 40 % e 60 %; e Número de espécies piscívoras (exclusivamente ou não) superior a 1

OU

- Número de espécies piscívoras (exclusivamente ou não) superior a 3; e Percentagem de indivíduos piscívoros (exclusivamente ou não) não inferior a 20 % ou não superior a 80 %;
- Espécies diádromas: com possibilidade de completarem os seus ciclos de vida; sem redução na abundância; sem redução no número de espécies;
- Espécies sensíveis a perturbações: sem redução na abundância; sem redução no número de espécies.

O Quadro 5.38 apresenta a descrição das métricas que constituem o EFAI, quando aplicado a massas de água mesohalinas, e as pontuações aplicadas a cada métrica, de acordo com os resultados da amostragem. As pontuações para cada métrica são 1, 3 ou 5 pontos e o valor máximo do EFAI é 30 (6 métricas x 5 pontos).

Quadro 5.38 – Condições de referência para o índice EFAI (massas de água mesohalinas)

| Métrica |                                                                | Pontuação |           |       |  |
|---------|----------------------------------------------------------------|-----------|-----------|-------|--|
|         | Wellica                                                        | 1         | 3         | 5     |  |
| 1       | Riqueza específica                                             | ≤ 4       | 5-15      | > 15  |  |
| 2       | Percentagem de indivíduos que utilizam o estuário como viveiro | ≤ 20%     | > 20% 60% | > 60% |  |

|     | Métrica                                                                |                                                                                          | Pontuação                  |               |
|-----|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|---------------|
|     | Wellica                                                                | 1                                                                                        | 3                          | 5             |
| 3   | Percentagem de indivíduos residentes                                   | ≤ 10% e<br>> 90%                                                                         | > 10% < 30% e<br>> 50% 90% | 30% 50%       |
| 4   | Espécies piscívoras (exclusivamente ou não)                            | 1&1                                                                                      | 1&3; 1&5; 3&1;<br>3&3; 5&1 | 3&5; 5&3; 5&5 |
| 4.1 | Espécies piscívoras (exclusivamente ou não): Percentagem de indivíduos | ≤ 20% e<br>> 80%                                                                         | > 20% < 40% e<br>> 60% 80% | 40% 60%       |
| 4.2 | Espécies piscívoras (exclusivamente ou não): Número de espécies        | ≤1                                                                                       | 2-3                        | > 3           |
| 5   | Espécies diádromas                                                     | Redução no número de<br>espécies /<br>Impossibilidade de<br>completar o ciclo de<br>vida | Redução na<br>abundância   | Sem redução   |
| 6   | Espécies sensíveis a perturbações                                      | Redução no número de espécies                                                            | Redução na<br>abundância   | Sem redução   |

A partir dos valores do EFAI, é calculado o RQE a partir da fórmula RQE=EFAI/EFAI max. A partir do valor do RQE e de acordo com o Quadro 5.39, é determinado o estado de qualidade da massa de água (EQS): excelente, bom, razoável, medíocre ou mau.

Quadro 5.39 - Fronteiras de qualidade para o índice EFAI (massas de água mesohalinas)

| Tipo nacional | Excelente/ Bom | Bom/ Razoável | Razoável/<br>Medíocre | Medíocre/ Mau |
|---------------|----------------|---------------|-----------------------|---------------|
| A1            | 0,860          | 0,600         | 0,430                 | 0,300         |
| A2            | 0,860          | 0,600         | 0,430                 | 0,300         |

Como condição de referência para a avaliação da qualidade ecológica de uma massa de água oligohalina, considerou-se uma massa de água hipotética que apresentasse as seguintes características:

- Riqueza específica: superior a 8 espécies;
- Percentagem de indivíduos que utilizam o estuário como viveiro: superior a 60%;
- Percentagem de indivíduos residentes: entre 30% e 50%;
- Percentagem de indivíduos piscívoros (exclusivamente ou não): entre 40% e 60%; e Número de espécies piscívoras (exclusivamente ou não): superior a 1

OU

- Número de espécies piscívoras (exclusivamente ou não): superior a 2; e Percentagem de indivíduos piscívoros (exclusivamente ou não): não inferior a 20% ou não superior a 80%;
- Espécies diádromas: com possibilidade de completarem os seus ciclos de vida; sem redução na abundância; sem redução no número de espécies.

No caso das massas de água oligohalinas não existe a métrica "espécies sensíveis a perturbações", uma vez que as espécies identificadas como pertencentes a esta categoria não ocorrem nestas gamas de salinidade. Desta forma, apesar de as pontuações para cada métrica continuarem a ser de 1,3 ou 5 pontos, o valor máximo do EFAI no caso das massas de água oligohalinas é de 25 (5 métricas x 5 pontos). Isto traduz-se em alterações às fronteiras de qualidade (RQE e resultante EQS) face às restantes classes de salinidade. O Quadro 5.40 apresenta a descrição das métricas que constituem o EFAI quando aplicado a massas de água oligohalinas e as pontuações aplicadas a cada métrica

conforme resultados da amostragem encontrados. O valor final do EFAI será o resultado do somatório das pontuações das várias métricas.

Quadro 5.40 - Condições de referência para o índice EFAI (massas de água oligohalinas)

| Métrica |                                                                        | Pontuação                                                                                |                            |               |
|---------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|---------------|
|         | Wellica                                                                | 1                                                                                        | 3                          | 5             |
| 1       | Riqueza específica                                                     | ≤3                                                                                       | 4-8                        | > 8           |
| 2       | Percentagem de indivíduos que utilizam o estuário como viveiro         | ≤ 20%                                                                                    | > 20% 60%                  | > 60%         |
| 3       | Percentagem de indivíduos residentes                                   | ≤ 10% e<br>> 90%                                                                         | > 10% < 30% e<br>> 50% 90% | 30% 50%       |
| 4       | Espécies piscívoras (exclusivamente ou não)                            | 1&1                                                                                      | 1&3; 1&5; 3&1;<br>3&3; 5&1 | 3&5; 5&3; 5&5 |
| 4.1     | Espécies piscívoras (exclusivamente ou não): Percentagem de indivíduos | ≤ 20% e<br>> 80%                                                                         | > 20% < 40% e<br>> 60% 80% | 40% 60%       |
| 4.2     | Espécies piscívoras (exclusivamente ou não): Número de espécies        | ≤1                                                                                       | 2                          | > 2           |
| 5       | Espécies diádromas                                                     | Redução no número de<br>espécies /<br>Impossibilidade de<br>completar o ciclo de<br>vida | Redução na<br>abundância   | Sem redução   |

A partir dos valores do EFAI, é calculado o RQE a partir da fórmula RQE=EFAI/EFAI max, sendo o EFAI max para massas de água oligohalinas 25. A partir do valor do RQE e de acordo com o Quadro 5.41, é determinado o estado de qualidade da massa de água (EQS): Excelente, Bom, Razoável, Medíocre ou Mau.

Quadro 5.41 – Fronteiras de qualidade para o índice EFAI (massas de água mesohalinas)

| Tipo nacional | Excelente/ Bom | Bom/ Razoável | Razoável/<br>Medíocre | Medíocre/ Mau |
|---------------|----------------|---------------|-----------------------|---------------|
| A1            | 0,840          | 0,600         | 0,420                 | 0,320         |
| A2            | 0,840          | 0,600         | 0,420                 | 0,320         |

No caso da fauna piscicola, o nível de confiança na avaliação Quadro 5.42 depende da qualidade dos dados recolhidos aquando da realização dos arrastos e é determinado por avaliação pericial face à forma como decorreram as campanhas de amostragem e ao conjunto de resultados obtido. A interpretação dos resultados da aplicação do EFAI deve ter em consideração a variabilidade espacial e temporal da ocorrência destas espécies e os potenciais erros associados à aplicação destas metodologias.

Quadro 5.42 – Níveis de confiança associados ao índice EFAI

| Níveis de confiança Critério |               | Critério                                                                                           |
|------------------------------|---------------|----------------------------------------------------------------------------------------------------|
| 1                            | Muito elevada | Não definido                                                                                       |
| 2                            | Elevada       | Menos de 3 arrastos e avaliação não realizada por peritos com experiência no sistema em avaliação. |

| Níve | s de confiança | Critério                                                                                                                                                                             |  |
|------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3    | Média          | 3 a 5 arrastos e avaliação realizada por peritos com experiência no sistema em avaliação. Métricas periciais não avaliadas por especialistas.                                        |  |
| 4    | Baixa          | 3 a 5 arrastos bem-sucedidos e avaliação realizada por peritos com experiência<br>de trabalho no sistema em avaliação. Métricas periciais avaliadas por<br>especialistas na matéria. |  |
| 5    | Muito baixa    | Não definido                                                                                                                                                                         |  |

Apresentam-se como exemplo dois cálculos do EFAI, uma para estuários e outro para massas de água oligohalinas.

No caso do exemplo de cálculo do EFAI para um sistema estuarino foram realizados 3 a 5 arrastos em cada massa de água sendo os dados apresentados neste exemplo relativos ao conjunto dos 24 arrastos. Os dados das capturas foram organizados numa tabela onde constam as espécies encontradas, o número de indivíduos de cada espécie e os respetivos grupos ecológicos e funcionais (Quadro 5.43).

Quadro 5.43 – Conjunto de dados para exemplo de cálculo do EFAI em estuários

| Espécies               | Número de indivíduos | Grupo ecológico* | Grupo funcional* |
|------------------------|----------------------|------------------|------------------|
| Ameiurus melas         | 1                    | FW               | Bmi, BMa         |
| Anguilla anguilla      | 5                    | С                | PL               |
| Atherina presbyter     | 4                    | MM               | Bmi, BMa, HP     |
| Luciobarbus bocagei    | 20                   | FW               | PL, HZ           |
| Gobio gobio            | 2                    | FW               | HZ               |
| Dicentrarchus labrax   | 130                  | MM               | HZ, HP           |
| Diplodus bellottii     | 13                   | MM               | Bmi, BMa         |
| Diplodus vulgaris      | 8                    | MM               | Bmi, BMa         |
| Chelon ramada          | 14                   | С                | DV               |
| Platichthys flesus     | 4                    | MM               | Bmi, BMa, HP     |
| Pomatoschistus microps | 1258                 | ES               | Bmi              |
| Pomatoschistus minutus | 68                   | ES               | Bmi              |
| Sardina pilchardus     | 10                   | MS               | PL               |
| Solea senegalensis     | 2                    | MM               | Bmi, BMa         |
| Solea solea            | 366                  | MM               | Bmi, BMa         |
| Sparus aurata          | 2                    | MS               | OV               |
|                        | Total =1907          |                  |                  |

A partir destes resultados foram calculados os valores das métricas que integram o EFAI, com base nos limiares e condições de referência definidos para os estuários. As pontuações atribuídas às métricas "Espécies diádromas" e "Espécies sensíveis" foram baseadas em análise pericial. Os resultados da aplicação do índice encontram-se descritos no Quadro 5.44.

Quadro 5.44 – Exemplo de cálculo do EFAI em estuários

| Métricas            | Valores | Pontuações |
|---------------------|---------|------------|
| Riqueza específica  | 16      | 1          |
| % Viveiro           | 23,63   | 3          |
| % Residentes        | 69,53   | 3          |
| Espécies piscívoras |         | 1          |

| Métricas                | Valores | Pontuações |
|-------------------------|---------|------------|
| N.º espécies piscívoras | 3       | 1          |
| % Piscívoros            | 7,23    | 1          |
| Espécies diádromas      |         | 3          |
| Espécies sensíveis      |         | 3          |
| EFAI                    |         | 14         |
| RQE                     |         | 0,47       |
| Qualidade Ecológica     |         | RAZOÁVEL   |

Neste exemplo, o resultado da aplicação do EFAI resultou na pontuação final 14 (somatório das pontuações das várias métricas). O RQE é calculado através da fórmula RQE=EFAI/EFAI max, ou seja, RQE=14/30=0,47 que corresponde ao estado ecológico "Razoável".

Apresenta-se de seguida o exemplo do cálculo do EFAI para uma massa de água oligohalina. Foram realizados 4 arrastos cujos resultados produziram os dados constantes do Quadro 5.45 (os dados são relativos ao conjunto dos arrastos).

Quadro 5.45 – Conjunto de dados para exemplo de cálculo do EFAI em massas de água oligohalinas

| Espécies               | Número de indivíduos | Grupo ecológico* | Grupo funcional* |
|------------------------|----------------------|------------------|------------------|
| Ameiurus melas         | 1                    | FW               | Bmi, BMa         |
| Luciobarbus bocagei    | 14                   | FW               | PL, HZ           |
| Gobio gobio            | 1                    | FW               | HZ               |
| Dicentrarchus labrax   | 5                    | MM               | HZ, HP           |
| Chelon ramada          | 8                    | С                | DV               |
| Platichthys flesus     | 2                    | MM               | Bmi, BMa, HP     |
| Pomatoschistus microps | 404                  | ES               | Bmi              |
| Solea solea            | 83                   | MM               | Bmi, BMa         |
|                        | Total = 518          |                  |                  |

A partir dos resultados das capturas são calculados os valores das métricas que integram o EFAI e derivados os respetivos RQE e EQS, com base nos limiares e condições de referência definidas para massas de água oligohalinas. Nota: a pontuação atribuída à métrica "Espécies diádromas" é baseada em análise pericial. Os resultados da aplicação do índice encontram-se descritos no Quadro 5.46.

Quadro 5.46 - Exemplo de cálculo do EFAI em massas de água oligohalinas

| Métricas                | Valores | Pontuações |
|-------------------------|---------|------------|
| Riqueza especifica      | 8       | 3          |
| % Viveiro               | 17,37   | 1          |
| % Residentes            | 77,99   | 3          |
| Espécies piscívoras     |         | 3          |
| N.º espécies piscívoras | 2       | 3          |
| % Piscívoros            | 1,35    | 1          |
| Espécies diádromas      | 3       | 3          |
| EFAI                    |         | 13         |

Neste exemplo, o resultado da aplicação do EFAI resultou na pontuação final 13 (somatório das pontuações das várias métricas). O RQE é calculado através da fórmula RQE=EFAI/EFAI max, ou seja, RQE=13/25=0,52 que corresponde ao estado ecológico "Razoável".

# 5.2 Elementos físico-químicos de suporte aos biológicos

Neste subcapítulo é apresentado o procedimento para avaliação dos elementos físico-químicos de suporte aos biológicos em águas de transição e costeiras, nos termos da DQA (Brito et al., 2020; Vale et al., 2014; Vale et al., 2015). Esta metodologia aplica-se a todas as tipologias de massas de água de transição e costeiras nacionais: A1 - Estuário mesotidal estratificado, A2 - Estuário mesotidal homogéneo com descargas irregulares de rio, A3 - Lagoas costeiras semifechadas, A4 - Lagoas costeiras abertas, A5 - Costa atlântica mesotidal exposta, A6 - Costa atlântica mesotidal moderadamente exposta e A7 - Costa atlântica abrigada. Os elementos físico-químicos de suporte aos biológicos não foram intercalibrados pelos estados-membros embora esteja prevista a realização da intercomparação dos valores das fronteiras de qualidade entre os vários países da mesma região geográfica.

Conforme referido anteriormente, a DQA define como elementos físico-químicos de suporte aos elementos biológicos e ao Bom estado das massas de água de transição e costeiras, os seguintes parâmetros e condições:

- Condições de transparência
- Condições térmicas
- Condições de salinidade
- Condições de oxigenação
- Condições relativas aos nutrientes

A transparência descreve a penetração da radiação solar na coluna de água, possibilitando o desenvolvimento das comunidades fitoplanctónicas e de outros produtores primários. A turbidez resulta principalmente das partículas em suspensão que podem provir da erosão da camada superficial de sedimentos, da mistura de água doce e água salgada na parte superior dos estuários, e da presença de plâncton.

As condições térmicas descrevem a temperatura em que ocorrem os equilíbrios químicos no sistema a que os organismos que aí vivem estão sujeitos. As condições térmicas são expressas através do perfil de temperatura da coluna de água. Nas zonas costeiras mais profundas é comum registar-se um decréscimo da temperatura com a profundidade. Nos sistemas estuarinos, menos profundos e dominados pela maré, a mistura vertical das águas não facilita a ocorrência de grandes gradientes de temperatura.

A salinidade representa a quantidade de sais em solução e indica o grau de mistura entre a água doce, resultante principalmente das descargas fluviais, e a água do mar, transportada pela maré. Nas zonas costeiras mais profundas a variação da salinidade pode indicar a presença de águas oceânicas de diferentes proveniências. A salinidade é um dos fatores mais importantes para a adaptação dos organismos ao ecossistema. A salinidade em águas costeiras afastadas das plumas dos rios e estuários apresenta uma pequena variabilidade espacial e temporal. Em contrário, os estuários apresentam um elevado gradiente longitudinal da salinidade em resultado da mistura dos dois tipos de água. A morfologia, o regime hidrológico e as marés condicionam o campo de distribuição da salinidade.

As condições de oxigenação descrevem a disponibilidade e o balanço de oxigénio dissolvido nas águas. A concentração de oxigénio condiciona as reações de oxidação da matéria orgânica, quer seja originada no ecossistema e, portanto, a regeneração dos nutrientes, quer a proveniente dos rios, tributários das descargas de efluentes e fontes difusas na bacia de drenagem. A presença de oxigénio nas águas é indispensável para a saúde dos ecossistemas costeiros, estando o grau de oxigenação relacionado com o balanço entre a fotossíntese e a respiração dos produtores primários. Assim, os valores de oxigénio dissolvido nas águas resultam do balanço entre a dissolução do gás presente na atmosfera, produção fotossintética, consumo pela respiração biológica e oxidação da matéria orgânica. Os valores mínimos de oxigénio dissolvido são geralmente encontrados antes do nascer do sol, junto ao fundo.

A concentração e composição dos nutrientes na água descrevem a disponibilidade dos elementos biologicamente mais ativos para o desenvolvimento dos produtores primários, sendo o azoto (N) e o fósforo (P) os mais importantes. Os nutrientes nos sistemas estuarinos decrescem, em geral, com a salinidade refletindo a mistura da água doce com a água do mar. A esta variação natural acrescem os inputs de fontes localizadas, como sejam os efluentes urbanos, e as fontes difusas na bacia de drenagem. A troca de nutrientes com os sedimentos ou zonas de sapal pode também influenciar a sua distribuição nos estuários. Contudo, o consumo biológico dos nutrientes é, em geral, o principal fator explicativo da sua variação sazonal. Na zona costeira, os nutrientes presentes na zona fótica provem principalmente dos inputs dos estuários e rios e de episódios de afloramento de águas ricas em nutrientes. O consumo pelas espécies fitoplanctónicas compensa estes incrementos e dá origem à produção primária. A variação da concentração de nutrientes em função da salinidade pode ser atribuída a processos naturais resultantes da entrada de água doce, enriquecida em nutrientes devido à erosão de campos agrícolas e outras fontes difusas, fontes antropogénicas e tributários que entram diretamente nos estuários, assim como à regeneração interna de nutrientes. Estes inputs internos e externos são contrabalançados total ou parcialmente pelo consumo biológico dos nutrientes e pela diluição com a água do mar.

A estimativa dos valores de referência para os vários parâmetros foi efetuada com base nos resultados da monitorização disponíveis para os diferentes sistemas estuarinos e costeiros. Estes dados incluem amostragens nas diferentes épocas do ano, em situações de precipitação nula, média e elevada, obtidos em preia-mar e baixa-mar, à superfície e junto ao fundo, evitando zonas com efeito direto de descargas de efluentes urbanos ou industriais. A variabilidade destes dados reflete, portanto, os processos estuarinos e costeiros naturais e as modificações resultantes da ação das fontes de poluição pontuais e difusas. A métrica escolhida foi o P90 (percentil 90) de forma a considerar a variabilidade natural e sazonal dos vários parâmetros.

No que se refere à classificação das massas de água, a avaliação dos parâmetros transparência, temperatura e salinidade é realizada de forma pericial através da análise da série temporal de dados, tendo por base o conhecimento científico das características dos sistemas em avaliação. Caso os valores medidos sejam os esperados para um determinado sistema, considera-se que a massa de água se encontra num estado compatível com o suporte à vida biológica, ou seja, a massa de água encontra-se em estado Bom ou superior. Caso sejam encontrados valores anormais que possam gerar alterações ou perturbações nos ecossistemas, a massa de água encontra-se em estado inferior a Bom (razoável).

No que se refere ao oxigénio, a classificação da massa de água é realizada a partir do cálculo do RIM (Razão para cada parâmetro I na massa de água M), que se obtém dividindo o valor do percentil 90 (P90) dos valores medidos no campo pelo valor de referência (REF) para a tipologia de massa de água em questão: RIM = P90/ REF (Figura 5.3).

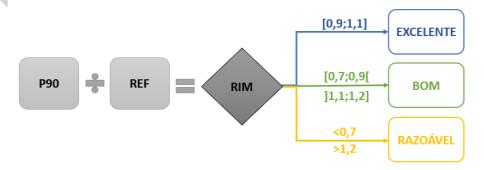



Figura 5.3 – Esquema representativo da classificação do oxigénio

Caso o RIM varie entre 0,9 e 1,1 (inclusive), a massa de água é classificada como Excelente; Caso o RIM varie entre 0,7 (inclusive) e 0,9 ou entre 1,1 e 1,2 (inclusive), a massa de água é classificada como

Bom; Caso o valor do RIM seja inferior a 0,7 ou superior a 1,2, a massa de água é classificada como Razoável.

Os valores de referência para a saturação de oxigénio, a utilizar nos cálculos da classificação das massas de água, são os apresentados no Quadro 5.47.

| Tipo nacional      | Valor de referência (% Sat O₂) |
|--------------------|--------------------------------|
| A1                 | 109                            |
| A2                 | 109                            |
| A3 – aberta ao mar | 124                            |
| A4                 | 124                            |
| A5                 | 117                            |
| A6                 | 117                            |
| Δ7                 | 117                            |

Quadro 5.47 – Condições de referência para o oxigénio

Note-se que as lagoas costeiras do tipo A4 (Ria do Alvor e Ria Formosa) encontram-se sempre abertas ao mar. As lagoas costeiras do tipo A3 Lagoas costeiras semifechadas (Barrinha de Esmoriz, Lagoa de Óbidos, Lagoa de Albufeira e Lagoa de Santo André) podem encontrar-se fechadas ao mar por longos períodos. Sem renovação da água a cada ciclo de maré e com as escorrências das chuvas e rios tributários, as lagoas costeiras fechadas ao mar tendem a apresentar uma estratificação vertical da coluna de água, apresentando normalmente pior qualidade junto ao fundo. Desta forma, a classificação do oxigénio dissolvido nas massas de água das lagoas costeiras fechadas ao mar é realizada da seguinte forma (Figura 5.4):

- É feita a avaliação à superfície e junto ao fundo, separadamente;
- Para a avaliação à superfície é utilizada a metodologia descrita para as lagoas abertas ao mar;
- Para a avaliação junto ao fundo, é calculado o P90 dos dados junto ao fundo. Se o valor do P90 junto ao fundo for superior a 80% a massa de água é classificada como Excelente; Se o valor do P90 junto ao fundo for superior a 50% e inferior a 80% a massa de água é classificada como Bom; Se o P90 junto ao fundo é inferior a 50% a massa de água é classificada como Razoável:
- A classificação final da massa de água é a pior destas classificações (superfície ou fundo).

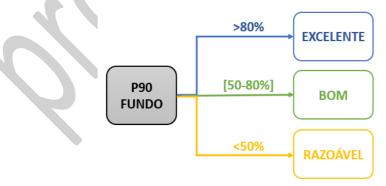



Figura 5.4 – Esquema representativo da classificação do oxigénio em lagoas fechadas

Caso no período em avaliação as lagoas tenham estado abertas e fechadas devem aplicar-se ambas as metodologias e ponderar os resultados.

No que se refere aos nutrientes, foram definidos sistemas de classificação para o nitrato+nitrito, azoto amoniacal e fosfato. De forma semelhante, a classificação da massa de água é realizada a partir do

cálculo do RIM, que se obtém dividindo o valor do percentil 90 dos valores medidos no campo pelo valor de referência para a tipologia de massa de água em questão: RIM = P90/ REF (Figura 5.5).

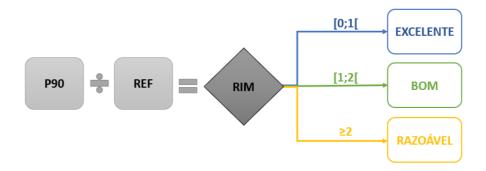



Figura 5.5 – Esquema representativo da classificação dos nutrientes

Caso o RIM varie entre 0 e 1, a massa de água é classificada como Excelente; Caso o RIM varie entre 1 (inclusive) e 2, a massa de água é classificada como Bom; Caso o valor do RIM seja igual ou superior a 2, a massa de água é classificada como Razoável.

No caso das massas de água estuarinas, os valores de referência para os nutrientes foram estabelecidos atendendo a diferentes classes de salinidade. Efetivamente, uma vez que a distribuição dos nutrientes pode ser atribuída a processos estuarinos naturais, fontes naturais na bacia de drenagem ou ação de fontes antropogénicas, a estimativa dos valores limites correspondentes a ausência de pressões deve ter em consideração a salinidade, ou seja, o grau de mistura com a água do mar. Nesse sentido, foram estabelecidas as classes de salinidade <10, [10-20[, [20-30[e ≥30 correspondentes a diferentes graus de mistura entre a água doce e a água do mar. Da mesma forma, no caso das lagoas costeiras abertas ao mar, foram definidos valores de referência para as classes de salinidade 20-30 e ≥30 (Quadro 5.48).

Quadro 5.48 – Condições de referência para os nutrientes

|                    | Classes de | Valores de referência         |                          |                  |
|--------------------|------------|-------------------------------|--------------------------|------------------|
| Tipo nacional      | Salinidade | Nitrato + Nitrito<br>(mg N/L) | Azoto amoniacal (mg N/L) | Fosfato (mg P/L) |
| A1                 | <10        | 1,000                         | 0,300                    | 0,110            |
|                    | [10-20[    | 0,500                         | 0,100                    | 0,060            |
|                    | [20-30[    | 0,600                         | 0,400                    | 0,100            |
|                    | ≥30        | 0,300                         | 0,200                    | 0,050            |
| A2                 | <10        | 1,000                         | 0,300                    | 0,110            |
|                    | [10-20[    | 0,500                         | 0,100                    | 0,060            |
|                    | [20-30[    | 0,600                         | 0,400                    | 0,100            |
|                    | ≥30        | 0,300                         | 0,200                    | 0,050            |
| A3 – aberta ao mar | 20-30      | 0,700                         | 0,100                    | 0,500            |
|                    | ≥30        | 0,600                         | 0,400                    | 0,060            |
| A4                 | 20-30      | 0,700                         | 0,100                    | 0,500            |
|                    | ≥30        | 0,600                         | 0,400                    | 0,060            |
| A5                 |            | 0,130                         | 0,070                    | 0,020            |
| A6                 |            | 0,130                         | 0,070                    | 0,020            |
| A7                 |            | 0,130                         | 0,070                    | 0,020            |

Mais uma vez, para as lagoas costeiras do tipo A3 - Lagoas costeiras semifechadas (Barrinha de Esmoriz, Lagoa de Óbidos, Lagoa de Albufeira e Lagoa de Santo André) que se encontrem fechadas ao

mar, a classificação é realizada de forma separada. Assim, a classificação dos nutrientes nas massas de água das lagoas costeiras fechadas ao mar é realizada da seguinte forma (Figura 5.6):

- É feita a avaliação à superfície e junto ao fundo, separadamente;
- Para a avaliação à superfície é utilizada a metodologia descrita para as lagoas abertas ao mar;
- Para a avaliação junto ao fundo, é calculado o P90 dos dados junto ao fundo, que é depois comparado com os valores do P90 à superfície.
- Se o valor do P90 dos dados junto ao fundo é até 5 vezes inferior ao P90 à superfície, a massa de água é classificada como Excelente; Se o valor do P90 junto ao fundo é entre 5 vezes e 20 vezes superior ao valor à superfície, a massa de água é classificada como Bom; Se o valor do P90 junto ao fundo é 20 vezes ou mais superior ao valor à superfície, a massa de água é classificada como Razoável (ver esquema abaixo);
- A classificação final da massa de água é a pior destas classificações (superfície ou fundo).



Figura 5.6 – Esquema representativo da classificação dos nutrientes em lagoas fechadas

No caso dos elementos físico-químicos de suporte, o nível de confiança na avaliação (Quadro 5.49) está diretamente relacionado com a frequência anual das amostragens e a sua distribuição temporal por época do ano. Por outro lado, no caso dos estuários e lagoas costeiras, importa contemplar colheitas realizadas em baixa-mar e preia-mar, à superfície e junto ao fundo.

Nas massas de água em que existam diversas classes de salinidade o índice de confiança para a totalidade da massa de água corresponderá ao índice de confiança mais elevado entre as classes de salinidade.

A interpretação dos resultados deve ter em consideração a variabilidade espacial e temporal dos parâmetros e os potenciais erros associados à aplicação destas metodologias.

Quadro 5.49 – Níveis de confiança associados à classificação dos elementos físico-químicos

| Níveis de confiança |         | Critério                                                                                                                                                                                                                                                                                                                        |  |
|---------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 Muito elevada     |         | Não definido                                                                                                                                                                                                                                                                                                                    |  |
| 2                   | Elevada | Avaliação baseada em 4 ou mais amostragens anuais, uma em cada período sazonal, com colheitas realizadas em baixa-mar e preia-mar no caso dos estuários e lagoas costeiras abertas ao mar. Nota: caso o período de avaliação seja superior a um ano, este critério deve ser cumprido em pelo menos um dos anos em avaliação.    |  |
| 3                   | Média   | Avaliação baseada em 3 ou menos amostragens anuais, realizadas em períodos sazonais diferentes, mas que constituem uma série temporal continua e regular ao longo de pelo menos 3 anos.  Avaliação baseada em 4 amostragens anuais, mas que no caso dos estuários e lagoas costeiras abertas, não inclui baixa-mar e preia-mar. |  |

| Níveis de confiança |             | Critério                                                                                                                                                         |
|---------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4                   | Ваіха       | Avaliação baseada em 3 ou menos amostragens em apenas um ano. Nota: considera-se o período que decorre entre o início e o fim das amostragens e não o ano civil. |
| 5                   | Muito baixa | Não definido                                                                                                                                                     |

A componente físico-química inclui ainda a classificação dos poluentes específicos, cujas normas de qualidade são apresentadas no capítulo 7 e são aplicáveis a todas as categorias de massas de água de transição e costeiras.

De acordo com a DQA, uma massa de água encontra-se em estado Excelente se, no caso dos poluentes sintéticos, as concentrações são próximas do zero e pelo menos inferiores aos limites de deteção permitidos pelas melhores técnicas analíticas geralmente utilizadas ou, no caso dos poluentes não sintéticos, as concentrações permanecem dentro dos valores normalmente associados às condições não perturbadas (concentrações naturais de referência). Se uma massa de água apresenta concentrações de poluentes não superiores às normas estabelecidas, encontra-se em estado Bom. Assim, na classificação dos poluentes específicos nas massas de água de transição e costeiras, consideram-se os seguintes estados:

- Estado Excelente não é detetada a presença de poluentes na massa de água;
- Estado Bom as concentrações médias (média aritmética anual) dos poluentes não ultrapassam as normas de qualidade;
- Estado Razoável a média aritmética anual encontra-se acima do valor definido para a norma.

No caso dos poluentes específicos, o nível de confiança na avaliação (Quadro 5.50) está diretamente relacionado com a frequência anual das amostragens e a sua distribuição temporal por época do ano. Por outro lado, no caso dos estuários e lagoas costeiras, importa contemplar colheitas realizadas em baixa-mar e preia-mar. Também neste caso, a interpretação dos resultados deve ter em consideração a variabilidade espacial e temporal dos parâmetros e os potenciais erros associados à aplicação destas metodologias.

Quadro 5.50 – Níveis de confiança associados à classificação dos poluentes especificos

| Níve | is de confiança | Critério                                                                                                                                                                                                                                                                                                                        |  |  |
|------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1    | Muito elevada   | Não definido                                                                                                                                                                                                                                                                                                                    |  |  |
| 2    | Elevada         | Avaliação baseada em 4 ou mais amostragens anuais, uma em cada período sazonal, com colheitas realizadas em baixa-mar e preia-mar no caso dos estuários e lagoas costeiras abertas ao mar. Nota: caso o período de avaliação seja superior a um ano, este critério deve ser cumprido em pelo menos um dos anos em avaliação.    |  |  |
| 3    | Média           | Avaliação baseada em 3 ou menos amostragens anuais, realizadas em períodos sazonais diferentes, mas que constituem uma série temporal continua e regular ao longo de pelo menos 3 anos.  Avaliação baseada em 4 amostragens anuais, mas que no caso dos estuários e lagoas costeiras abertas, não inclui baixa-mar e preia-mar. |  |  |
| 4    | Baixa           | Avaliação baseada em 3 ou menos amostragens em apenas um ano. Nota: considera-se o período que decorre entre o início e o fim das amostragens e não o ano civil.                                                                                                                                                                |  |  |
| 5    | Muito baixa     | Não definido                                                                                                                                                                                                                                                                                                                    |  |  |

## 5.3 Elementos hidromorfológicos de suporte aos biológicos

Neste subcapítulo é apresentado o procedimento para avaliação dos elementos hidromorfológicos de suporte aos biológicos em águas de transição e costeiras. Esta metodologia aplica-se a todas as tipologias de águas de transição e costeiras.

Para a classificação da hidromorfologia não se encontram ainda definidas metodologias quantitativas para a classificação das massas de água. Desta forma, as massas de água são classificadas com base em metodologias qualitativas, nomeadamente a avaliação pericial das pressões hidromorfológicas a que as massas de água se encontram sujeitas, com base nas orientações que a seguir se descrevem.

A classificação da hidromorfologia abrange apenas as classes Excelente e Bom. Assim, considera-se que uma massa de água não alcança o Estado Excelente quando está submetida a pressões hidromorfológicas significativas que a impedem de alcançar esse estado.

Conforme referido anteriormente, de acordo com a DQA, para as águas de transição e costeiras, os elementos hidromorfológicos a ter em consideração na avaliação do estado ecológico são:

- Condições morfológicas: variação de profundidade, quantidade, estrutura e substrato do leito, e estrutura da zona intermareal
- Regime de marés: fluxo de água doce ou direção das correntes dominantes e exposição às vagas.

Com base na metodologia desenvolvida, as massas de água são avaliadas qualitativamente com base na conjugação das pressões hidromorfológicas significativas a que estão submetidas. Esta metodologia prevê:

- A identificação das alterações morfológicas e hidrodinâmicas que possam dar origem a pressões
- A avaliação da magnitude dessas pressões, sendo que se considera que a massa de água não atinge o estado excelente se está sujeita a pressões hidromorfológicas significativas.

As alterações morfológicas a considerar na avaliação das massas de água englobam todas as intervenções e infraestruturas que supõem uma modificação das características do substrato, da profundidade e da situação de oscilação da zona de maré. Neste tipo de alterações incluem-se as conquistas de áreas ao meio aquático, as dragagens e a fixação de margens, entre outros (Quadro 5.51).

Quadro 5.51 – Alterações morfológicas a considerar na classificação da hidromorfologia

| Alterações<br>morfológicas                | Descrição e efeitos potenciais                                                                                                                                                                                                                                                |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deposição de<br>materiais de<br>dragagens | Deposição a profundidades baixas pode ser benéfica para minimizar a erosão costeira, mas pode dar origem à suspensão de sedimentos e ao aumento da turbidez e concentração de matéria orgânica, nutrientes e poluentes na coluna de água. Pode provocar alteração dos fundos. |
| Dragagens                                 | Aprofundamento de bacias portuárias ou de canais de acesso a portos e bacias portuárias: alteram a profundidade (e o volume) da massa de água e podem dar origem à suspensão de sedimentos, matéria orgânica, nutrientes e contaminantes. Alteram os fundos.                  |
| Retenções marginais                       | Retenções marginais de enrocamento ou "perré" destinadas a conter um terrapleno ou a proteger da erosão, muros cais de acostagem ou paredões marginais: dão origem à artificialização das margens                                                                             |
| Aterros                                   | Terraplanagem ou enchimento artificial: retira área (e volume) à massa de água                                                                                                                                                                                                |
| Assoreamentos                             | Enchimentos resultantes da deposição de sedimentos: retira volume à massa de água e pode, nos casos mais graves, retirar área                                                                                                                                                 |

| Alterações<br>morfológicas    | Descrição e efeitos potenciais                                                                                                                                                               |  |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Erosões litorais              | Recuo da linha de costa: pode dar origem a alterações consideráveis na morfologia costeira e ao rompimento de restingas com a consequente alteração de escoamentos e/ou da qualidade da água |  |  |  |  |
| Infraestruturas<br>portuárias | estacionamento e manobra: alteram a morfologia, artificializando a massa de água e                                                                                                           |  |  |  |  |
| Vegetação invasora            | Plantas de crescimento rápido que ocupam as margens, o fundo e a superfície da massa de água: reduzem as velocidades de escoamento e dão origem a assoreamentos e alteração das margens      |  |  |  |  |

As alterações hidrodinâmicas a considerar na classificação das massas de água incluem os elementos antropogénicos que alteram diretamente o regime de correntes e marés, assim como o fluxo de entrada de água doce. Estas diferenciam-se das alterações morfológicas porque o seu efeito repercute-se principalmente no fluxo de água. Nas alterações hidrodinâmicas incluem-se as barragens, represas e diques, os quebra-mares, esporões, pontões, pontes e emissários submarinos, entre outros (Quadro 5.52).

Quadro 5.52 – Alterações hidrodinâmicas a considerar na classificação da hidromorfologia

| Alterações<br>hidrodinâmicas | Descrição e efeitos potenciais                                                                                                                                                                                                 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dragagens                    | Aprofundamento de bacias portuárias ou de canais de acesso a portos e bacias portuárias: ao modificar a morfologia do fundo e as profundidades podem alterar os escoamentos (velocidade e direção) e aumentar o prisma de maré |
| Aterros                      | Terraplanagem ou enchimento artificial: ao modificarem a morfologia da massa de água introduzem alterações nos escoamentos (velocidade e direção) e podem diminuir o prisma de maré                                            |
| Açudes                       | Açudes, moinhos de maré e armadilhas de pesca: introduzem alterações no escoamento fluvial, podendo reduzi-lo significativamente, de forma permanente (açudes) ou temporária                                                   |
| Quebra-mares                 | Obras de proteção de áreas portuárias: introduzem alterações nas correntes litorais e, por conseguinte, nos fluxos sedimentares, podendo alterar os locais de deposição e acreção                                              |
| Esporões                     | Obras de proteção costeira: introduzem alterações nas correntes litorais e, por conseguinte, nos fluxos sedimentares, podendo alterar os locais de deposição e acreção                                                         |
| Vegetação invasora           | Plantas de crescimento rápido que ocupam as margens e o fundo da massa de água: reduzem as velocidades de escoamento e dão origem a assoreamentos e alteração das margens                                                      |

As principais pressões associadas a vegetação invasora, existentes ou potenciais, prendem-se com espécies já identificadas ou que tem forte probabilidade de vir a existir.

As pressões são consideradas significativas quando geram uma modificação das condições hidromorfológicas numa magnitude tal que possa vir a comprometer ser atingido o bom estado da massa de água. Assim, após identificação das alterações morfológicas e hidrodinâmicas presentes na massa de água, é avaliada a significância das mesmas por comparação com a área ou o perímetro da massa de água.

Neste contexto, para cada massa de água é preenchido um quadro com a seguinte informação: identificação da massa de água, tipo de alteração, localização, principais características e caracterização qualitativa (S ou N) que avalia se a alteração é potencialmente significativa ou não.

As alterações avaliadas como potencialmente significativas são sujeitas a nova avaliação, no seu conjunto, para classificação da massa de água. Nesta avaliação qualitativa, foram estabelecidos critérios orientadores para avaliar o impacte de cada pressão sobre a massa de água, conforme constante no Quadro 5.53.

Quadro 5.53 – Critérios orientadores para definição de pressões significativas

| Pressão                                                                                                                                                                                                                 | Critérios orientadores para a pressão ser considerada significativa                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Deposição de                                                                                                                                                                                                            | Quando esta deposição gera uma modificação das condições hidromorfológicas e                                                                                                                                                                                                                                                                                                                   |  |  |  |
| materiais de                                                                                                                                                                                                            | biológicas que parece impedir, a priori, que a massa de água possa alcançar o bom                                                                                                                                                                                                                                                                                                              |  |  |  |
| dragagens                                                                                                                                                                                                               | estado ecológico.                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Dragagens                                                                                                                                                                                                               | Devem ser consideradas todas as dragagens que se efetuarem fora das bacias portuárias, bem como dragagens de estabelecimento. Quando a dragagem gera uma modificação das condições hidromorfológicas e biológicas que parece impedir, a priori, que a massa de água possa alcançar o bom estado ecológico ou quando a superfície dragada fora das bacias portuárias for superior a 3 hectares. |  |  |  |
| Retenções marginais  Quando o comprimento total de todas as retenções inventariadas for sup do perímetro da massa de água/troço de costa ou quando o comprim superior a 1000m.                                          |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Assoreamentos/<br>Aterros                                                                                                                                                                                               | Quando a superfície e a localização contribuem para modificar a hidrodinâmica do estuário ou quando a superfície tem uma área tal que pode contribuir para alterar a dinâmica costeira.                                                                                                                                                                                                        |  |  |  |
| Erosões litorais                                                                                                                                                                                                        | Áreas críticas de erosão costeira que possam dar origem ao rompimento de restinga com alteração de escoamentos e/ou qualidade da água.                                                                                                                                                                                                                                                         |  |  |  |
| Infraestruturas Portuárias  Novas infraestruturas, quando correspondem a uma superfície superior a 1 massa de água ou Superfície total, contemplando tanto a terrestre como a das la portuárias, superior a 3 hectares. |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Açudes, moinhos e<br>armadilhas                                                                                                                                                                                         | Quando a área isolada ou com escoamento potencialmente restringido é superior a 15% da massa de água.                                                                                                                                                                                                                                                                                          |  |  |  |
| Quebra-mares e<br>Esporões                                                                                                                                                                                              | Quando o comprimento da estrutura for superior a 500m ou quando os seus efeitos na hidrodinâmica produzam alterações significativas na morfologia costeira (retenção de sedimentos a barlamar, erosão costeira significativa a sotamar).                                                                                                                                                       |  |  |  |
| Vegetação invasora                                                                                                                                                                                                      | Quando esta ocupa uma área superior a 10% da superfície total da massa de água.                                                                                                                                                                                                                                                                                                                |  |  |  |

# 6. Sistemas de classificação do potencial ecológico – águas de transição e costeiras

Neste capítulo é apresentado o procedimento para avaliação do Potencial Ecológico, em águas de transição e costeiras, nos termos da DQA. Este procedimento aplica-se a todas as tipologias de massas de água de transição e costeiras em que sejam designadas MAFM.

A DQA prevê a designação de MAFM quando uma massa de água, em resultado de alterações físicas derivadas da atividade humana, adquiriu um caracter substancialmente diferente. Mais especificamente, os estados-membros poderão designar como fortemente modificada uma massa de água de superfície quando:

• A introdução de alterações nas características hidromorfológicas dessa massa de água que seria necessária para atingir um bom estado ecológico se revestiria de efeitos adversos significativos sobre: i) o ambiente em geral, ii) a navegação, incluindo os equipamentos portuários, ou as atividades de recreio, (iii) atividades para as quais a água seja armazenada, como o abastecimento de água potável, produção de energia ou irrigação, (iv) a regulação da água, proteção contra cheias, drenagem dos solos ou (v) outras atividades igualmente importantes para o desenvolvimento humano sustentável.

 Os objetivos benéficos prosseguidos pelas características modificadas da massa de água não possam, por motivos de exequibilidade técnica ou de custos desproporcionados, ser razoavelmente atingidos por outros meios que representem uma melhor opção ambiental.

Conforme referido anteriormente, nas MAFM aplica-se o conceito de Potencial Ecológico que representa o desvio que a qualidade do ecossistema aquático da massa de água apresenta relativamente ao máximo que pode atingir (Máximo Potencial Ecológico), após implementação de todas as medidas de mitigação que não têm efeitos adversos significativos sobre os usos específicos ou no ambiente em geral. O Bom Potencial Ecológico corresponde a uma classe de qualidade ecológica em que apenas ocorrem ligeiras modificações dos valores dos elementos de qualidade pertinentes em relação aos valores do Máximo Potencial Ecológico.

Os elementos de qualidade aplicáveis às massas de água fortemente modificadas são os aplicáveis à categoria de águas de superfície naturais que mais se assemelha à massa de água em questão. Assim, por exemplo, às MAFM em estuários aplicam-se os elementos de qualidade e índices desenvolvidos para a classificação das águas de transição.

Uma vez que as condições de referência para o Máximo Potencial Ecológico e os valores das fronteiras de qualidade para as MAFM não foram ainda definidos, aplica-se uma metodologia para determinação do Potencial Ecológico que conjuga a aplicação dos índices do estado ecológico com a implementação de medidas de mitigação.

Assim, para a classificação do Potencial Ecológico, numa primeira fase, aplicam-se os índices desenvolvidos para os vários elementos biológicos de forma equivalente à determinação do estado ecológico. Numa segunda fase, verifica-se se a MAFM tem as medidas de mitigação implementada (CIS WFD, 2019). Caso as medidas de mitigação para a massa de água estejam a ser aplicadas, o resultado sobe uma classe de qualidade. Por exemplo, uma MAFM classificada com estado ecológico razoável para o elemento de qualidade macroinvertebrados bentónicos, mantém o potencial ecológico razoável, caso as medidas de mitigação não estejam a ser implementadas ou atinge o bom potencial ecológico, caso todas as medidas de mitigação passiveis de ser implementadas estejam em curso.

No caso do Potencial Ecológico, o nível de confiança associado à classificação é o mesmo que resulta da aplicação dos índices do estado ecológico aos vários elementos de qualidade aplicáveis à massa de água a classificar. Da mesma forma, a interpretação dos resultados deve ter em consideração a variabilidade espacial e temporal dos parâmetros e os potenciais erros associados à aplicação dessas metodologias.

## 7. Critérios de classificação do estado químico e poluentes específicos

O estado químico está relacionado com a presença de substâncias prioritárias e outros poluentes, que em condições naturais não estariam presentes ou estariam presentes em concentrações reduzidas, e que são suscetíveis de causar danos significativos no ambiente aquático, para a saúde humana ou ao nível do biota.

Estas substâncias são identificadas a nível comunitário, de entre as que apresentam um risco significativo para o ambiente aquático ou por seu intermédio. A seleção das substâncias prioritárias resulta de um procedimento de priorização baseado em princípios científicos (em conformidade com o definido no n.º 2 do artigo 16.º da DQA). Seguindo os princípios definidos, a priorização e identificação das substâncias prioritárias baseia-se essencialmente na sua perigosidade e presença no ambiente aquático. Em particular, é tido em consideração o critério Persistência, Toxicidade e Bioacumulação (PTB). As substâncias persistentes, tóxicas ou bioacumuláveis são denominadas por prioritárias. As substâncias persistentes, tóxicas e bioacumuláveis são designadas prioritárias e perigosas. Os outros poluentes (na aceção da Diretiva das Substâncias Prioritárias) são referentes a substâncias que já se encontravam previstos em diplomas legais comunitários.

No âmbito da DQA, a identificação das substâncias prioritárias integra-se na estratégia de combate à poluição da água, que prevê o controlo de emissões de substâncias prioritárias, com a adoção das medidas necessárias por parte dos EM para reduzir gradualmente a poluição provocada por substâncias prioritárias e fazer cessar ou suprimir gradualmente as emissões, descargas e perdas de substâncias perigosas prioritárias.

Importa ter presente que a poluição química das águas de superfície representa uma ameaça para o ambiente aquático, com efeitos como toxicidade aguda e crónica para os organismos aquáticos, acumulação no ecossistema e perdas de habitats e de biodiversidade, além de constituir uma ameaça para a saúde humana. Neste enquadramento, o cumprimento, ou não cumprimento, das normas de qualidade ambiental (NQA) que se encontram definidas para as substâncias prioritárias e outros poluentes resulta na classificação do estado químico numa de duas classes: Bom ou Insuficiente. Assim, o Bom estado químico é alcançado quando as concentrações das substâncias prioritárias e outros poluentes no domínio da política da água cumprem as NQA definidas.

Atendendo a que as normas de qualidade ambiental têm em consideração a perigosidade intrínseca das substâncias, em particular a sua ecotoxicidade aquática, pode concluir-se que existe uma relação entre o estado químico e o estado Ecológico.

O normativo de suporte para avaliação do estado químico das águas superficiais inclui as seguintes Diretivas:

- Diretiva 2008/105/CE do Parlamento Europeu e do Conselho, de 16 de dezembro, transposta para a ordem jurídica nacional pelo Decreto-Lei n.º 103/2010, de 24 de setembro, relativa a normas de qualidade ambiental no domínio da política da água, que estabelece as Normas de Qualidade Ambiental (NQA) para 33 substâncias prioritárias e 8 outros poluentes da Diretiva 76/464/CEE, de 4 de maio, relativa à poluição causada por determinadas substâncias perigosas lançadas no meio aquático. Além disso, esta Diretiva prevê a identificação de zonas designadas por Zonas de Mistura (ZM), com o objetivo de delimitar áreas adjacentes a pontos de descarga.
- Diretiva 2013/39/UE do Parlamento Europeu e do Conselho, de 12 de agosto, transposta para a ordem jurídica nacional pelo Decreto-Lei n.º 218/2015, de 7 de outubro, que altera a Diretiva Quadro da Água e a Diretiva 2008/105/CE, de 16 de dezembro, no que respeita às substâncias prioritárias no domínio da política da água, e procede à:
  - Revisão da lista de substâncias prioritárias, nos termos do artigo 16.º, n.º 4, da Diretiva Quadro da Água, e do artigo 8.º da Diretiva 2008/105/CE;
  - Identificação de novas substâncias para ação prioritária ao nível da União, para as quais define as NQA;
  - Atualização das NQA de determinadas substâncias da lista anterior em função do progresso científico;
  - Definição das NQA para o biota, para algumas substâncias prioritárias da lista anterior e para algumas das novas substâncias prioritárias identificadas;
  - Definição de uma análise de tendência das substâncias prioritárias determinadas nos sedimentos.

Assim, o estado químico das massas de água é determinado nas matrizes água, biota e sedimentos, de acordo com os critérios que se apresentam nos pontos seguintes.

Adicionalmente, a DQA considera como poluentes quaisquer substâncias que, pela sua introdução nas águas, solo ou ar, sejam suscetíveis de provocar danos para a saúde humana, para os ecossistemas aquáticos ou para outros ecossistemas que deles dependam. Dentro destas substâncias poluentes são denominadas poluentes específicos aquelas que, não sendo consideradas como prioritárias a nível comunitário (ou seja, não abrangidas pela Diretiva das Substâncias Prioritárias), são ainda assim descarregadas em quantidade significativa nas massas de água e apresentam capacidade potencial de influenciar os resultados da avaliação do estado Ecológico, motivo pelo qual devem ser sujeitas a controlo de descargas, emissões e perdas. A avaliação da qualidade ecológica com base nestas substâncias é realizada de acordo com Normas de Qualidade Ambiental (NQA).

Importa referir que, não obstante os poluentes específicos contribuirem para a avaliação do estado ecológico considerou-se pertinente, caraterizar estes poluentes juntamente com as substâncias prioritárias, dado o caracter químico dos mesmos. No entanto, a avaliação final dos poluentes específicos será integrado no estado ecológico.

A lista de poluentes específicos foi recentemente atualizada, no contexto dos trabalhos relativos aos PGRH do 3.º ciclo de Planeamento. O processo de revisão teve por base as listas de poluentes passiveis de estarem associdos às diversas tipologias de pressão, quer pontuais quer difusas, que possam causar impacto nas massas de água conducentes à degradação da qualidade da água.

Para efeitos de avaliação da qualidade ecológica, considera-se que o Bom estado Ecológico é atingido se a média aritmética anual for inferior ao valor definido para a norma.

# 7.1 Matriz água

A Lista de Substâncias Prioritárias utilizadas na Avaliação do estado químico das massas de água superficiais e as normas de qualidade que devem ser utilizadas para aferir o Bom estado, encontramse mencionadas na Diretiva das Substâncias Prioritárias. No Quadro 7.1 sintetizam-se as substâncias prioritárias determinadas nas massas de águas superficiais interiores bem como nas massas de água de transição e costeiras. No Anexo V encontram-se as normas de qualidade aplicáveis conforme a categoria de massa de água.

Quadro 7.1- Substâncias prioritárias para avaliação do estado químico nas massas de água superficiais.

| Substâncias Prioritárias            | N.º CAS    | Águas<br>Interiores | Águas de Transição e<br>Costeiras |  |
|-------------------------------------|------------|---------------------|-----------------------------------|--|
| Alacloro                            | 15972-60-8 | X                   | X                                 |  |
| Antraceno                           | 120-12-7   | Х                   | X                                 |  |
| Atrazina                            | 1912-24-9  | Х                   |                                   |  |
| Benzeno                             | 71-43-2    | Х                   | X                                 |  |
| Cádmio e compostos de cádmio        | 7440-43-9  | Х                   | X                                 |  |
| Tetracloreto de carbono             | 56-23-5    | Х                   | X                                 |  |
| Clorfenvinfos                       | 470-90-6   | Х                   | X                                 |  |
| Clorpirifos (Clorpirifos-etilo)     | 2921-88-2  | Х                   | X                                 |  |
| DDT total                           | n.a.       | Х                   | X                                 |  |
| p, p-DDT                            | 50-29-3    | Х                   | X                                 |  |
| 1,2-Dicloroetano                    | 107-06-2   | Х                   | X                                 |  |
| Diclorometano                       | 75-09-2    | Х                   | X                                 |  |
| Ftalato de di(2-etil-hexilo) (DEHP) | 117-81-7   | Х                   | X                                 |  |
| Diurão                              | 330-54-1   | Х                   | X                                 |  |
| Endossulfão                         | 115-29-7   | Х                   |                                   |  |
| Fluoranteno                         | 206-44-0   | Х                   | X                                 |  |
| Hexaclorobenzeno                    | 118-74-1   | Х                   | X                                 |  |
| Hexaclorobutadieno                  | 87-68-3    | Х                   | X                                 |  |
| Hexaclorociclo-hexano (lindano)     | 608-73-1   | Х                   |                                   |  |
| Isoproturão                         | 34123-59-6 | Х                   | X                                 |  |
| Chumbo e compostos de chumbo        | 7439-92-1  | Х                   | X                                 |  |
| Mercúrio e compostos de mercúrio    | 7439-97-6  | Х                   | X                                 |  |
| Naftaleno                           | 91-20-3    | Х                   | X                                 |  |
| Níquel e compostos de níquel        | 7440-02-0  | Х                   | X                                 |  |
| Nonilfenóis (4-nonilfenol)          | 84852-15-3 | Х                   | X                                 |  |

| Octilfenóis ((4-(1,1',3,3'-tetrametilbutil)-<br>fenol)) | 140-66-9    | Х |   |
|---------------------------------------------------------|-------------|---|---|
| Pentaclorofenol                                         | 87-86-5     | Х | X |
| Hidrocarbonetos aromáticos policíclicos (HAP)           | n.a.        | - |   |
| Benzo(a)pireno                                          | 50-32-8     | X | X |
| Benzo(b)fluoranteno                                     | 205-99-2    | X | X |
| Benzo(k)fluoranteno                                     | 207-08-9    | X | X |
| Benzo(g,h,i)perileno                                    | 191-24-2    | Х |   |
| Indeno(1,2,3-cd)pireno                                  | 193-39-5    | Х |   |
| Simazina                                                | 122-34-9    | Х | X |
| Tetracloroeteno                                         | 127-18-4    | X | Х |
| Tricloroeteno                                           | 79-01-6     | Х |   |
| Triclorometano                                          | 67-66-3     | Х | X |
| Trifluralina                                            | 1582-09-8   | Х | X |
| Ácido perfluorooctanossulfónico e seus derivados (PFOS) | 1763-23-1   | X | X |
| Quinoxifena                                             | 124495-18-7 | X |   |
| Aclonifena                                              | 74070-46-5  | Х | Х |
| Bifenox                                                 | 42576-02-3  | X | X |
| Cibutrina                                               | 28159-98-0  | Х | X |
| Diclorvos                                               | 62-73-7     | X | X |
| Terbutrina                                              | 886-50-0    | X |   |

#### O Bom estado químico é atingido quando:

- A média aritmética anual de cada substância prioritária, para o período em análise, for inferior à norma de qualidade ambiental, e/ou;
- A concentração máxima admissível de cada substância prioritária não ultrapassa a NQA.

Importa referir que, no respeitante aos metais dissolvidos, quando o valor numérico determinado ultrapassa a norma de qualidade ambiental, torna-se necessário efetuar previamente a biodisponibilidade dos metais, tendo-se adotado o método de cálculo PNEC-PRO (www.pnec-pro.com) disponibilizado pela Comissão Europeia.

Acresce ainda que, para efeitos de cálculo, tanto para as substâncias prioritárias como para os poluentes específicos, os resultados inferiores ao limite de quantificação foi considerado metade deste valor conforme o disposto no Art. 5.º, Decreto-Lei n.º 83/2011, de 20 de junho. Podem ainda considerar-se, para efeitos de cálculo, o seguinte:

- Se o resultado corresponde a uma soma de valores todos quantificáveis, será apresentado pela soma de todas as parcelas.
- Se o resultado corresponde a uma soma de valores inferiores ao limite de quantificação, com pelo menos uma parcela quantificável, será apresentado com o resultado quantificável.

Salienta-se ainda que, nos casos em que o limite de quantificação é superior à norma de qualidade, o resultado não foi considerado em termos de avaliação do estado das massas de água. No respeitante à apresentação de resultados para a soma de isómeros e de substâncias importa referir que, quando todos os valores são inferiores ao limite de quantificação, deverá ser apresentado o valor mais elevado.

No respeitante aos poluentes específicos para as águas superficiais sintetizam-se as substâncias consideradas e respetivas NQA no Quadro 7.2.

Quadro 7.2 – Poluentes especificos para avaliação do estado ecológico nas massas de água superficiais.

|                                                       |            | Norma de Qualidade Ambiental                                                                    |                                             |
|-------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|
| Poluentes Especificos                                 | N.º CAS    | Águas Interiores<br>(μg/l)                                                                      | Águas de Transição<br>e Costeiras<br>(μg/l) |
| 2, 4, 5-Triclorofenol                                 | 95-95-4    | 0,13                                                                                            | 0,13                                        |
| 2, 4, 6-Triclorofenol                                 | 88-06-2    | 0,26                                                                                            | 0,26                                        |
| 2,4-D (ácido 2,4-Diclorofenoxiacético sais e ésteres) | 94-75-7    | 0,30                                                                                            | 0,30                                        |
| 2,4-Diclorofenol                                      | 120-83-2   | 1,6                                                                                             | 0,16                                        |
| Antimónio dissolvido                                  | 7440-36-0  | 5,6                                                                                             | -                                           |
| Arsénio dissolvido                                    | 7440-38-2  | 50                                                                                              | 25                                          |
| Bário dissolvido                                      | 7440-39-3  | 140                                                                                             | -                                           |
| Bentazona                                             | 25057-89-0 | 80                                                                                              | -                                           |
| Cobre dissolvido                                      | 7440-50-8  | 7,8 (depende de pH,<br>DOC e dureza da<br>água)                                                 | -                                           |
| Crómio dissolvido                                     | 7440-47-3  | 4,7                                                                                             | -                                           |
| Dimetoato                                             | 60-51-5    | 0,07                                                                                            | 0,007                                       |
| Etilbenzeno                                           | 100-41-4   | 65                                                                                              | 10                                          |
| Fosfato de Tributilo (Tribultilfosfato)               | 126-73-8   | 66                                                                                              | 6,6                                         |
| Linurão                                               | 330-55-2   | 0,15                                                                                            | -                                           |
| MCPP (Mecoprope)                                      | 7085-19-0  | 5,5                                                                                             | 0,30                                        |
| Xileno (total)                                        | 1330-20-7  | 2,4                                                                                             | 0,24                                        |
| Tolueno                                               | 108-88-3   | 74                                                                                              | 7,4                                         |
| Zinco dissolvido                                      | 7440-66-6  | 7,8 (depende de pH,<br>DOC e dureza da<br>água);<br>3,1 (para dureza da<br>água <24 mgl CaCO₃). | -                                           |
| Terbutilazina                                         | 5915-41-3  | 0,22                                                                                            | -                                           |
| Desetilterbutilazina (metabolito)                     | 30125-63-4 | 0,14                                                                                            | -                                           |
| Cianetos Totais (CN)                                  | 57-12-5    | 5,0                                                                                             | 5,0                                         |
| Bisfenol-A                                            | 80-05-7    | 0,20                                                                                            | -                                           |
| Lítio dissolvido                                      | 7439-93-2  | 1,65 mg/l                                                                                       | -                                           |

As Normas de Qualidade Ambiental estabelecidas por Portugal para os poluentes especificos tiveram como base a informação resultante de Relatórios de Avaliação de Risco da *Environmental Chemical Agency* (ECHA) e de organizações oficiais a nível Europeu.

Tendo por base os resultados da monitorização para o período em análise, considera-se que uma massa de água está com Bom estado ecológico no âmbito dos poluentes específicos, quando a média aritmética anual não ultrapassa a NQA.

## 7.2 Matriz biota

No respeitante à matriz biota as substâncias prioritárias e respetivas normas de qualidade para avaliação do estado químico encontram-se no Quadro 7.3.

Quadro 7.3 – Substâncias prioritárias e normas de qualidade para avaliação do estado químico da matriz biota

| Substâncias prioritárias                                | N.º CAS    | NQA Peixe de água<br>interior<br>(μg/kg de peso húmido) | NQA Bivalves de água<br>costeira<br>(μg/kg de peso húmido) |
|---------------------------------------------------------|------------|---------------------------------------------------------|------------------------------------------------------------|
| Éteres difenílicos bromados (PBDE)                      | 32534-81-9 | 0,0085                                                  | -                                                          |
| Hexaclorobenzeno                                        | 118-74-1   | 10                                                      | -                                                          |
| Hexaclorobutadieno                                      | 87-68-3    | 55                                                      | -                                                          |
| Mercúrio e compostos de mercúrio                        | 7439-97-6  | 20                                                      | -                                                          |
| Dicofol                                                 | 115-32-2   | 33                                                      | -                                                          |
| Ácido perfluorooctanossulfónico e seus derivados (PFOS) | 1763-23-1  | 9,1                                                     | -                                                          |
| Fluoranteno                                             | 206-44-0   | -                                                       | 30                                                         |
| Benzo(a)pireno                                          | 50-32-8    | -                                                       | 5                                                          |
| Dioxinas e compostos semelhantes                        | _          | Soma PCDD+PCDF+PCB-                                     | Soma PCDD+PCDF+PCB-                                        |
| a dioxinas                                              | -          | DL 0,0065 μg.kg-1 TEQ                                   | DL 0,0065 μg.kg-1 TEQ                                      |

No que concerne à avaliação do estado químico para a matriz biota considera-se que uma massa de água está com Bom estado, quando a concentração anual não ultrapassa a NQA, conforme orientação vertida no Documento-Guia n.º 32 da Estratégia Comum de Implementação da DQA (European Union, 2014).

#### 7.3 Matriz sedimentos

No respeitante à matriz sedimentos as substâncias prioritárias que serão objeto de avaliação encontram-se no Quadro 7.4.

Importa referir a importância desta matriz como complemento na avaliação do estado químico destas substâncias, dada a sua acumulação preferencial nos sedimentos em detrimento da matriz água. Como exemplo destacam-se as substâncias — PBDEs, heptacloro e heptacloro epóxido que se efetuam preferencialmente nos sedimentos por serem um melhor indicador de poluição.

Quadro 7.4 – Substâncias prioritárias para avaliação de tendências na matriz sedimentos.

| Substâncias prioritárias                      | N.º CAS    |
|-----------------------------------------------|------------|
| Antraceno                                     | 120-12-7   |
| Éteres difenílicos bromados (PBDE)            | 32534-81-9 |
| Cádmio e compostoso de cádmio                 | 7440-43-9  |
| Ftalato de di(2-etil-hexilo) (DEHP)           | 117-81-7   |
| Fluoranteno                                   | 206-44-0   |
| Hexaclorobenzeno                              | 118-74-1   |
| Hexaclorobutadieno                            | 87-68-3    |
| Hexaclorociclo-hexano (lindano)               | 608-73-1   |
| Chumbo e compostos de chumbo                  | 7439-92-1  |
| Mercúrio e compostos de mercúrio              | 7439-97-6  |
| Níquel e compostos de níquel                  | 7440-02-0  |
| Hidrocarbonetos aromáticos policíclicos (HAP) | n.a.       |

| Substâncias prioritárias                              | N.º CAS           |
|-------------------------------------------------------|-------------------|
| Benzo(a)pireno                                        | 50-32-8           |
| Benzo(b)fluoranteno                                   | 205-99-2          |
| Benzo(k)fluoranteno                                   | 207-08-9          |
| Benzo(g,h,i)perileno                                  | 191-24-2          |
| Indeno(1,2,3-cd)pireno                                | 193-39-5          |
| Compostos de tributilestanho (catião tributilestanho) | 36643-28-4        |
| Dioxinas e compostos semelhantes a dioxinas           | -                 |
| Heptacloro e heptacloro epóxido                       | 76-44-8/1024-57-3 |

No caso da matriz sedimentos, a Diretiva das Substâncias Prioritárias refere que a avaliação deve ser efetuada recorrendo a uma análise de tendência. Tendo em conta que ainda existem poucos dados de monitorização, para se utilizarem métodos estatísticos robustos, efetua-se uma análise de evolução temporal das concentrações para cada substância analisada.



# Águas subterrâneas

# 8. Classificação das massas de água subterrâneas

A DQA estabelece um enquadramento para a proteção das águas subterrâneas que assegura a redução gradual da poluição das águas e evita o agravamento da sua poluição.

O artigo 4.º da DQA diz respeito aos objetivos ambientais e estabelece que os Estados Membros:

- Tomarão as medidas necessárias a fim de evitar ou limitar a descarga de poluentes nas águas subterrâneas e de evitar a deterioração do estado de todas as massas de água;
- Protegerão, melhorarão e reconstituirão todas as massas de água subterrâneas, garantindo o equilíbrio entre as captações e as recargas dessas águas, com o objetivo de alcançar o bom estado das águas subterrâneas;
- Aplicarão as medidas necessárias para inverter quaisquer tendências significativas persistentes para o aumento da concentração de poluentes que resulte do impacte da atividade humana, por forma a reduzir gradualmente a poluição das águas subterrâneas.

A proteção das massas de água subterrâneas é reforçada pela Diretiva 2006/118/CE, do Parlamento Europeu e do Conselho, de 12 de dezembro, transposta para o direito interno através do Decreto-Lei n.º 208/2008, de 28 de outubro, que estabelece o regime de proteção das águas subterrâneas contra a poluição e deterioração e regulamenta a avaliação do estado químico das massas de água. Esta diretiva foi alterada pela Diretiva 2014/80/EU da Comissão, de 20 de junho de 2014, que altera o anexo II da Diretiva 2006/118/CE tendo sido transporta, para o direito interno, pelo Decreto-Lei n.º 34/2016, de 28 de junho.

Por sua vez, a Portaria n.º 1115/2009, de 29 de setembro, regula o procedimento para a avaliação e monitorização do estado quantitativo das massas de água subterrâneas com o objetivo de assegurar o bom estado quantitativo.

A nível europeu e no âmbito da Estratégia Comum de Implementação da Diretiva Quadro da Água, foram elaborados guias para apoiar os Estados Membros na implementação da DQA. No respeitante as águas subterrâneas, o Documento-Guia n.º 18 da Estratégia Comum de Implementação da DQA (European Communities, 2009) estabeleceu uma metodologia para avaliação dos estados químico e quantitativo. Portugal seguiu as orientações metodológicas preconizadas no guia.

Neste contexto, para se avaliar o estado químico e quantitativo de uma massa de água, torna-se necessário realizar uma série de testes químicos e quantitativos relevantes para os elementos em risco e que se aplicam à massa de água em questão. A classificação final da massa de água é obtida pela pior classificação dos testes, sendo necessário realizar todos aqueles que são relevantes e que se aplicam à massa de água.

O processo de classificação deverá indexar a cada massa de água uma única classe de estado. Para as águas subterrâneas são estabelecidas duas classes de estado, em resultado das pressões a que a massa de água se encontra sujeita: Bom ou Medíocre.

Conforme o Anexo V do Decreto-Lei n.º 77/2006, de 30 de março, a apresentação da classificação do estado das massas de água subterrâneas deve seguir o seguinte esquema (Figura 8.1):



Figura 8.1 – Esquema representativo da classificação do estado das massas de água

A avaliação do Estado de uma massa de água subterrânea envolve duas componentes cruciais e indissociáveis: o Estado Quantitativo e o Estado Químico. Para que uma massa de água subterrânea esteja em Bom Estado implica que ambos os estados têm de estar, como Bom.

O processo de classificação do Estado das massas de água é uma etapa fundamental para as políticas de gestão dos recursos hídricos, uma vez que permite realizar avaliações periódicas do panorama nacional e avaliar a evolução da qualidade das massas de água. Neste contexto, possibilita a identificação de massas de água que se encontram em Estado inferior a Bom e em risco de não cumprir os objetivos ambientais.

# 8.1 Classificação do estado quantitativo

O bom estado quantitativo, de acordo com o disposto no artigo 4.º da DQA, é o estado de um meio hídrico subterrâneo em que o nível piezométrico é tal que os recursos hídricos subterrâneos disponíveis não são ultrapassados pela taxa média anual de captação a longo prazo, não estando por isso sujeitas a alterações antrópicas.

A definição do bom estado quantitativo das massas de águas subterrâneas deve considerar os critérios previstos na Portaria n.º 1115/2009, de 29 de setembro, que são os seguintes:

- O nível de água na massa de água subterrânea deve ser tal que os recursos hídricos subterrâneos disponíveis não sejam ultrapassados pela taxa média anual de extração a longo prazo, de acordo com o n.º 2.1.2. do anexo V do Decreto-Lei n.º 77/2006, de 30 de março;
- A ocorrência de alterações na direção do escoamento subterrâneo em consequência de variações de nível não compromete o bom estado quantitativo, desde que essas alterações:
  - não provoquem intrusões de água salgada, constantes e claramente identificadas;
  - o não impeçam que sejam alcançados os objetivos ambientais especificados nos termos do artigo 4.º para as águas de superfície que lhe estão associadas (EDAS);
  - o não provoquem danos significativos nos ecossistemas terrestres diretamente dependentes (ETDAS) da massa de água subterrânea.
- Considera-se que uma massa de água subterrânea atinge o bom estado quantitativo quando a taxa média anual de captações a longo prazo for inferior a 80% da recarga média anual a longo prazo.
   O limiar dos 80% da recarga corresponde aos recursos hídricos subterrâneos disponíveis.

Importa referir que neste 3.º ciclo de planeamento, face à diminuição da precipitação nos últimos 20 anos, considerou-se oportuno diminuir o limiar dos recursos subterrâneos disponíveis de 90% para 80% da recarga média anual a longo prazo, com o intuito de proteger e preservar as águas subterrâneas, face à diminuição das disponibilidades hídricas subterrâneas e aumento das extrações sobre as massas de água.

A metodologia para avaliar o estado quantitativo das massas de água subterrâneas é composta por um conjunto de testes relevantes, de acordo com o Documento-Guia n.º 18 (European Communities, 2009), a saber:

- Teste do balanço hídrico subterrâneo;
- Teste do escoamento superficial;
- Teste da avaliação dos ecossistemas terrestres dependentes das águas subterrâneas (ETDAS);

• Teste da intrusão salina ou outra.

A avaliação final do estado quantitativo será determinada pela pior classificação dos testes quantitativos relevantes, ou seja, por exemplo, se a classificação de um teste for medíocre então a classificação final da massa de água subterrânea é medíocre.

Para avaliação do estado quantitativo das massas de água subterrâneas considera-se crucial a determinação de dois parâmetros as extrações existentes em cada massa de água e a recarga média anual a longo prazo.

Seguidamente, procedeu-se ao cálculo da recarga anual média de água subterrânea a longo prazo.

# 8.1.1 Avaliação da recarga das massas de água

Entende-se por disponibilidade hídrica subterrânea o volume de água que uma massa de água subterrânea pode fornecer, anualmente, em condições naturais. Este volume está intrinsecamente associado à recarga direta por precipitação. No entanto, ao nível das massas de água subterrâneas poderão ocorrer outras origens de recarga, nomeadamente, as trocas de água com outras massas de água e processos de drenagem. Dado que não se conhece a influência da recarga induzida, os valores de disponibilidade aproximam-se dos valores associados ao regime natural.

No decurso do 3.º ciclo de planeamento, decorreu um projeto do Instituto Superior de Engenharia do Porto (ISEP) com a APA, I.P., designado "Desenvolvimento de métodos específicos para a avaliação da recarga das massas de água subterrâneas, para melhorar a avaliação do estado quantitativo", com términus em julho de 2017. Este trabalho definiu uma metodologia, a nível nacional, para quantificar a recarga das massas de água subterrânea para os diferentes meios litológicos e, consequentemente, hidrogeológicos.

A recarga natural traduz-se num volume de água introduzido no subsolo, sem intervenção humana, sendo uma variável do ciclo hidrológico e define-se como a quantidade de água que é adicionada à massa de água subterrânea. É responsável pela formação e manutenção dos recursos hídricos subterrâneos.

O ISEP desenvolveu um Índice de Potencial de Infiltração (IPI), em que as áreas com maior potencial de infiltração correspondem a áreas que reúnem um conjunto de condições favoráveis à infiltração, tais como a litologia, a estrutura, o grau de alteração das rochas, a densidade de lineamentos tectónicos, a ocupação do solo, a densidade da rede hidrográfica, o declive e a precipitação. Estes fatores foram cruzados em ambiente SIG, de acordo com diferentes fatores de ponderação e diversos pesos específicos dentro de cada fator. Estes pesos e fatores de ponderação foram calculados através do método AHP — Analytical Hierarchy Process (ISEP, 2017).

Tendo os diferentes fatores agrupados nas categorias geológica, geográfica, hidrogeomorfológica e hidroclimatológica, foram construídos mapas de base, com o seu fator de ponderação e peso específico, de cada um dos fatores e utilizados no cálculo das áreas de maior potencial de infiltração, com recurso às ferramentas de análise espacial dos SIG. O resultado final corresponde a um ficheiro, em que cada uma das células tem o valor correspondente ao somatório dos diferentes fatores. Os valores máximos são obtidos nas áreas onde se combinam os valores máximos de cada um dos fatores de ponderação.

No estudo definiram-se 14 zonas piloto, em diferentes meios hidrogeológicos — poroso, cársico e fissurado para aferição dos resultados obtidos através do índice com a avaliação hidrodinâmica de cada uma destas áreas. Foram tidos em consideração os caudais extraídos, área de contribuição e a precipitação média anual da área de estudo para o cálculo da taxa de recarga.

Para cada meio hidrogeológico ajustaram-se os parâmetros que influenciam a recarga, uma vez que estes apresentam importâncias diferentes conforme o tipo de litologia presente. O seu peso relativo foi recalculado através do método AHP, referido anteriormente.

Seguidamente, apresentam-se os esquemas metodológicos definidos para a avaliação da recarga (Figura 8.2, Figura 8.3 e Figura 8.4), nos três meios hidrogeológicos considerados: fissurado, cársico e poroso, utilizando o IPI.

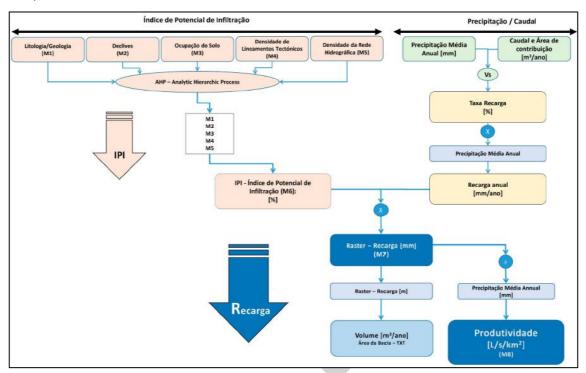



Figura 8.2 – Principais grupos de pressões sobre as massas de água

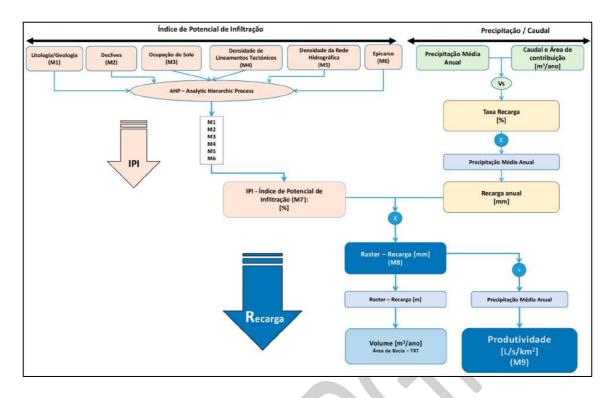



Figura 8.3 – Esquema metodológico para a avaliação da recarga com base no IPI, para meios cársicos (ISEP, 2017)

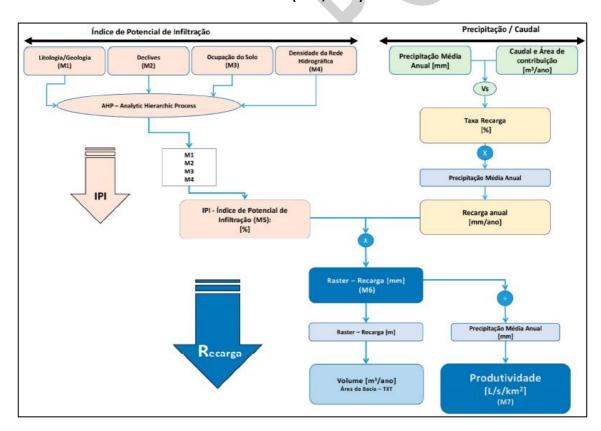



Figura 8.4 – Esquema metodológico para a avaliação da recarga com base no IPI, para meios porosos (ISEP, 2017)

Os fatores que afetam o potencial de infiltração são os seguintes:

i. <u>Litologia/Geologia</u>

O tipo de litologia, estrutura e grau de alteração têm implicações nas diferentes propriedades das formações geológicas, afetando a infiltração, o fluxo subterrâneo e a sua produtividade.

## ii. <u>Densidade de lineamentos tectónicos</u>

Os lineamentos tectónicos podem ser usados para inferir o potencial fluxo e armazenamento de água subterrânea, num determinado maciço, bem como na determinação dos principais parâmetros hidrogeológicos desse mesmo maciço. Os lineamentos indicam possíveis áreas de infiltração e circulação de água.

# iii. Ocupação do solo

A ocupação do solo e dos afloramentos rochosos é um fator muito importante nos estudos relacionados com as águas subterrâneas, em especial nos que se focam na infiltração e na recarga. A presença de coberto vegetal retarda o escoamento superficial, aumentando assim a possibilidade de infiltração em profundidade, entre outros aspetos, enquanto a presença de zonas impermeabilizadas contribui para que não ocorra recarga nessas áreas.

## iv. <u>Densidade da rede hidrográfica</u>

A análise do padrão e densidade da rede hidrográfica permite complementar a avaliação das áreas potenciais de infiltração, uma vez que a sua estrutura está, em geral, dependente da litologia, o que fornece informações valiosas acerca de percolação da água. Assim, áreas com maior densidade de drenagem terão um peso inferior, uma vez que quanto maior for a quantidade de água que escoa superficialmente, menor é a quantidade disponível para infiltração, assumindo que o escoamento superficial é uma função inversa da circulação subterrânea (aqui não estão quantificadas as interações entre as massas de água superficiais e subterrâneas que ocorrem em determinadas zonas do país).

### v. Declive

Este fator é um dos mais importantes que influenciam a infiltração de água e vai condicionar, bastante, o tempo de permanência da água superficial num local, sendo uma função inversa dos valores de declives nesse mesmo local.

## vi. <u>Precipitação</u>

Uma vez que a precipitação é a principal origem de água para infiltração, o fator de ponderação atribuído a este parâmetro teve em consideração os valores de precipitação médios, do balanço hídrico mensal bem como as variações espaciais da precipitação.

# vii. Epicarso

As rochas carbonatadas apresentam especificidades particulares, relativamente à circulação e armazenamento de água subterrânea. Assim, quanto mais estiverem presentes formações cársicas, como dolinas, sumidouros e mais fraturados se encontrarem, maior é o potencial de infiltração.

Após aferição dos valores obtidos pelo IPI e as zonas piloto, procedeu-se à regionalização para todas as massas de água subterrânea de Portugal Continental. Foi necessário recalcular os pesos para cada um dos fatores acima referidos.

Os valores mais elevados do IPI correspondem, naturalmente, às unidades calcárias na Orla Ocidental e na Orla Meridional, bem como às formações sedimentares das Orlas e das Bacias do Tejo e Sado. No Maciço Antigo identificam-se algumas zonas sedimentares assim como calcários. Quanto à taxa de recarga, foram definidas cinco classes de intervalo (< 8%, 8-16%, 16-24%, 24-32% e > 32%), sendo que a que predomina é a classe inferior a 8%, em 71,7% do território nacional.

Para o cálculo das disponibilidades hídricas por massa de água utilizou-se a taxa de infiltração e a precipitação média, por ano hidrológico, de uma série com 90 anos de dados obtidos no âmbito do projeto "Avaliação das disponibilidades hídricas por massa de água e aplicação do Índice de escassez WEI+, visando complementar a avaliação do estado das massas de água".

Seguidamente, procedeu-se ao cálculo dos recursos hídricos subterrâneos disponíveis, que consistem numa percentagem da recarga. De acordo com a Portaria n.º 1115/2009, de 29 de setembro, estes correspondem a 90% da recarga média anual a longo prazo.

# 8.1.2 Avaliação das extrações nas massas de água subterrâneas

Esta avaliação consiste no terceiro passo do teste do balanço hídrico. Para isso foram calculadas as extrações, por massa de água subterrânea, por setor de atividade: urbano, agrícola, indústria, turismo, pecuária e outros e por massa de água.

Esta informação é proveniente dos inventários que se encontram vertidos no capítulo referente às pressões.

# 8.1.3 Avaliação do estado quantitativo

Tendo como informação de base a avaliação das extrações e os recursos hídricos subterrâneos disponíveis bem como os níveis piezométricos é possível efetuar os testes preconizados no Documento-Guia n.º 18 (European Communities, 2009) para avaliação do estado quantitativo das massas de água subterrâneas.

Assim, considera-se que a primeira etapa é a avaliação do balanço hídrico, complementada pela aplicação dos outros testes relevantes para cada massa de água subterrânea. Os outros testes que se podem realizar, no âmbito da avaliação do estado quantitativo são: o escoamento superficial; o teste da intrusão salina ou outras e; o teste dos ecossistemas dependentes das águas subterrâneas.

# 8.1.3.1 Teste do balanço hídrico

Considera-se que o teste do balanço hídrico deve ser aplicado a todas as massas de água subterrânea, uma vez que vai permitir fazer uma primeira avaliação sobre a taxa de entrada e de saída de água subterrânea em cada uma das massas de água.

Neste âmbito, e no sentido de averiguar se as extrações não ultrapassam os recursos hídricos subterrâneos disponíveis, o procedimento gizado começou pelo cálculo do balanço entre a recarga média anual a longo prazo e as extrações, conforme a Figura 8.5.

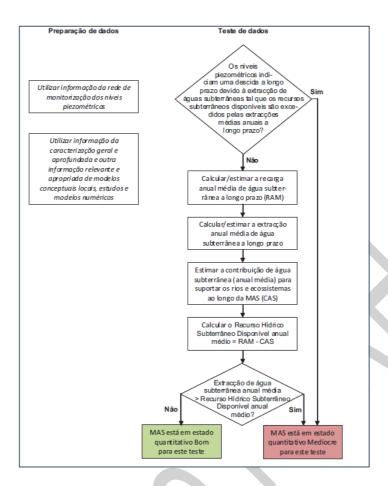



Figura 8.5 - Teste do balanço hídrico (adaptado do Documento-Guia n.º 18 (European Communities, 2009))

De acordo com o fluxograma da Figura 8.5, a primeira etapa corresponde à verificação se ocorre descida, a longo prazo, dos níveis piezométricos indiciando que os recursos hídricos disponíveis, a longo prazo, são excedidos pelas extrações, a longo prazo. Assim, foi feita a seguinte análise:

- ✓ a nível espacial, com a análise das superfícies piezométricas para os anos hidrológicos correspondentes ao período 2014-2019 no sentido de detetar se existem eventuais inversões de fluxo subterrâneo;
- ✓ a nível temporal, utilizou-se a série geral piezométrica para análise de evolução do nível piezométrico e análise de tendências.

Em termos de análise temporal, nomeadamente, para análise de tendência dos níveis piezométricos utilizou-se o método de estatística, não paramétrica, Mann-Kendall com o declive Sen, utilizando a ferramenta desenvolvida no âmbito do Projeto "Avaliação de análise de tendências para o aumento da concentração de poluentes nas massas de água subterrânea e do inverso da tendência para os poluentes responsáveis pelo estado medíocre das massas de água" (IST, 2017).

Tendo por base os recursos hídricos subterrâneos disponíveis e as extrações, por massa de água, então procedeu-se ao cálculo do balanço, sendo que é positivo quando a taxa de recarga é superior às extrações e é negativo, quando a taxa de extrações é superior à taxa de recarga. Conforme o resultado do teste, assim a massa de água se encontra em estado quantitativo bom ou medíocre, respetivamente.

# 8.1.3.2 Teste de escoamento superficial

Neste teste consideraram-se as massas de água superficial associadas (EDAS) e o seu estado ecológico. Para além disso, observou-se se na massa de água superficial existe uma pressão significativa.

# 8.1.3.3 Teste da intrusão salina ou outra

O teste da intrusão salina ou outras aplica-se nas massas de água em que se verifique alteração do nível piezométrico, devido ao aumento de extração de água subterrânea por ação antrópica. Este teste é o mesmo que se realiza na avaliação do estado químico e verifica se existe intrusão salina em massas de água subterrâneas costeiras ou de outro tipo, como seja a provocada pela circulação da água subterrânea em evaporitos presentes em profundidade (formações adjacentes), ou intrusão proveniente de uma massa de água superficial com uma qualidade de água medíocre. Para este teste não se pode considerar quando existe um rebaixamento do nível piezométrico devido a causas naturais, como o que ocorre quando há diminuição da recarga de água subterrânea, devido à diminuição da precipitação.

# 8.1.3.4 Teste dos ETDAS (avaliação dos ecossistemas terrestres dependentes das águas subterrâneas)

Este teste só se realiza para aquelas massas de água onde tenham sido identificados os ETDAS.

# 8.1.4 Avaliação final do estado quantitativo

A avaliação final do estado quantitativo é determinada pela pior classificação dos testes que se aplicam à massa de água subterrânea, ou seja, se por exemplo, a classificação de um teste for medíocre, então a classificação final da massa de água é medíocre.

# 8.2 Classificação do estado químico

A definição do estado químico de uma massa de água subterrânea tem por base os critérios e termos previstos no n.º 2.3 do Anexo V do Decreto-Lei n.º 77/2006, de 30 de março, e no Decreto-Lei n.º 208/2008, de 28 de outubro, que transpõe para a ordem jurídica interna a Diretiva n.º 2006/118/CE, de 12 de dezembro, alterado pelo Decreto-Lei n.º 34/2016, de 28 de junho e deve considerar o seguinte:

- As normas de qualidade da água subterrânea referidas no anexo I do Decreto-Lei n.º 208/2008, de 28 de outubro, alterado pelo Decreto-Lei n.º 34/2016, de 28 de junho, relativas a nitratos e a substâncias ativas dos pesticidas, incluindo os respetivos metabolitos e produtos de degradação e de reação;
- Os limiares que vierem a ser estabelecidos em conformidade com o procedimento previsto na parte A do anexo II do Decreto Lei n.º 208/2008, de 28 de outubro, alterado pelo Decreto-Lei n.º 34/2016, de 28 de junho, para os poluentes, grupos de poluentes e indicadores de poluição que tenham sido identificados como contribuindo para a caracterização das massas ou grupo de massas de água subterrânea consideradas em risco, tendo em conta, pelo menos, a lista da parte B do Anexo II do mesmo decreto-lei:
  - Substâncias, iões, ou indicadores, que podem ocorrer naturalmente ou como resultado de atividades humanas:
    - Arsénio;
    - Cádmio:
    - Chumbo;

- Mercúrio;
- Azoto amoniacal;
- Cloreto;
- Sulfato;
- Nitritos;
- Fósforo total
- Substâncias sintéticas artificiais:
  - Tricloroeteno;
  - Tetracloroeteno.
- o Parâmetro indicativo de intrusões salinas ou outras:
  - Condutividade.
- Os limiares de qualidade aplicáveis ao bom estado químico da água subterrânea baseiam-se na proteção da massa de água, concedendo particular atenção às suas repercussões e interrelação com as águas de superfície e ecossistemas terrestres associados e as zonas húmidas diretamente dependentes, devendo ser tidos em conta, nomeadamente, conhecimentos de toxicologia e de ecotoxicologia;
- Os limiares podem ser estabelecidos a nível nacional, a nível da região hidrográfica ou a nível da parte da região hidrográfica internacional situada no território nacional ou ainda a nível da massa ou grupo de massas de água subterrânea.

## 8.2.1 Limiares

A Diretiva Filha das águas subterrâneas, transposta pelo Decreto-Lei n.º 208/2008, de 28 de outubro, na sua redação atual, estabelece que a lista dos limiares deve ser revista a cada ciclo de planeamento, podendo ser introduzidas novas substâncias, serem retiradas, ou revistos os valores estabelecidos no ciclo anterior, devido a um melhor conhecimento sobre novas informações de poluentes ou indicadores de poluição, tendo em vista a proteção da saúde humana e do ambiente.

Assim, neste terceiro ciclo de planeamento procedeu-se à revisão dos limiares já estabelecidos e procedeu-se à introdução de novas substâncias, sendo que duas por imposição do Decreto-Lei n.º 34/2016, de 28 de junho, nitritos e fósforo total. No total foram estabelecidos limiares para 54 substâncias.

De referir que o teor de oxigénio é um parâmetro obrigatório a ser determinado nas massas de águas subterrâneas, de acordo com a DQA. Uma vez que os meios subterrâneos são redutores, em que não há a presença de oxigénio, e que nos furos se recorre à bombagem, para a extração da amostra de água, considera-se que este parâmetro não é representativo das águas subterrâneas, pelo que não se estabeleceu limiar para este parâmetro. De referir que o contacto da amostra de água com a atmosfera também vai influenciar o conteúdo de oxigénio presente na amostra.

Com o intuito de avaliar o estado químico das massas de água subterrânea no 3.º ciclo, sintetizam-se no Quadro 8.1 os limiares que foram estabelecidos, todos a nível nacional.

Quadro 8.1 – Normas de qualidade e limiares estabelecidos a nível nacional

| Parâmetro                                 | Limiar | Norma de<br>Qualidade |
|-------------------------------------------|--------|-----------------------|
| Nitrato (mg/l)                            |        | 50                    |
| Pesticidas (substância individual) (μg/l) |        | 0,1                   |

| Paris de la companya | Martin         | Norma de  |  |  |
|----------------------------------------------------------------------------------------------------------------|----------------|-----------|--|--|
| Parâmetro Parâmetro                                                                                            | Limiar         | Qualidade |  |  |
| Pesticidas (total)1 (μg/l)                                                                                     |                | 0,5       |  |  |
| Azoto amoniacal                                                                                                | 0,5 mg/l NH₄   |           |  |  |
| Condutividade                                                                                                  | 2500 μS/cm     |           |  |  |
| рН                                                                                                             | 5,5 9          |           |  |  |
| Arsénio total                                                                                                  | 10 μg /l       |           |  |  |
| Cádmio total                                                                                                   | 5 μg/l         |           |  |  |
| Chumbo total                                                                                                   | 10 μg/l        |           |  |  |
| Mercúrio total                                                                                                 | 1 μg/l         |           |  |  |
| Cloreto                                                                                                        | 250 mg/l       |           |  |  |
| Sulfato                                                                                                        | 250 mg/l       |           |  |  |
| Fósforo total                                                                                                  | 0,13 mg/l P    |           |  |  |
| Nitrito                                                                                                        | 0,5 mg/l       |           |  |  |
| Tricloroeteno                                                                                                  | Σ-10 vσ/l      |           |  |  |
| Tetracloroeteno                                                                                                | Σ=10 μg/l      |           |  |  |
| Alumínio total                                                                                                 | 200 μg/l       |           |  |  |
| Antimónio total                                                                                                | 10 μg/l        |           |  |  |
| Bário total                                                                                                    | 1300 μg/l      |           |  |  |
| Boro total                                                                                                     | 2,4 mg/l       |           |  |  |
| Cianetos totais                                                                                                | 50 μg/l        |           |  |  |
| Cobre total                                                                                                    | 2,0 mg/l       |           |  |  |
| Crómio total                                                                                                   | 50 μg/l        |           |  |  |
| Ferro total                                                                                                    | 200 μg/l       |           |  |  |
| Fluoretos                                                                                                      | 1,5 mg/l       |           |  |  |
| Manganês total                                                                                                 | 50 μg/l        |           |  |  |
| Níquel total                                                                                                   | 20 μg/l        |           |  |  |
| Selénio total                                                                                                  | 30 μg/l        |           |  |  |
| Zinco total                                                                                                    | 50 μg/l        |           |  |  |
| Urânio                                                                                                         | 30 μg/l        |           |  |  |
| Lítio total                                                                                                    | 1,65 mg/l      |           |  |  |
| Oxidabilidade                                                                                                  | 5,0 mg/l O2    |           |  |  |
| TPH (C10-C40)                                                                                                  | 10 μg/l        |           |  |  |
| 1,2-dicloroetano                                                                                               | 3,0 μg/l       |           |  |  |
| Cloreto de vinilo (cloroeteno)                                                                                 | 0,5 μg/l       |           |  |  |
| Diclorometano                                                                                                  | 20 μg/l        |           |  |  |
| Triclorometano (clorofórmio)                                                                                   | 6,0 μg/l       |           |  |  |
| Microbiológicos (E. coli, Enterococos)                                                                         | 20 (n.º/100ml) |           |  |  |
| Naftaleno                                                                                                      | 10 μg/l        |           |  |  |
| Acenafteno                                                                                                     | 0,06 μg/l      |           |  |  |
| Acenaftileno                                                                                                   | 1,3 μg/l       |           |  |  |
| Antraceno                                                                                                      | 0,0007 μg/l    |           |  |  |
| Fenantreno                                                                                                     | 0,003 μg/l     |           |  |  |
| Fluoreno                                                                                                       | 1,5 μg/l       |           |  |  |
| Pireno                                                                                                         | 0,0023 μg/l    |           |  |  |
| Fluoranteno                                                                                                    | 0,003 μg/l     |           |  |  |

<sup>&</sup>lt;sup>1</sup> Entende-se por "total" a soma de todos os pesticidas individuais detetados e quantificados durante o processo de monitorização, incluindo os respetivos metabolitos e produtos de degradação e de reação.

| Parâmetro              | Limiar             | Norma de<br>Qualidade |
|------------------------|--------------------|-----------------------|
| Benzo[a]antraceno      | 0,0001 μg/l        |                       |
| Criseno                | 0,003 μg/l         |                       |
| Benzo[a]pireno         | 0,01 μg/l          |                       |
| Benzo[b]fluoranteno    |                    |                       |
| Benzo[k]fluoranteno    | Σ=0,1 μg/l         |                       |
| Benzo[g,h,i]perileno   | <u>/</u> -0,1 μg/1 |                       |
| Indeno[1,2,3-cd]pireno |                    |                       |
| Dibenzo[a,h]antraceno  | 0,0014 μg/l        |                       |
| Benzeno                | 1,0 μg/l           |                       |
| Etilbenzeno            | 4,0 μg/l           |                       |
| Tolueno                | 7,0 μg/l           |                       |
| Xilenos (total)        | 2,4 μg/l           |                       |

Apresentam-se no Anexo VI as exceções aos limiares, a nível nacional, a serem considerados em algumas massas de água, uma vez que há substâncias que ocorrem naturalmente, sendo a concentração de fundo superior ao limiar estabelecido a nível nacional. Nestes casos, estabeleceu-se um limiar específico para essas massas de água, tendo em conta a concentração de fundo.

Uma massa de água subterrânea encontra-se em bom estado químico sempre que:

- os resultados relevantes da monitorização tenham demonstrado que as condições definidas no n.º 2.3.2 do Anexo V do Decreto-Lei n.º 77/2006, de 30 de março (intrusão salina, qualidade química das massas de água superficiais, ecossistemas terrestres diretamente dependentes da massa de água) estão a ser a ser cumpridas; ou
- os valores das normas de qualidade de água subterrânea e os limiares estabelecidos não sejam excedidos em nenhum ponto de monitorização nessa massa de água.

É ainda considerada em bom estado químico, uma massa de água subterrânea se o valor de uma norma de qualidade ou limiar forem excedidos, em um ou mais pontos de monitorização, desde que uma investigação apropriada confirme que:

- As concentrações de poluentes que excedam as normas ou limitares de qualidade não são consideradas como representando um risco ambiental significativo, atendendo, quando se tal revelar pertinente, à extensão da massa de água afetada;
- As outras condições do bom estado químico da água subterrânea fixado no quadro 2.3.2 do Anexo V do Decreto-Lei n.º 77/2006, de 30 de março, (intrusão salina, qualidade química das massas de água superficiais, ecossistemas terrestres diretamente dependentes da massa de água) estão a ser satisfeitas, nos termos do Anexo III;
- No caso das massas de água subterrânea identificadas em conformidade com o n.º 4 do artigo 48.º da Lei n.º 58/2005, de 29 de dezembro (massas de água destinadas a captação para consumo humano), seja assegurada a necessária proteção das mesmas, de modo a evitar a deterioração da sua qualidade, a fim de reduzir o nível de tratamentos de purificação necessário na produção de água potável;
- As utilizações da massa de água subterrânea não foram comprometidas de modo significativo pela poluição.

De acordo com os documentos orientadores da Comissão Europeia, designadamente o Documento-Guia n.º 18 (European Communities, 2009) (Figura 8.5) a metodologia para avaliar o estado químico das massas de água consiste numa agregação dos dados e faz-se a comparação com as normas de qualidade e limiares estabelecidos. Caso todas as estações de qualidade, de uma massa de água, apresentam um valor médio abaixo dos normativos legais, então a massa de água subterrânea

encontra-se em bom estado químico, ficando assim concluído o processo de avaliação do estado químico.

No caso de haver pelo menos uma estação de monitorização de qualidade que apresente um valor médio acima das normas de qualidade ou dos limiares, então ter-se-á que proceder a uma investigação apropriada que consiste na realização de vários testes relevantes para cada massa de água subterrânea. Esta investigação vai permitir avaliar se a excedência das normas de qualidade ou dos limiares vai ser responsável, ou não, pela classificação da massa de água em estado químico medíocre.

Assim, aquela investigação é composta por um conjunto de testes que a seguir se enumeram:

- Teste da avaliação global do estado químico;
- Teste de diminuição da qualidade química ou ecológica das massas de água superficiais;
- Teste de avaliação dos ecossistemas terrestres dependentes das águas subterrâneas (ETDAS);
- Teste de proteção das águas de consumo;
- Teste da intrusão salina.




Figura 8.6 – Procedimento geral para a realização da avaliação do estado químico (adaptado do Documento-Guia n.º 18)

O mesmo Documento-Guia refere, ainda, que apenas os testes relevantes devem ser aplicados às massas de água, de acordo com as especificidades das mesmas.

A avaliação final do estado químico é determinada pela pior classificação dos testes acima referidos, ou seja, se a classificação de um teste for medíocre, a classificação final da massa de água é medíocre.

O período de monitorização considerado para esta avaliação química foi o correspondente aos anos 2014-2019, sendo os dados provenientes das redes de monitorização de vigilância e operacional das massas de água subterrânea.

De acordo com o procedimento adotado, e conforme a Figura 8.5, fez-se a agregação dos dados procedendo-se ao cálculo da média para cada parâmetro e estações que monitorizam a massa de água. No caso dos dados que são expressos abaixo do limite de quantificação, estes são substituídos por um valor que é igual à metade do valor do limite de quantificação, exceto para os pesticidas totais. Conforme a nota (2) do Anexo I do Decreto-Lei n.º 208/2008, de 28 de outubro, na sua redação atual, "total" significa a soma de todos os pesticidas individuais detetados e quantificados durante o processo de monitorização.

Para a soma dos pesticidas, se temos os valores todos inferiores ao limite de quantificação (LQ), considera-se o valor mais elevado dos LQ. Se uns valores são quantificados e outros estão abaixo do LQ, então divide-se, estes últimos, por dois e soma-se com os restantes, confrontando-se a média com a norma de qualidade.

O valor médio foi confrontado com as normas de qualidade e com os limiares estabelecidos para os parâmetros acima referidos. Se todas as estações de qualidade, de uma massa de água, apresentam um valor médio abaixo dos normativos legais, então a massa de água subterrânea encontra-se em bom estado químico, dando-se por concluído o processo de avaliação do estado químico.

No caso em que pelo menos uma estação de monitorização de qualidade apresenta um valor médio acima das normas de qualidade ou dos limiares, então procedeu-se à investigação apropriada que consistiu na realização de vários testes relevantes para cada massa de água subterrânea. Esta investigação permitiu avaliar se a excedência, das normas de qualidade ou dos limiares é responsável, ou não, pela classificação da massa de água em estado químico medíocre.

# 8.2.1.1 Teste da avaliação global

O primeiro teste a realizar é o teste da avaliação global do estado químico, conforme a Figura 8.6.

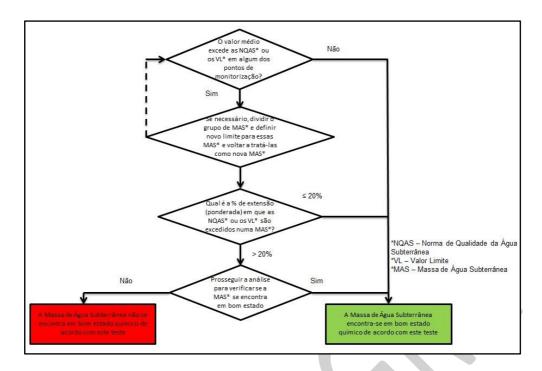



Figura 8.7 – Teste da Avaliação Global do Estado Químico (adaptado do Guia n.º 18)

Este teste consiste em calcular a percentagem de área da massa de água afetada. Se esta for superior a 20%, a massa de água encontra-se em estado químico medíocre para o(s) parâmetro(s) que levam a essa excedência. Em alguns casos, poder-se-à dividir a massa de água subterrânea, caso se justifique, tal como aconteceu, por exemplo, com as massas de água Sines ou a Campina de Faro, uma vez que a poluição identificada e localizada, permitiu recorrer a este procedimento, evitando assim que toda a massa de água seja colocada em estado químico medíocre, não havendo mais-valia na aplicação de medidas nas zonas não contaminadas. De referir que este procedimento está previsto no Guia n.º 18, já citado. Para o 3.º ciclo de planeamento não se procedeu à divisão de qualquer massa de água.

Para a determinação da extensão em que as normas de qualidade ou limiares foram excedidos, foi utilizada uma ferramenta, simples, de interpolação de área afetada através do método IDW (inverso da distância), utilizando sistemas de informação geográfica.

No caso de a área afetada ser inferior a 20%, da área da massa de água subterrânea, a massa de água encontra-se em bom estado químico, tendo passado neste teste.

Realizaram-se, seguidamente, todos os outros testes que se apliquem à massa de água.

# 8.2.1.2 Teste da diminuição da qualidade química ou ecológica das massas de água superficiais (EDAS)

O teste da diminuição da qualidade química ou ecológica das massas de água superficiais (EDAS), só se aplica às massas de água subterrânea que têm conexão com as massas de água superficiais, cujo estado químico está em risco de não atingir o bom estado, e é realizado para cada troço de massa de água superficial associado à massa de água subterrânea e para cada parâmetro relevante. Neste caso, consideraram-se, fundamentalmente, como parâmetros relevantes o nitrato e o fósforo.

Na Figura 8.8, pode observar-se o esquema para este teste. No final, a massa de água subterrânea tem um, de dois resultados: estado bom ou estado medíocre.

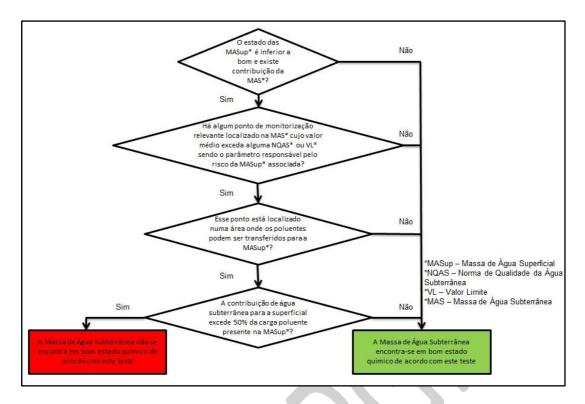



Figura 8.8 – Teste da Diminuição da Qualidade Química ou Ecológica das Massas de Água Superficiais (EDAS) (adaptado do Guia n.º 18)

# 8.2.1.3 Teste avaliação dos ecossistemas terrestres dependentes das águas subterrâneas (ETDAS)

No caso do teste dos ETDAS, avaliação dos ecossistemas terrestres dependentes das águas subterrâneas, deve ser realizado para cada ecossistema que tenha sido identificado numa massa de água subterrânea e para cada parâmetro relevante. Neste caso, consideraram-se, fundamentalmente, como parâmetros relevantes o nitrato e o fósforo. Na Figura 8.9 estão os passos a realizar para este teste.

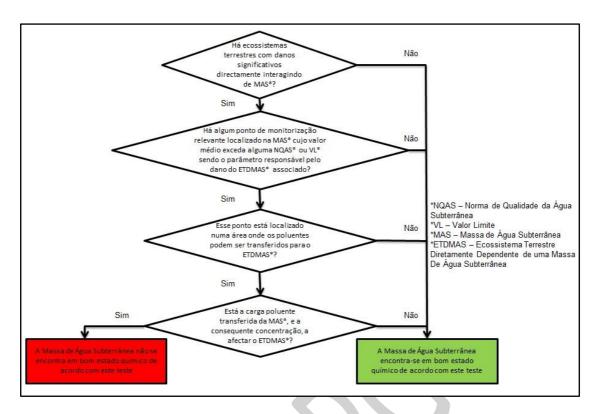



Figura 8.9 - Teste de Avaliação dos Ecossistemas Terrestres Dependentes das Águas Subterrâneas (ETDAS) (adaptado do Guia n.º 18)

Mais uma vez, o resultado deste teste poderá ser medíocre, caso a concentração da carga poluente transferida da massa de água subterrânea afete o ETDAS, ou bom, caso se verifique a situação contrária, isto é, a concentração da carga poluente transferida da massa de água subterrânea não afeta o ETDAS.

# 8.2.1.4 Teste de proteção das águas de consumo humano

Para o teste das áreas de proteção das águas de consumo humano (Figura 8.10), é necessário ter os dados de monitorização relativos às captações de abastecimento público, em que os resultados das análises são conferidos com o registo das zonas protegidas, sendo a classificação feita de acordo com as classes do Anexo I do Decreto-Lei n.º 236/98, de 1 de agosto. Sempre que a classe obtida é >A3, a massa de água está em estado químico medíocre para este teste.

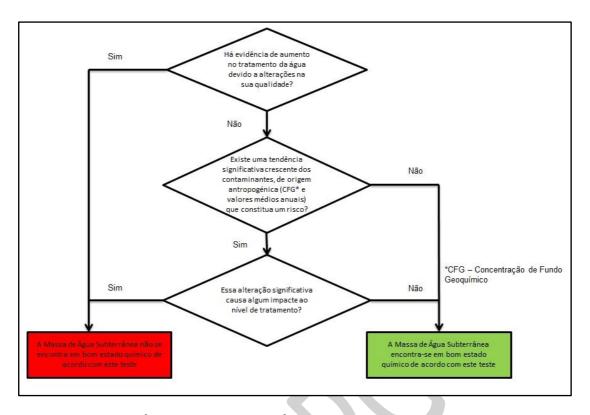



Figura 8.10 - Teste das Áreas de Proteção das Águas de Consumo Humano (adaptado do Guia n.º 18)

# 8.2.1.5 Teste da intrusão salina

Por último, o teste da intrusão salina ou outras aplica-se nas massas de água em que se verifique alteração do nível piezométrico, devido ao aumento de extração de água subterrânea por ação antrópica. Este teste é o mesmo que se realiza na avaliação do estado quantitativo e verifica se existe intrusão salina em massas de água subterrâneas costeiras ou de outro tipo, como seja a provocada pela circulação da água subterrânea em evaporitos presentes em profundidade (formações adjacentes), ou intrusão proveniente de uma massa de água superficial com uma qualidade de água medíocre.

Os passos a seguir na realização deste teste são os que estão expressos no esquema da Figura 8.11.

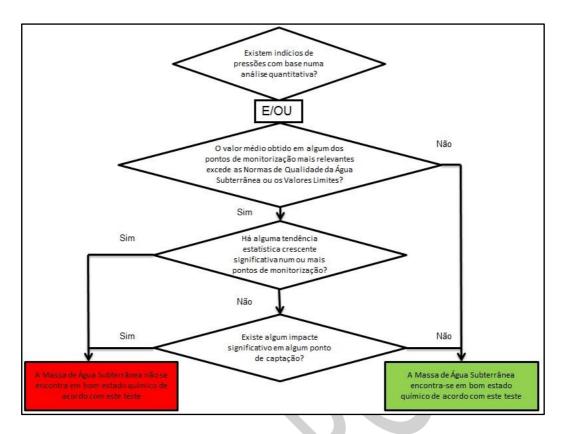



Figura 8.11 - Teste da Intrusão Salina (adaptado do Guia n.º 18)

É necessário verificar se existem indícios de pressões com base na análise quantitativa e/ou se o valor médio de um dos parâmetros, condutividade, cloreto ou sulfato, num ponto de monitorização relevante, isto é, que permita avaliar uma situação de intrusão, excede a norma de qualidade ou o limiar definidos.

# 8.2.2 Avaliação final do estado químico

Após a realização de todos os testes, que se aplicam a determinada massa de água, procede-se à avaliação final do estado químico dessa mesma massa de água.

Se todos os testes que foram realizados deram como resultado, bom estado químico, então essa massa de água encontra-se em bom estado químico. No caso de algum dos testes ter tido como resultado estado químico medíocre, então a massa de água encontra-se em estado químico medíocre. Para estas massas de água, deve identificar-se o poluente ou poluentes, assim como aferir as pressões que contribuem para essa classificação, e delinear os programas de medidas a aplicar para inverter a classificação do estado medíocre para o bom estado químico.

Salienta-se ainda que, para as massas de água subterrâneas classificadas com estado químico medíocre, efetuou-se uma análise de tendência para averiguar o comportamento do poluente ao longo do tempo e, determinou-se o ponto de inversão dessa tendência. Considera-se que este ponto deve corresponder a 75% do limiar ou da norma de qualidade ambiental, por forma a se aplicar medidas atempadamente procurando que as concentrações não atinjam o valor limite.

Conforme o esquema de avaliação do estado químico, representado na Figura 8.6, observa-se que uma massa de água que vai a testes e no final obtém a classificação de bom estado, deve ser objeto de um programa de medidas, de acordo com o n.º 7 do artigo 4.º do Decreto-Lei n.º 208/2008, de 28 de outubro, alterado pelo Decreto-Lei 34/2016, de 28 de junho. Para esta(s) massa(s) de água também deverá existir um programa de monitorização operacional. Em termos de cumprimento dos objetivos ambientais, verifica-se que esta(s) massa(s) de água se encontra(m) em risco de não os atingir, devido

ao(s) parâmetros(s) que foram a testes mas passaram nestes e portanto encontram-se em bom estado químico.

# 8.3 Classificação do estado global

A classificação do estado global das massas de água subterrânea é uma combinação da avaliação do estado quantitativo e do estado químico, sendo que prevalece a pior classificação. Assim, se uma massa de água apresenta bom estado quantitativo, mas estado químico medíocre, significa que o estado global é medíocre.

Esta avaliação do estado global não tem em conta a avaliação das zonas protegidas.

A avaliação final do estado global do 3.º ciclo de planeamento será comparada com a do 2.º ciclo, de modo a analisar a evolução do estado das massas de água e a determinar a localização das situações preocupantes, no sentido de as reverter. Permitirá, igualmente, aferir sobre a eficácia dos programas de medidas, uma vez que, nas massas de água com programas de medidas já implementados, há algum tempo, podem ser detetados sinais que indiciam uma melhoria, ou não, do seu estado.



# Referências bibliográficas

Bettencourt, A., Bricker, S.B., Ferreira, J.G., Franco, A., Marques, J.C., Melo, J.J., Nobre, A., Ramos, L., Reis, C.S., Salas, F., Silva, M.C., Simas, T., Wolff, W. (2003). Typology and Reference Conditions for Portuguese Transitional and Coastal Waters. INAG, IMAR, 99 pp.

Borgwardt, F., Leitner, P., Graf, W., Birk, S. 2019. Ex uno plures – defining different types of very large rivers in Europe to foster solid aquatic bio-assessment Ecol. Indic., 107 (2019), Article 105599, 10.1016/j.ecolind.2019.105599

Brito A.C., Boia A., Camarão B., Cardoso I., Cardoso I.\*, Cereja R., Cruz J., Gamito S., Garcia C., Gonçalves J.M.S., Heumüller J., Pedro P., Rocha C., Silva G., Neto J.M. (2020). MESCLA – "Melhorar e Complementar os Critérios de Classificação do Estado das Massas de Água de Transição e Costeiras" (Projeto POSEUR-03-2013-FC-000001). Relatório Final – Vol. II – Elementos Químicos e Físico-Químicos. APA/MONIPOR, 67p.

Brito, A.C., Brotas, V., Caetano, M., Coutinho, T.P., Bordalo, A., Icely, J., Neto, J.M., Serôdio, J., Moita, T. (2012a). Defining phytoplankton class boundaries in Portuguese transitional waters: An evaluation of the ecological quality status according to the Water Framework Directive. *Ecological Indicators*: 5-14.

Brito, A.C., Quental, T., Coutinho, T.P., Branco, M.A.C., Falcão, M., Newton, A., Icely, J., Moita, T. (2012b). Phytoplankton Dynamics in Southern portuguese coastal lagoons during a discontinuous period of 40 years: An overview. *Estuarine, Coastal and Shelf Science* 110: 147-156.

Cabral, H.N., Fonseca, V.F., Gamito, R., Gonçalves, C.I., Costa, J.L., Erzini, K., Gonçalves, J., Martins, J., Leite, L., Andrade, J.P., Ramos, S., Bordalo, A., Amorim, E., Neto, J.M., Marques, J.C., Rebelo, J.E., Silva, C., Almeida, P.R., Domingos, I., Gordo, L.S., Costa, M.J. (2012). Ecological quality assessment of transitional waters based on fish assemblages in Portuguese estuaries: The Estuarine Fish Assessment Index (EFAI). *Ecological Indicators*: 144-153.

Caçador I., Lopes C.L., Cardoso I., Pacheco D., Pinto M.V., Silva J., Neto J.M. (2020). MESCLA – "Melhorar e Complementar os Critérios de Classificação do Estado das Massas de Água de Transição e Costeiras" (Projeto POSEUR-03-2013-FC-000001). Relatório Final – Vol. VII – Vegetação de Sapais. APA/MONIPOR, 50p.

Caçador, I., Neto, J.M., Duarte, B., Barroso, D.V., Pinto, M., Marques, J.C. (2013). Development of an Angiosperm Quality Assessment Index (AQuA-Index) for ecological quality evaluation of Portuguese water bodies – a multi metric approach. *Ecological Indicators*, 25: 141-148.

Catalan J., Ventura M., Munné, A. e Godé, L. 2003. Desenvolupament d'un índex integral de qualitat ecológica regionalització ambiental dels sistemes lacustres de Catalunya. Agència Catalana del Agua, 177 pp.

CIS WFD (2019). Guidance Document n.º 37. Steps for defining and assessing ecological potential for improving comparability of Heavily Modified Water Bodies. Common Implementation Strategy for the Water framework Directive. 134p.

Coutinho, M.T.P., Brito, A.C., Pereira, P., Gonçalves, A.S., Moita, M.T. (2012). A phytoplankton tool for water quality assessment in semi-enclosed coastal lagoons: Open vs closed regimes. *Estuarine, Coastal and Shelf Science* 110: 134-146

European Communities (2003a). Monitoring under the Water Framework Directive. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Working Group 2.7 – Monitoring Guidance Document n.º 7. 155 pp.

European Communities (2003b). River and lakes – Typology, reference conditions and classification system, REFCOND. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document n.º 10. 87 pp.

European Communities (2003c). Transitional and Coastal Types – Typology, Reference Conditions and Classification Systems. Common Implementation Strategy for the Water Framework Directive Guidance Document n.º 5. 116p

European Communities (2005). Overall Approach to the Classification of Ecological Status and Ecological Potential. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Working Group 2A ECOSTAT. Guidance Document N.º 13. 47 pp.

European Communities (2009). Guidance on Groundwater Status and Trend Assessment. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document n.º 18.82 pp.

European Union (2014). Guidance document no. 32 on biota monitoring (the implementation of eqsbiota) under the water framework directive. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). 87p

European Union (2015). Procedure to fit new or updated classification methods to the results of a completed intercalibration exercise. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document n.º30. 33 pp.

Feio, M.J., Aguiar, F.C., Almeida, S.F.P., Ferreira, J., Ferreira, M.T., Elias, C., Serra, S.R.S., Buffagni, A., Cambra, J., Chauvin, C., Delmas, F., Dörflinger, G., Erba, S., Flor, N., Ferréol, M., Germ, M., Mancini, L., Manolaki, P., Marcheggiani, S., Minciardi, M.R., Munné, A., Papastergiadou, E., Prat, N., Puccinelli, C., Rosebery, J., Sabater, S., Ciadamidaro, S., Tornes, E., Tziortzis, I., Urbanic, G., Vieira, C., (2014). Least disturbed condition for European Mediterranean rivers. Science of Total Environment, 476–477, pp. 745-756

Fonseca V., Gonçalves J.M.S., Costa J.L., Cabral H., Domingos I., Escribano P., Henriques S., Monteiro P., Oliveira F., Pais M., Reis-Santos P., Neto J.M. (2020). MESCLA – "Melhorar e Complementar os Critérios de Classificação do Estado das Massas de Água de Transição e Costeiras" (Projeto POSEUR-03-2013-FC-000001). Relatório Final – Vol. IX – Ictiofauna. APA/MONIPOR, 70p.

Franco, A., Elliott, M., Franzoi, P. Torricelli, P. (2008). Life strategies of fishes in European estuaries: the functional guild approach. *Marine Ecology Progress Series* 354:219–228.

Froese, R., Pauly, D. Editors. (2019). FishBase. World Wide Web electronic publication. www.fishbase.org, (12/2019)

Gaspar R., Pereira L., Silva J., Melo R., Mendes R.N., Tavares A.M., Neto J.M. (2020). MESCLA – "Melhorar e Complementar os Critérios de Classificação do Estado das Massas de Água de Transição e Costeiras" (Projeto POSEUR-03-2013-FC-000001). Relatório Final – Vol. V – Macroalgas Marinhas Substrato Rochoso. APA/MONIPOR, 56p.

INAG, I.P. (2008). Tipologia de rios em Portugal Continental no âmbito da implementação da DirectivaQuadro da Água. I Caracterização abiótica. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P.

INAG, I.P. (2010). Tipologia de Massas de Água Fortemente Modificadas Albufeiras de Portugal Continental. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P.

ISEP (2017). Desenvolvimento de métodos específicos para a avaliação da recarga das massas de águas subterrâneas, para melhorar a avaliação do estdo quantitativo. Porto, 591 pp

IST (2017). Avaliação de análise de tendências para o aumento da concentração de poluentes nas massas de água subterrânea e do inverso da tendência para os poluentes responsáveis pelo estado medíocre das massas de água. Lisboa, 291 pp

Leunda, P.M., Elvira, B., Ribeiro, F., Miranda, R., Oscoz, J., Alves, M.J., Collares-Pereira, M.J. (2009). *International Standardization of Common Names for Iberian Endemic Freshwater Fishes*. Volume 28(2):189-202.

Neto J.M., Gamito S., Silva G., Afonso C., Afonso I., Cardoso I., Costa J.L., Fernandes J., Fernandéz L.D., Mateus M., Medeiros J.P., Ramos D., Sousa A.P., Chaínho P. (2020c). MESCLA – "Melhorar e Complementar os Critérios de Classificação do Estado das Massas de Água de Transição e Costeiras" (Projeto POSEUR-03-2013-FC-000001). Relatório Final – Vol. VIII – Macroinvertebrados Bentónicos. APA/MONIPOR, 101p.

Neto J.M., Gaspar R., Pereira L., Marques J.C. (2012). Marine Macroalgae Assessment Tool (MarMAT) for intertidal rocky shores. Quality assessment under the scope of the European Water Framework Directive. *Ecological Indicators* 19: 39-47.

Neto J.M., Melo R., Mace R., Martins M., Mendes R.N., Pacheco D., Parreira F., Santos R., Silva J. (2020a). MESCLA – "Melhorar e Complementar os Critérios de Classificação do estado das Massas de Água de Transição e Costeiras" (Projeto POSEUR-03-2013-FC-000001). Relatório Final – Vol. IV – Macroalgas Oportunistas. APA/MONIPOR, 43p.

Neto J.M., Melo R., Mace R., Martins M., Mendes R.N., Pacheco D., Parreira F., Santos R., Silva J. (2020b). MESCLA – "Melhorar e Complementar os Critérios de Classificação do Estado das Massas de Água de Transição e Costeiras" (Projeto POSEUR-03-2013-FC-000001). Relatório Final – Vol. VI – Prados Marinhos. APA/MONIPOR, 43p.

Neto, J.M, Barroso, D.V., Barria P. (2013). Seagrass Quality Index (SQI), a Water Framework Directive compliant tool for the assessment of transitional and coastal intermareal areas. *Ecological Indicators* 30, 130-137.

Orfanidis S., Panayotidis P., Ugland K.I. (2011). Ecological Evaluation Index continuous formula (EEI-c) application: a step forward for functional groups, the formula and reference condition values. *Mediterranean Marine Science* 12 (1): 199–231.

Patrício, J., Neto, J.M., Teixeira, H., Marques, J.C. (2007). Opportunistic macroalgae metrics for transitional waters. Testing tools to assess ecological quality status in Portugal. *Marine Pollution Bulletin* 54: 1887-1896.

Phillips, G., Birk, S., Bohmer, J., Kelly, M., Willby, N., Poikane, S. (2018). The use of pressure-response relationships between nutrients and biological quality elements as a method for establishing nutrient supporting element boundary values for the Water Framework Directive. EUR 29499 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-98199-9. Doi:10.2760/226649, JRC114381.

Raven, P.J., Fox, P.J.A., Everard, M., Holmes, N.T.H. e Dawson, F.H. (1997). River Habitat Survey: a new system for classifying rivers according to their habitat quality, in Boon, P.J and Howell, D.L. (Eds), Freshwater Quality: Defining the indefinable? The Stationery Office, Edinburgh, 215-234.

Scanlan, C. M., Foden, J., Wells, E. and Best, M. A. (2007). The monitoring of opportunistic macroalgal blooms for the water framework directive. *Marine Pollution Bulletin* 55(1–6): 162-171.

Teixeira, H., Neto, J.M., Patrício, J., Veríssimo, H., Pinto, R., Salas, F., Marques, J.C. (2009). Quality assessment of benthic macroinvertebrates under the scope of WFD using BAT, the Benthic Assessment Tool. *Marine Pollution Bulletin* 58 (10), 1477-1486.

UK TAG (2005). UK Technical advisory group on the Water Framework Directive. Guidance on the Selection of Monitoring Sites and Building Monitoring Networks for Surface Waters and Groundwater.

UK TAG (2007). UK Technical advisory group on the Water Framework Directive. Recommendations on Surface Water Classification Schemes for the purposes of the Water Framework Directive.

Vale, C., Raimundo, J., Caetano, M. (2014). Estabelecimento de sistemas de classificação no âmbito da Diretiva-Quadro da Água (DQA), Limites, Avaliação do Estado Químico e Pressões da Atividade Humana. Relatório de Projeto do Projeto EEMA, 40pp.

Vale, C., Raimundo, J., Caetano, M. (2015). Estabelecimento de sistemas de classificação no âmbito da Diretiva-Quadro da Água (DQA), Limites e Avaliação do Estado Químico nas Lagoas Costeiras. Relatório de Projeto do Projeto EEMA, 15pp.

Venice System (1958). Symposium on the classification of brackish waters, Venice April 8–14, 1958. *Archives Oceanography and Limnology* 11, suppl, 1–248.

WFD CIS (2019). Steps for defining and assessing ecological potential for improving comparability of Heavily Modified Water Bodies. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document n.º 37. 147p



# Anexo I - Tipologias das massas de água superficiais

### Rios

Na definição da tipologia para rios para Portugal Continental foi aplicado o Sistema B, sendo este uma das abordagens preconizadas no Anexo II da DQA para caracterização de massas de água de superfície. Neste contexto, análise realizada integrou variáveis consideradas como fatores obrigatórios (altitude, dimensão da área de drenagem, latitude, longitude e geologia), bem como algumas variáveis consideradas como fatores facultativos (declive médio do escoamento, precipitação média anual, coeficiente de variação da precipitação, escoamento, temperatura média anual e amplitude térmica média anual) (INAG, 2008).

O processo de estabelecimento de uma tipologia de massas de água da categoria rios seguiu então os seguintes passos: (i) seleção dos fatores facultativos, (ii) análise estatística multivariada (ordenação e classificação) das variáveis quantitativas climáticas e morfológicas para a identificação de regiões morfoclimáticas, (iii) interceção do resultado obtido com a geologia e dimensão da área de drenagem, (iv) confronto, para efeitos de validação, da tipologia abiótica resultante com informação biológica das comunidades de invertebrados bentónicos, diatomáceas (fitobentos), macrófitos e peixes, obtida em campanhas de amostragem efetuadas em locais de referência (INAG, 2008).

Desta forma, em Portugal Continental foram definidos 15 tipos de rios:

- Rios Montanhosos do Norte (M)
- Rios do Norte de Pequena Dimensão (N1≤100 km²)
- Rios do Norte de Média-Grande Dimensão (N1>100 km²)
- Rios do Alto Douro de Média-Grande Dimensão (N2)
- Rios do Alto Douro de Pequena Dimensão (N3)
- Rios de Transição Norte-Sul (N4)
- Rios do Litoral Centro (L)
- Rios do Sul de Pequena Dimensão (S1≤100 km²)
- Rios do Sul de Média-Grande Dimensão (S1>100 km²)
- Rios Montanhosos do Sul (S2)
- Depósitos Sedimentares do Tejo e Sado (S3)
- Calcários do Algarve (S4)
- Rios Grandes do Norte Rios Minho e Douro (GR Norte)
- Rios Grandes do Centro Rio Tejo (GR Centro)
- Rios Grandes do Sul Rio Guadiana (GR Sul)

A Figura I.1 apresenta a distribuição dos vários tipos de rios definidos para Portugal Continental, excluindo os Grandes Rios.

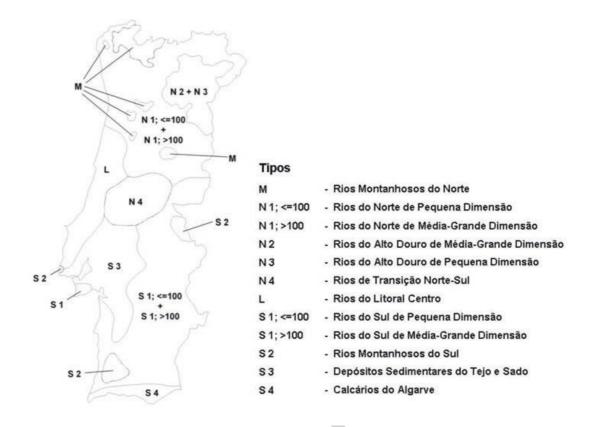



Figura I.1 - Tipos de Rios definidos para Portugal Continental, excluindo Grandes Rios. (Fonte: INAG, 2008).

As características específicas de cada tipo de rio de Portugal Continental podem ser consultadas em INAG, 2008.

### **Albufeiras**

No âmbito da implementação da DQA foi estabelecida uma tipologia para as Massas de Água Fortemente Modificadas – Albufeiras assentes nos descritores tempos de residência, área da bacia drenante e regime de exploração, e também nas disparidades evidentes na Península Ibérica em relação à geologia, clima e composição iónica da água (INAG, 2010).

Desta forma, as albufeiras foram classificadas em três tipos abióticos: as Albufeiras do Norte (hidroelétricas de águas frias), as Albufeiras do Sul (irrigação/abastecimento de águas quentes) e Albufeiras de Curso Principal.

Na Figura I.2 apresenta-se a distribuição dos três tipos de Massas de Água Fortemente Modificadas — Albufeiras existentes em Portugal Continental, bem como um resumo das principais características que as distinguem. Mais detalhes relativamente às características específicas de cada tipo de albufeira podem ser consultados em INAG, 2010.

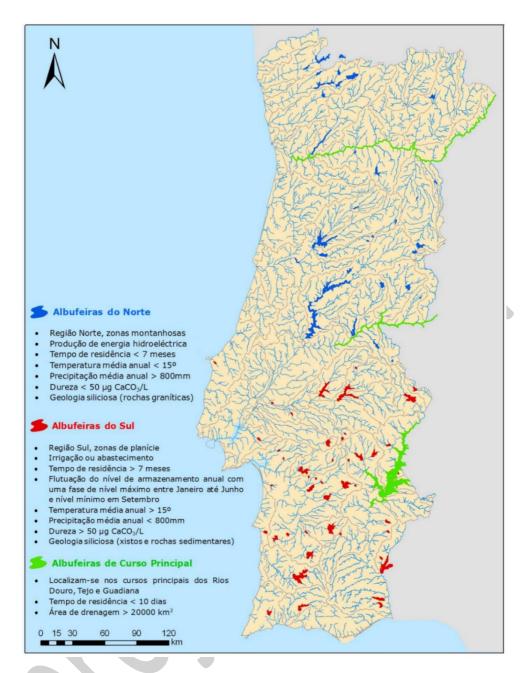



Figura I.2 Tipos de Massas de Água Fortemente Modificadas – Albufeiras definidos para Portugal Continental

# Águas de Transição

A definição da tipologia nacional de águas de transição foi feita no âmbito do projeto TICOR (2003) — Typology and Reference Conditions for Portuguese Transitional and Coastal Waters (Bettencourt *et al.*, 2004). A definição desta tipologia baseou-se no Sistema B do Anexo II da DQA, por se adequar mais à definição dos tipos nacionais. Para efeitos metodológicos de identificação tipológica foram apenas considerados os sistemas de águas de transição mais relevantes, com mais de 1 km2, de acordo com o documento guia (European Communities, 2003c). Deste processo resultaram dois tipos de águas de Transição:

- Estuário mesotidal estratificado A1
- Estuário mesotidal homogéneo com descargas irregulares de rio A2

O tipo A1 (Estuário mesotidal estratificado) encontra-se na zona norte de Portugal Continental, onde o regime pluviométrico é uniformemente distribuído ao longo dos meses de inverno. O tipo A2

(Estuário mesotidal homogéneo com descargas irregulares de rio) encontra-se na região centro e sul do país, onde ocorrem ocasionalmente episódios intensos de precipitação nos meses de inverno.

Por se considerar que estes agrupamentos não eram suficientes para traduzir a variabilidade de águas de transição existentes em Portugal Continental, foi feita uma reavaliação com vista à reclassificação nacional destes sistemas e agrupamento em sub-tipologias. Foi inicialmente considerada uma lista de parâmetros ambientais capazes de caracterizar estes sistemas em termos de condições hidrogeomorfológicas (Tabela 1). Através de tratamento estatístico dos dados, estes parâmetros foram usados para obter uma ordenação espacial dos estuários, e desta forma, agrupá-los com base na semelhança entre as suas características.

Assim, os estuários do tipo A1 ficaram divididos nas sub-tipologias A1.1 Norte-Estreitos (Minho, Lima, Cávado, Ave, Douro, Mondego e Lis) e A1.2 Norte-Largos (Ria de Aveiro) e os estuários do tipo A2 ficaram divididos nas sub-tipologias A2.1 Sul-Estreitos (Mira, Guadiana) e A2.2 Sul-Largos (Tejo e Sado).

Do ponto de vista das comunidades biológicas, as dimensões do sistema podem ditar diferenças ao nível da riqueza e diversidade, pelo que a sua separação em tipologias diferentes, potencialmente permitirá um melhor ajuste no momento de definir as condições de referência específicas a cada uma.

Quadro I.1 – Parâmetros hidro-geomorfológicos utilizados na caracterização de sistemas de águas de transição portuguesas.

| Parâmetros hidro-geomorfológicos                | Justificação                                       |  |  |
|-------------------------------------------------|----------------------------------------------------|--|--|
| Estratificação                                  | Distribuição dos parâmetros na coluna de água      |  |  |
| Forma do Canal                                  | Velocidade e características da descarga           |  |  |
|                                                 | Tempo de fluxo/ prisma de maré/ zonas de maior     |  |  |
| Dimensão (área total, km²)                      | ou menor confinamento/ disponibilidade de          |  |  |
|                                                 | habitats                                           |  |  |
| Área intertidal (%)                             | Características e distribuição especial das        |  |  |
| Area intertiual (%)                             | comunidades biológicas                             |  |  |
| QMOD (m³/s)                                     | Tempo de fluxo/ velocidade das correntes           |  |  |
| QMOD (m³/s)/ Área bacia hidrográfica (x10³ km²) | Características climáticas/ regime de pluviosidade |  |  |
| Média das Temperaturas Médias Diárias           | Características climáticas/ sazonalidade           |  |  |
| Rácio Amplitude Temperatura/ Temperatura Média  | a Características climáticas/ latitude             |  |  |

# **Águas Costeiras**

A metodologia utilizada para a definição de tipologias de águas costeiras foi semelhante à descrita para as águas de transição (Bettencourt *et al.*, 2004), ou seja, a classificação das águas costeiras foi estabelecida usando o Sistema B proposto no âmbito da DQA, de acordo com as recomendações do Guia para Tipologia em Águas Costeiras e de Transição da EU (European Communities, 2003c), considerado o mais adequado à definição das tipologias nacionais. Relativamente às lagoas costeiras, para efeitos metodológicos de identificação tipológica apenas foram consideradas massas de água com dimensão superior a 1 km².

As águas costeiras portuguesas ficaram assim agrupadas de acordo com cinco tipos, dois relativos a lagoas costeiras e três de costa aberta:

- Lagoas Costeiras Semi-fechadas (A3) aquelas que não estão em permanente contacto com a massa de água costeira adjacente: Barrinha de Esmoriz, Lagoa de Óbidos, Lagoa de Albufeira e Lagoa de Santo André;
- Lagoas Costeiras Abertas (A4) aquelas que estão em permanente ligação com a massa de água costeira adjacente: Ria Formosa, Ria do Alvor;
- Costa Atlântica Mesotidal Exposta (A5) desde o Minho ao Cabo Carvoeiro;

- Costa Atlântica Mesotidal Moderadamente Exposta (A6) Desde o Cabo Carvoeiro à Ponta da Piedade (Algarve);
- Costa Atlântica Abrigada (A7) Costa Sul, desde a Ponta da Piedade ao Guadiana.



# Anexo II - Anexos referentes às macroalgas de substrato rochoso

O Quadro II.1 apresenta a Lista Reduzida de *Taxa* (RTL; Reduced *Taxa* List) para as tipologias nacionais de massas de águas costeiras (A5, A6 e A7) utilizada na classificação das macroalgas de substrato rochoso. É ainda apresentada a classificação dos *taxa* quanto ao Grupo de Estado Ecológico (ESG; Ecological Status Group), comportamento Oportunista, identificação de Espécie Exótica (EE) e comportamento potencialmente invasor (Invasora).

Quadro II.1 – Lista Reduzida de Taxa das Macroalgas de Substrato Rochoso

|                                          | RTL<br>A5 | RTL<br>A6 | RTL<br>A7 | ESG | Oportunista | EE  | Invasora |
|------------------------------------------|-----------|-----------|-----------|-----|-------------|-----|----------|
| CHLOROPHYTA                              |           |           |           |     |             |     |          |
| Bryopsidales                             | sim       | sim       | sim       | Ш   |             |     |          |
| Codium eretos                            | sim       | sim       | sim       | Ш   |             |     |          |
| Codium prostrados                        |           | sim       | sim       | ı   |             |     |          |
| Verdes filamentosas                      | sim       | sim       | sim       | П   | sim         |     |          |
| Ulvales                                  | sim       | sim       | sim       | II  | sim         |     |          |
| Valonia spp.                             |           | sim       | sim       | Ш   |             |     |          |
| OCHROPHYTA                               |           |           |           |     |             |     |          |
| Ascophyllum nodosum                      | sim       |           |           | I   |             |     |          |
| Bifurcaria bifurcata                     | sim       | sim       | sim       | I   |             |     |          |
| Castanhas filamentosas, Ectocarpales     | sim       | sim       | sim       | Ш   | sim         |     |          |
| Castanhas prostradas                     | sim       | sim       | sim       | П   |             |     |          |
| Castanhas com talos tubulares            | sim       | sim       | sim       | Ш   |             |     |          |
| Cladostephus spongiosus                  | sim       | sim       | sim       | П   |             |     |          |
| Colpomenia peregrina                     | sim       | sim       | sim       | П   |             | sim | sim      |
| Colpomenia sinuosa                       |           | sim       | Sim       | Ш   |             |     |          |
| Cystoseira/Carpodesmia/Treptacantha spp. | sim       | sim       | sim       | I   |             |     |          |
| Desmarestia spp.                         | sim       | sim       | sim       | I   |             |     |          |
| Dictyopteris polypodioides               | sim       | sim       | sim       | I   |             |     |          |
| Dictyota dichotoma                       | sim       | sim       | sim       | П   |             |     |          |
| Fucus spp.                               | sim       | sim       | sim       | I   |             |     |          |
| Halopteris spp.                          | sim       | sim       | sim       | П   |             |     |          |
| Himanthalia elongata                     | sim       |           |           | 1   |             |     |          |
| Laminaria spp.                           | sim       | sim       |           | I   |             |     |          |
| Padina pavonica                          | sim       | sim       | sim       | 1   |             |     |          |
| Pelvetia caniculata                      | sim       |           |           | I   |             |     |          |
| Phyllariopsis spp.                       |           | sim       | sim       | I   |             |     |          |
| Ralfsia verrucosa                        | sim       | sim       | sim       | I   |             |     |          |
| Saccorhiza polyschides                   | sim       | sim       | sim       | П   |             |     |          |
| Sargassum muticum                        | sim       | sim       | sim       | I   |             | sim | sim      |
| Sargassum spp.                           |           | sim       | sim       | I   |             |     |          |
| Sphacelaria spp.                         | sim       | sim       | sim       | П   |             |     |          |

|                                                           | RTL   | RTL   | RTL   | ESG      | Oportunista | EE  | Invasora  |
|-----------------------------------------------------------|-------|-------|-------|----------|-------------|-----|-----------|
|                                                           | A5    | A6    | A7    | LJU      | Oportumsta  |     | IIIVasora |
| Taoniaa tomaria                                           | sim   | sim   | sim   | I        |             |     |           |
| Undaria pinnatifida                                       | sim   |       |       | I        |             | sim | sim       |
| RHODOPHYTA                                                |       |       |       |          |             |     |           |
| Ahnfeltia plicata                                         | sim   | sim   |       | I        |             |     |           |
| Anhfeltiopsis devoniensis                                 | sim   | sim   | sim   | II       |             |     |           |
| Asparagopsis armata (incluindo fase Falkenbergia          | sim   | sim   | sim   | l II     | sim         | sim | sim       |
| rufolanosa)<br>Calcarias eretas                           | sim   | sim   | sim   |          |             |     |           |
| Calcarias eretas  Calcarias crostosas                     | sim   | sim   | sim   | '<br>    |             |     |           |
| Calliblepharis spp.                                       | sim   | sim   | sim   | <u> </u> |             |     |           |
| Callophyllis laciniata                                    | sim   | sim   | sim   | <u>'</u> |             |     |           |
| Catenella caespitosa                                      | sim   | sim   | sim   | ll ll    |             |     |           |
| Caulacanth usustulatus                                    | sim   | sim   | sim   | "        |             |     |           |
| Ceramiales                                                | sim   | sim   | sim   | 11       |             |     |           |
| Champiaceae                                               | sim   | sim   | sim   | II       |             |     |           |
| Chondracanthus spp.                                       | sim   | sim   | sim   | Ш        |             |     |           |
| Chondrus crispus                                          | sim   | 51111 | 31111 | 1        |             |     |           |
| Cordylecladia erecta                                      | sim   |       |       | 1        |             |     |           |
| Cryptonemia spp.                                          | 31111 | sim   | sim   | Н        |             |     |           |
| Cryptonemia palmetta                                      | sim   | 31111 | 31111 | П        |             |     |           |
| Dasyaceae Dasyaceae                                       | sim   | sim   | sim   | II       |             |     |           |
| Delesseriaceae                                            | sim   | sim   | sim   | 11       |             |     |           |
| Dilsea carnosa                                            | sim   | 31111 | 31111 | 1        |             |     |           |
| Dumontia contorta                                         | sim   |       |       | 11       |             |     |           |
| Gelidiales                                                | sim   | sim   | sim   | "        |             |     |           |
| Gigartina pistillata                                      | sim   | sim   | sim   | <u> </u> |             |     |           |
| Gracilaria spp.                                           | sim   | sim   | sim   | - ''<br> |             |     |           |
| Grateloupia spp.                                          | sim   | sim   | sim   | ı<br>II  |             | sim | sim       |
| Grateloupia turuturu                                      | sim   | sim   | 3     | 11       |             | sim | sim       |
| Gymnogongrus spp.                                         | sim   | sim   | sim   | II.      |             | 3   | 31111     |
| Halopithys incurva                                        | Jiiii | sim   | sim   | 11       |             |     |           |
| Heterosiphonia plumosa                                    | sim   | sim   | sim   | II.      |             |     |           |
| Hildenbrandia spp.                                        | sim   | sim   | sim   | II.      |             |     |           |
| Hypnea musciformis                                        | sim   | sim   | sim   | II.      |             |     |           |
| Laurencia spp., Osmundea spp., Chondria spp.              | sim   | sim   | sim   | II       |             |     |           |
| Liagora spp.                                              | 5     | sim   | sim   | 1        |             |     |           |
| Lomentaria articulata                                     | sim   | sim   | sim   | II       |             |     |           |
| Mastocarpus stellatus (Incluindo fase Petrocelis cruenta) | sim   | sim   | sim   | 1        |             |     |           |
| Nemaliales                                                | sim   | sim   | sim   | II       |             |     |           |
| Outras Rhodomelaceae                                      | sim   | sim   | sim   | II       |             |     |           |
| Palmaria palmata                                          | sim   | sim   |       | I        |             |     |           |
| Peyssonelia spp.                                          | sim   | sim   | sim   | 1        |             |     |           |
| Phyllophora spp.                                          | sim   | sim   | sim   | i        |             |     |           |
| Plocamium cartilagineum                                   | sim   | sim   | sim   | ı        |             |     |           |
| Porphyra spp.                                             | sim   | sim   | sim   | II       | sim         |     |           |
| Pyropia leucosticta                                       | sim   | sim   | sim   | II       |             | sim | sim       |
| Rhodophyllis divaricata                                   | sim   | sim   | sim   | II       |             |     |           |
| Rhodymenia spp.                                           | sim   | sim   | sim   | II       |             |     |           |
| Rytiphlaea tinctoria                                      |       |       | sim   | П        |             |     |           |
| Schizymenia dubyi                                         | sim   | sim   |       | I        |             |     |           |
| Sphaerococcus coronopifolius                              | sim   | sim   | sim   | 1        |             |     |           |
| Stenogramma interruptum                                   | sim   | sim   |       | П        |             |     |           |
|                                                           |       |       | 1     |          | 1           |     |           |

# Quadro II.2 – Ficha de campo para o cálculo da Métrica 7 - Descrição do local de amostragem

# INFORMAÇÃO GERAL

| INFORMAÇÃO GERAL                                                    |                                                      |                 |                                                                                                                |                                    |  |  |  |  |
|---------------------------------------------------------------------|------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|
| Local                                                               | Bua                                                  | arcos           | Data 2                                                                                                         | 2019 08 29                         |  |  |  |  |
| Altura da baixa-mar (m)                                             | (                                                    | 0.6             | Latitude/Longitude do ponto de acesso ao local 40.166                                                          | 40.166180°/ -8.881549°             |  |  |  |  |
| Hora da baixa-mar<br>(hh:mm)                                        | 08                                                   | 3:39            | Latitude/Longitude do local de amostragem<br>(início do horizonte superior do patamar<br>médiolitoral) 40.1659 | 947°/ -8.884056°                   |  |  |  |  |
|                                                                     |                                                      |                 | DESCRIÇÕES DA COSTA                                                                                            |                                    |  |  |  |  |
| Presença de Turbidez<br>(conhecida como sendo<br>não antropogénica) | Sim = 0<br>Não = 2                                   | pontuação:<br>0 | por areia de cré                                                                                               | im = 0 pontuação<br>ão = 2 2       |  |  |  |  |
| 4) Tipo de Costa Dominar<br>opçã                                    |                                                      | onar só uma     | 5) Sub-habitats (Seleccionar uma ou mais opções e maro<br>[1]; Seeleccionar a pontuação mais alta das opçõe    | car cada opção con<br>es marcadas) |  |  |  |  |
| Cumes rochosos/<br>afloramentos/plataformas<br>Rocha irregular      | Sim = 4<br>Sim = 3                                   | pontuação:      | Bacias rochosas largas e pouco profundas (>3 m de largura e <50 cm de profundidade)                            | pontuação                          |  |  |  |  |
| Pedregulhos grandes,<br>médios e pequenos                           | Sim = 3                                              |                 | comprimento)  Bacias rochosas profundas (50% >100 cm de                                                        | im = 4                             |  |  |  |  |
| Rocha íngreme/vertical<br>Substrato duro não<br>específico          | Sim = 2<br>Sim = 2                                   | 4               | profundidade)                                                                                                  | im = 4<br>im = 3                   |  |  |  |  |
| Seixos/pedras/rochas<br>pequenas                                    | Sim = 1                                              |                 | Fendas grandes S                                                                                               | im = 3 4                           |  |  |  |  |
| Cascalho                                                            | Sim = 0                                              |                 | Grandes saliências e rocha vertical S                                                                          | im = 2                             |  |  |  |  |
|                                                                     |                                                      |                 | Outros habitats (especificar)                                                                                  | im = 2                             |  |  |  |  |
| Biota Dor                                                           | minante                                              |                 | Cavernas S                                                                                                     | im = 1                             |  |  |  |  |
| Ascophyllum                                                         |                                                      |                 | Nenhum S                                                                                                       | im = 0                             |  |  |  |  |
| Fucoides                                                            |                                                      |                 |                                                                                                                |                                    |  |  |  |  |
| Rhodophyta                                                          |                                                      |                 | 0 S                                                                                                            | im = 0 pontuação                   |  |  |  |  |
| Chlorophyta                                                         |                                                      |                 | 1 S                                                                                                            | im = 1                             |  |  |  |  |
| Mexilhões                                                           |                                                      | sim             |                                                                                                                | im = 2                             |  |  |  |  |
| Cracas                                                              |                                                      |                 | número de opções seleccionadas<br>anteriomente) 3 S                                                            | im = 3 3                           |  |  |  |  |
| Lapas                                                               |                                                      | sim             | 4 S                                                                                                            | im = 4                             |  |  |  |  |
| Gastrópodes                                                         |                                                      |                 | >4 S                                                                                                           | im = 4                             |  |  |  |  |
|                                                                     |                                                      |                 |                                                                                                                |                                    |  |  |  |  |
| COMENTÁRIOS                                                         |                                                      |                 | RESUMO                                                                                                         | Pontuação                          |  |  |  |  |
|                                                                     |                                                      |                 | 1) Presença de Turbidez                                                                                        | 0                                  |  |  |  |  |
|                                                                     |                                                      |                 | 2) Abrasão por areia                                                                                           | 0                                  |  |  |  |  |
| 3) Costa de cré                                                     |                                                      |                 |                                                                                                                | 2                                  |  |  |  |  |
| вапоеіга (Sabel                                                     | a (Sabellaria alveolata)  4) Tipo de Costa Dominante |                 |                                                                                                                |                                    |  |  |  |  |
|                                                                     |                                                      |                 | 5) Sub-habitats                                                                                                |                                    |  |  |  |  |
|                                                                     |                                                      |                 | 6) Número total de sub-habitats                                                                                |                                    |  |  |  |  |
|                                                                     |                                                      |                 | Somatório de pontuações =<br>Valor final da métrica Descrição da costa                                         | 13                                 |  |  |  |  |

# Anexo III – Anexos referentes aos macroinvertebrados bentónicos

Apresentam-se de seguida a informação acessória necessária ao cálculo do índice BAT (macroinvertebrados bentónicos).

O Quadro III.1 apresenta a correspondência entre as massas de água de transição e costeiras e os subtipos de massas de água desenvolvidos para os macroinvertebrados bentónicos.

Quadro III.1 - Subtipos de massas de água

| RH     | Código MA   | Nome MA              | Categoria | Tipo | Subtipo                           |
|--------|-------------|----------------------|-----------|------|-----------------------------------|
| PTRH1  | PT01LIM0059 | Lima-WB1             | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH1  | PT01LIM0057 | Lima-WB2             | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH1  | PT01LIM0056 | Lima-WB3             | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH1  | PT01MIN0023 | Minho-WB1            | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH1  | PT01MIN0018 | Minho-WB2            | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH1  | PT01MIN0019 | Minho-WB5            | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH1  | PT01NOR0724 | Neiva                | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH1  | PTCOST1N    | CWB-I-1A             | CW        | A5   | A5                                |
| PTRH1  | PTCOST20    | Internacional-Minho  | CW        | A5   | A5                                |
| PTRH2  | PT02AVE0135 | Ave-WB1              | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH2  | PT02AVE0129 | Ave-WB2              | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH2  | PT02AVE0124 | Ave-WB3              | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH2  | PT02CAV0096 | Cavado-WB1           | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH2  | PT02CAV0102 | Cavado-WB2           | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH2  | PT02LEC0139 | Leca                 | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH2  | PTCOST2     | CWB-I-1B             | CW        | A5   | A5                                |
| PTRH3  | PT03D0U0366 | Douro-WB1            | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH3  | PT03DOU0364 | Douro-WB2            | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH3  | PT03DOU0370 | Douro-WB3            | TW        | A1   | A1.1 Norte Estreitos              |
| PTRH3  | PT03NOR0732 | Barrinha de Esmoriz  | CW        | A3   | A3.1 Abertura intermitente ao mar |
| PTRH3  | PTCOST3     | CWB-II-1A            | CW        | A5   | A5                                |
| PTRH4A | PT04LIS0704 | Lis                  | TW        | A2   | A1.1 Norte Estreitos              |
| PTRH4A | PT04MON0681 | Mondego-WB1          | TW        | A2   | A1.1 Norte Estreitos              |
| PTRH4A | PT04MON0685 | Mondego-WB1-<br>HMWB | TW        | A2   | A1.1 Norte Estreitos              |
| PTRH4A | PT04MON0682 | Mondego-WB2          | TW        | A2   | A1.1 Norte Estreitos              |
| PTRH4A | PT04MON0688 | Mondego-WB3          | TW        | A2   | A1.1 Norte Estreitos              |
| PTRH4A | PT04VOU0552 | Ria Aveiro-WB1       | TW        | A2   | A1.2 Norte Largos                 |
| PTRH4A | PT04VOU0547 | Ria Aveiro-WB2       | TW        | A2   | A1.2 Norte Largos                 |
| PTRH4A | PT04VOU0550 | Ria Aveiro-WB3       | TW        | A2   | A1.2 Norte Largos                 |

| RH     | Código MA    | Nome MA           | Categoria | Tipo | Subtipo                           |
|--------|--------------|-------------------|-----------|------|-----------------------------------|
| PTRH4A | PT04VOU0536  | Ria Aveiro-WB4    | TW        | A2   | A1.2 Norte Largos                 |
| PTRH4A | PT04VOU0514  | Ria Aveiro-WB5    | TW        | A2   | A1.2 Norte Largos                 |
| PTRH4A | PTCOST5      | CWB-I-2           | CW        | A5   | A5                                |
| PTRH4A | PTCOST7      | CWB-I-3           | CW        | A5   | A5                                |
| PTRH4A | PTCOST4      | CWB-II-1B         | CW        | A5   | A5                                |
| PTRH4A | PTCOST6      | CWB-II-2          | CW        | A5   | A5                                |
| PTRH4A | PTCOST89A    | CWB-II-3A         | CW        | A5   | A5                                |
| PTRH5A | PT05TEJ1139A | Tejo-WB1          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH5A | PT05TEJ1116A | Tejo-WB2          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH5A | PT05TEJ1100A | Tejo-WB3          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH5A | PT05TEJ1075A | Tejo-WB4          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH5A | PTCOST11A    | CWB-I-4           | CW        | A6   | A6                                |
| PTRH5A | PTCOST89B    | CWB-II-3B         | CW        | A5   | A5                                |
| PTRH5A | PTCOST10A    | CWB-II-4          | CW        | A6   | A6                                |
| PTRH5A | PT05SUL1635  | Lagoa Albufeira   | CW        | A3   | A3.1 Abertura                     |
| FINIDA | F10330L1033  | Lagoa Albarella   | CW        | AJ   | intermitente ao mar               |
| PTRH5A | PT05RDW1165  | Lagoa Obidos WB1  | CW        | A3   | A3.2 Aberta                       |
| PTRH5A | PT05RDW1166  | Lagoa Obidos WB2  | CW        | A3   | A3.2 Aberta                       |
| PTRH6  | PT06MIR1368  | Mira-WB1          | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH6  | PT06MIR1367  | Mira-WB2          | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH6  | PT06MIR1374  | Mira-WB3          | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH6  | PT06SAD1211  | Sado-WB1          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH6  | PT06SAD1210  | Sado-WB2          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH6  | PT06SAD1207  | Sado-WB3          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH6  | PT06SAD1222  | Sado-WB4          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH6  | PT06SAD1219  | Sado-WB5          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH6  | PT06SAD1217  | Sado-WB6          | TW        | A2   | A2.2 Sul Largos                   |
| PTRH6  | PTCOST12     | CWB-I-5           | CW        | A6   | A6                                |
| PTRH6  | PTCOST13     | CWB-II-5A         | CW        | A6   | A6                                |
| PTRH6  | PT06SUL1638  | Lagoa Santo Andre | CW        | A3   | A3.1 Abertura intermitente ao mar |
| PTRH7  | PT07GUA1632I | Guadiana-WB1      | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH7  | PT07GUA1629I | Guadiana-WB2      | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH7  | PT07GUA1603N | Guadiana-WB3      | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH7  | PT07GUA1603I | Guadiana-WB3F     | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH7  | PT07GUA1631  | Guadiana-WB4      | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH7  | PTCOST18     | CWB-I-7           | CW        | A7   | A7                                |
| PTRH7  | PTCOST19     | Internacional     | CW        | A7   | A7                                |
| PTRH8  | PT08RDA1657B | Aljezur           | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH8  | PT08RDA1701  | Arade-WB1         | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH8  | PT08RDA1686  | Arade-WB2         | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH8  | PT08RDA1684  | Arade-WB2-HMWB    | TW        | A2   | A2.1 Sul Estreitos                |
| PTRH8  | PTCOST16     | CWB-I-6           | CW        | A7   | A7                                |
| PTRH8  | PTCOST14     | CWB-II-5B         | CW        | A6   | A6                                |
| PTRH8  | PTCOST15     | CWB-II-6          | CW        | A7   | A7                                |
| PTRH8  | PTCOST17     | CWB-II-7          | CW        | A7   | A7                                |
| PTRH8  | PT08RDA1700  | Ria Alvor         | CW        | A4   | A4 Aberta                         |
| PTRH8  | PTRF1        | Ria Formosa WB1   | CW        | A4   | A4 Aberta                         |
| PTRH8  | PTRF2        | Ria Formosa WB2   | CW        | A4   | A4 Aberta                         |
| PTRH8  | PTRF3        | Ria Formosa WB3   | CW        | A4   | A4 Aberta                         |
| PTRH8  | PTRF4        | Ria Formosa WB4   | CW        | A4   | A4 Aberta                         |
| PTRH8  | PTRF5        | Ria Formosa WB5   | CW        | A4   | A4 Aberta                         |

### Anexo IV –Anexos referentes à fauna piscícola

Para a avaliação do Estado Ecológico por massa de água (em vez de se considerar o estuário como um todo) o EFAI foi adaptado de acordo com diferentes classes de salinidade oligohalina (0,5 a <5), mesohalina (5 a <18) e polihalina (18 a <30), (segundo a classificação do sistema de Veneza, 1958).

Quadro IV.1 – Classificação das massas de água de acordo com as classes de salinidade

| Classe de Salinidade                                                                                                                                        | Massas de Água                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Polihalina                                                                                                                                                  | Minho-WB1; Lima-WB1; Lima-WB2; Ave-WB1; Cávado-WB1; Leça; Ria Aveiro-WB1; Ria Aveiro-WB2; Ria Aveiro-WB3; Ria Aveiro-WB4; Mondego-WB1; Mondego-WB2; Tejo-WB1; Sado-WB1; Sado-WB2; Sado-WB3; Sado-WB4; Sado-WB6; Mira-WB1; Aljezur; Arade-WB1; Guadiana-WB1; Guadiana-WB4 |  |  |  |  |  |
| Mesohalina                                                                                                                                                  | Minho-WB2; Minho-WB5; Lima-WB3; Cávado-WB2; Douro-WB1; Ria Aveiro-WB5; Mondego-WB1-HMWB; Lis; Tejo-WB2; Tejo-WB3; Mira-WB2; Arade-WB2; Guadiana-WB2                                                                                                                      |  |  |  |  |  |
| Lima-WB4; Neiva; Ave-WB2; Ave-WB3; Douro-WB2; Douro-WB3; Mondego-V<br>Oligohalina Tejo-WB4; Sado-WB5; Mira-WB3; Arade-WB2-HMWB; Guadiana-WB3; Guadi<br>WB3F |                                                                                                                                                                                                                                                                          |  |  |  |  |  |

A tabela apresenta a classificação das espécies de Peixes ocorrentes em estuários da costa portuguesa de acordo com grupos funcionais ecológicos e tróficos (adaptado de Franco et al., 2008; nomes comuns segundo Froese & Pauly 2019 e Leunda et al., 2009).

Grupos ecológicos: A – Anádromos (diadromous anadromous); C – Catádromos (diadromous catadromous); ES Residentes estuarinas (estuarine residents); FW Espécies dulçaquícolas (freshwater fish); MM Migrantes marinhos que usam os estuários como viveiro (marine migrants); MS Marinhas ocasionais (marine stragglers);

Grupo Funcional: BMa – Macrobentívoros (macrobenthivores); Bmi – Microbentívoros (microbenthivores); DV – Detritívoros (detritivores); HP Hiperbentívoros/piscívoros (hyperbenthivores/piscivores); HV – Herbívoros (herbivores); HZ Hiperbentívoros/zooplanctonivoros (hyperbenthivores/zooplanktivores); OV – Omnívoros (omnivores); P – Piscívoros (piscivores); PL – Planctonívoros (planktivores).

Espécies sensíveis e/ou com estatuto de conservação: S Espécies sensíveis a perturbações (sensitive species).

Quadro IV.2 – Grupos funcionais e ecológicos para a fauna piscícola em águas de transição

| Espécies/ <i>Taxa</i> | Nome comum | Grupo<br>Ecológico | Grupo<br>Funcional | Espécies sensíveis<br>e/ou com estatuto de<br>conservação |
|-----------------------|------------|--------------------|--------------------|-----------------------------------------------------------|
| Alosa alosa           | Sável      | A                  | PL                 | S                                                         |

| Alosa follox         Savelha         A         Bmi, BMa         S           Ameiurus melas         Pebe-gato         PW         Bmi, BMa         S           Ammodytes tobianus         Galeota-menor         MS         PL           Anjuilla anguilla         Enguia         C         PL           Aphraiminuta         Caboz-transparente         ES         PL           Aphraiminuta         Caboz-transparente         ES         PL           Aphraiminuta         Casta-do-Mediteriane         MS         Bmi, Bma, HP           Arnoglossus toterna         Carta-do-Mediterrâneo         MS         Bmi, Bma, HP           Atherina boperi         Peixe-rei-do-Mediterrâneo         ES         HZ           Atherina boperi         Peixe-rei-do-Mediterrâneo         ES         HZ           Atherina presbyter         Peixe-rei         MM         Bmi, Bma, HP           Atherina presbyter         Peixe-rei         MM         Bmi, Bma, HP           Atherina presbyter         Peixe-rei         MM         Bmi, Bma, HP           Ballates capriscus         Peixe-agulha         MS         HP           Bothus podos         Carta-de-olhos-grandes         MS         HB           Buttoning podos         Carta-de-olhos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Espécies/ <i>Taxa</i>         | Nome comum                | Grupo<br>Ecológico | Grupo<br>Funcional | Espécies sensíveis<br>e/ou com estatuto de<br>conservação |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|--------------------|--------------------|-----------------------------------------------------------|
| Ammodytes tobionus Angulida ongulida Angulida ongulida Angulida ongulida C PL Aphia minuta Caboz-transparente ES PL Bmi, Bma, HP Arnoglossus imperialis Arnoglossus imperialis Carta-imperial Arnoglossus imperialis Carta-imperial Arnoglossus imperialis Arnoglossus imperialis Carta-imperial Arnoglossus imperialis Arnoglossus imperialis Carta-imperial Arnoglossus imperialis Arnoglossus imperialis Arnoglossus interia Arnoglossus interialis Arnoglossus  | Alosa fallax                  | Savelha                   | А                  | Bmi, BMa           |                                                           |
| Anguilla onguilla Enguia C PL Aphia minuta Caboc-transparente ES PL Apletodo dentatus Sugador MS Bmi, BMa BM, BMA Aryrosomus regius Corvina-legitima MS Bmi, Bma, HP Arnoglossus imperiolis Catta-imperial MS Bmi, Bma, HP Arnoglossus imperiolis Catta-imperial MS Bmi, Bma, HP Arnoglossus imperiolis Catta-imperial MS Bmi, Bma, HP Arnoglossus inderio Catta-do-Mediterrâneo MS Bmi, Bma, HP Arnoglossus inderio Catta-do-Mediterrâneo ES HZ Atherina boyeri Peixe-rei MM Bmi, Bma, HP Atherina presbyter Peixe-rei MM PL, HP Atherina sp. Peixe-rei MM PL, HP Atherina sp. Peixe-guilha MS PL, HP Bolistes capriscus Peixe-rei MM Bmi, Bma, HP Bolistes capriscus Peixe-agulha MS HP Bolos belone Peixe-agulha MS HP Boops boops Boga MS HP Bothus podos Catta-de-olhos-grandes MS HP Bothus podos Catta-de-olhos-grandes MS HP Collionymus inva Peixe-pau-ilira MS Bmi, BMa Collionymus inva Peixe-pau-ilira MS Bmi, BMa Collionymus reticularus Peixe-pau-ilira MS Bmi, BMa Collionymus reticularus Peixe-pau-ilira MS Bmi, BMa Collionymus reticularus Peixe-pau-ilirado MS Bmi, BMa Collionymus reticularus Peixe-pau-ilirado MS Bmi, BMa Collionymus reticularus Peixe-pau-ilirado MS Bmi, BMa Chelidonichthys lucerna Cabra-cabaço MS Bmi, BMa Chelidonichthys lucerna Cabra-cabaço MS Bmi, BMa Chelidonichthys lucerna Cabra-cabaço MS Bmi, Bma, HP Chelon auratus Tainha-garrento MS PL Chelon ramada Tainha-fataça C DV Chelon ramada Tainha-fataça C DV Chelon ramada Tainha-fataça C DV Chelon saliens Tainha-de-salto MS Bmi, Bma, HP Chelonichtys lucerna Capra-cabaco MS Bmi, Bma Diplodus annularis Sargo-alocaraz MM Bmi, Bma Diplodus  | Ameiurus melas                | Peixe-gato                | FW                 | Bmi, BMa           |                                                           |
| Aphto minuta Apletodon dentatus Sugador Apletodon dentatus Sugador Arroglossus imperialis Arroglossus imperialis Carta-imperial Arroglossus siterena Carta-do-Mediterrâneo Arroglossus siterena Arrogl | Ammodytes tobianus            | Galeota-menor             | MS                 | PL                 |                                                           |
| Apletodon dentatus  Aryrosomus regius  Corvina-legitima  MS  Bmi, Bma, HP  Arnoglossus inperialis  Arnoglossus inperialis  Arnoglossus inperialis  Carta-don-Mediterrâneo  Carta-don-Mediterrâneo  Atherina boyeri  Peixe-rei-do-Mediterrâneo  Atherina boyeri  Peixe-rei-do-Mediterrâneo  Atherina presbyter  Peixe-rei-do-Mediterrâneo  MM  PI, HP  Ballstes copriscus  Peixe-paulina  Beojas dons  Boga MS  HP  Bolistes copriscus  Belone belone  Peixe-agulha  Boops boops  Boga MS  HP  Boops boops  Boga MS  HP  Bothus podas  Callionymus lyra  Peixe-pau-lira  MS  Bmi, BMa  Callionymus ilyra  Peixe-pau-inalhado  Peixe-pau-inalhado  MS  Bmi, BMa  Callionymus reticulatus  Peixe-pau-inatado  MS  Bmi, BMa  Callionymus reticulatus  Peixe-pau-inatado  MS  Bmi, BMa  Callionymus reticulatus  Bodiāo-da-rocha  Chelidonichthys lucerna  Cabra-cabaço  MS  Bmi, BMa  Chelidonichthys lucerna  Cabra-cabaço  MS  Bmi, BMa  Chelidonichthys lucerna  Cabra-cabaço  MS  Bmi, Bma, HP  Chelon auratus  Chelon auratus  Tainha-fistaça  C  DV  Chelon ramada  Tainha-fistaça  C  Chelon sp.  Tainha  MS  DV  Chelon sp.  Tainha  MS  DV  Chelon sp.  Tainha  MS  Bmi, Bma, HP  Coprinus carpio  Carpa  Carpa  FW  HZ  Dogetichthys ustaniaus  Linguad-e-circo  MS  Bmi, Bma, HP  Dentex macrophtholmus  Dentex dentex  Capata-de-bico  MS  Bmi, Bma, HP  Dentex macrophtholmus  Dipleodus sputatus  Cachucho  MS  Bmi, Bma  Bmi, Bma  Dipleodus sputatus  Sargo-alcorraz  MM  Bmi, Bma  Dipleodus sputatus  Sargo-alcorraz  MM  Bmi, Bma  Diplodus sputatus  Sargo-alcorraz  MM  Bmi, Bma  Diplodus sputatus  Sargo-alcorraz  MM  Bmi, Bma  Bmi, B | Anguilla anguilla             | Enguia                    | С                  | PL                 |                                                           |
| Argyrosomus regius Corvina-legitima MS Bmi, Bma, HP Arnoglossus inpenialis Arnoglossus Internal Arnoglossus Internal Carta-de-Mediterrâneo MS Bmi, Bma, HP Arnoglossus Interna Arnoglossus Interna Arnoglossus Interna Carta-gontuada Afterina boyeri Peixe-rei Chelon Chediterrâneo Bimi, Bma, HP Atherina boyeri Peixe-rei Chelon Bimi, Bma, HP Atherina presbyter Peixe-rei Chelon Bimi, Bma, HP Atherina presbyter Peixe-rei MMM PL, HP Atherina presbyter Peixe-rei MMM PL, HP Atherina presbyter Peixe-rei MMM Bmi, Bma, HP Atherina presbyter Peixe-rei MMM PL, HP Atherina presbyter Peixe-rei MMM Bmi, Bma, HP Balistes caprisus Belone belone Peixe-agulha Boops boops Boga MS HP Bothus podos Carta-de-olhos-grandes MS HP Bothus podos Carta-de-olhos-grandes MS Bmi, BMa Collionymus Irra Callionymus pra Peixe-pa-u-liratado MS Bmi, BMa Collionymus maculatus Peixe-pa-u-listado MS Bmi, BMa Collionymus risculatus Peixe-pa-u-listado MS Bmi, BMa Collionymus risculatus Peixe-pa-u-listado MS Bmi, BMa Collionymus risculatus Peixe-pa-u-liratado MS Bmi, BMa Collionymus risculatus Peixe-pa-u-liratado MS Bmi, BMa Collionymus risculatus Bodião-da-rocha MS Bmi, BMa Centrolabrus exoletus Bodião-da-rocha MS Bmi, BMa Cheldonichthys lucerna Cabra-cabaço MS Bmi, BMa Cheldonichthys obscurus Cabra-de-bandeira MS Bmi, Bma, HP Chelon auratus Tainha-fataça C DV Tainha-liqa MS DV Chelon ramada Tainha-fataça C DV Tainha-fataça  | Aphia minuta                  | Caboz-transparente        | ES                 | PL                 |                                                           |
| Arnoglossus inperiolis  Arnoglossus terran  Carta-do-Mediterrâneo  MS Bmi, Bma, HP  Arnoglossus thori  Atherina boyeri  Atherina presbyter  Atherina presbyter  Atherina presbyter  Bolistes capriscus  Peixe-perco  Belone belone  Peixe-porco  Belone belone  Peixe-paullar  Bothus padas  Carta-de-Olhos-grandes  Bugosisdium luteum  Lingua-de-gato  MS Bmi, Bma, HP  Bothus padas  Carta-de-Olhos-grandes  MS HP  Bothus padas  Callionymus lyra  Peixe-pau-lira  Belone belone  Peixe-pau-lira  MS Bmi, BMa  Collionymus reticulatus  Peixe-pau-lira  Collionymus reticulatus  Peixe-pau-lira  MS Bmi, BMa  Collionymus reticulatus  Peixe-pau-liratado  MS Bmi, BMa  Collionichthys lucera  Cabra-cabago  MS Bmi, Bma, HP  Chelian ichtrisy obscurus  Cabra-cabago  MS Bmi, Bma, HP  Chelon nautus  Tainha-fataça  C. DV  Chelon nautus  Tainha-fataça  C. DV  Chelon saliens  Tainha-fataça  C. DV  Chelon saliens  Tainha-de-salto  MS DV  Ciliata mustela  Lialeque-de-cinco-barolilhos  MS Bmi, Bma, HP  Cobritis paludica  Verdemā comum  FW Bmi  Conger conger  Congro / Salio  MS Bmi, Bma, HP  Cobritis paludica  Verdemā comum  FW Bmi  Bmi, Bma, HP  Cobritis paludica  Verdemā comum  FW Bmi  Bmi, Bma, HP  Cobritis paludica  Verdemā comum  FW Bmi  Bmi, Bma, HP  Cobritis paludica  Verdemā comum  FW Bmi  Bmi, Bma, HP  Cobritis paludica  Verdemā comum  FW Bmi  Bmi, Bma, HP  Cobritis paludica  Verdemā comum  FW Bmi  Bmi, Bma, HP  Dentex macrophtholmus  Cac | Apletodon dentatus            | Sugador                   | MS                 | Bmi, BMa           |                                                           |
| Arnoglossus Interna Arnoglossus Interna Arnoglossus Interna Arnoglossus Interna Arnoglossus Interna Artherina boyeri Peixe-reid-MMM Atherina presbyter Peixe-reid-MMM PL, HP Atherina sp. Peixe-reid-MMM Bmi, Bma, HP Balistes capriscus Peixe-agulha Balos Belone belone Peixe-agulha Boops Boops Boga MS HP Bothus podos Carta-de-olhos-grandes MS Bmi, Bma Callionymus Iyra Peixe-pau-lira MS Bmi, BMa Callionymus Iyra Peixe-pau-lira MS Bmi, BMa Callionymus retroulatus Peixe-pau-liratado MS Bmi, BMa Callionymus retoulatus Peixe-pau-pintado Callionymus risso Callidonichtiys louerna Callionymus risso Beada Asha Be | Argyrosomus regius            | Corvina-legítima          | MS                 | Bmi, Bma, HP       |                                                           |
| Arnoglossus thori Atherina boyeri Peixe-rei-O-Mediterrâneo ES HZ Atherina boyeri Peixe-rei Peixe-rei MM PL, HP Atherina sp. Peixe-rei MM BH, Bma, HP Ballstes capriscus Peixe-porco MS PL, HZ Belone belone Peixe-agulha MS HP Boops boops Boga MS HP Bullsts podas Bullstand Dieter Callionymus lyra Belone belone Peixe-agulha MS HP Boops boops Boga MS HP Bullsts podas Bullstand Dieter Callionymus lyra Callionymus lyra Peixe-pau-lira Bullstand MS Bmi, BMa Callionymus maculatus Peixe-pau-lira Callionymus recitalatus Peixe-pau-lira Callionymus resitalatus Peixe-pau-lira Bodilo-da-rocha MS Bmi, BMa Callionymus resitalatus Callionymus resitalatus Peixe-pau-liratado MS Bmi, BMa Callionymus resitalatus Callionymus resitalatus Peixe-pau-liratado MS Bmi, BMa Callionymus resitalatus Callionymus resitalatus Peixe-pau-liratado MS Bmi, BMa Callionymus resitalatus Callionymus resitalatus Callionymus resitalatus Peixe-pau-liratado MS Bmi, BMa Callionymus resitalatus Callion | Arnoglossus imperialis        | Carta-imperial            | MS                 | Bmi, Bma, HP       |                                                           |
| Atherina boyeri Peixe-rei-do-Mediterrâneo ES HZ Atherina presbyter Peixe-rei MM Bmi, Bma, HP Atherina sp. Peixe-rei MM Bmi, Bma, HP Ballstes capriscus Peixe-porco MS PL, HZ Belone belone Peixe-agulha MS PL, HZ Belone belone Peixe-agulha MS HP Boops boops Boga MS HP Boops boops Boga MS HP Bothus podos Carta-de-olhos-grandes MS HP Callionymus lyra Peixe-pau-lira MS Bmi, BMa Callionymus reticulatus Peixe-pau-lira MS Bmi, BMa Callionymus reticulatus Peixe-pau-liratado MS Bmi, BMa Callionymus risso Peixe-pau-liratado MS Bmi, BMa Callionymus risso Peixe-pau-liratado MS Bmi, BMa Chelidonichtus societus Bodião-da-rocha MS Bmi, BMa Chelidonichthys lucerna Cabra-cabaço MS Bmi, Bma, HP Chelion adratus Tainha-garrento MS Bmi, Bma, HP Chelon narutus Tainha-garrento MS PL Chelon romada Tainha-de-salto MS DV Chelon soliens Tainha-de-salto MS DV Chelon sp. Tainha MS DV Chelon sp. Tainha MS DV Chelon sp. Tainha MS DV Ciliata mustela Laibeque-de-cinco-barbilhos MS Bmi, Bma, HP Cobitis paludica Verdemã comum FW Bmi Congre conger Congro / Safio MS Bmi, Bma, HP Cyprinus carpio Carpa FW HZ Dogetichthys lusitanicus Linguado-Portuguès MS Bmi, Bma, HP Denetx dentex Capatão-legitimo MS Bmi, Bma, HP Dicentrarchus labrau Robalo-legitimo MS Bmi, Bma Diplodus sonularis Sargo-alcorraz MM Bmi, Bma Diplodus spuntazzo Sargo-bicudo MM Bmi, Bma Diplodus spuntazzo Sargo-bicudo MM Bmi, Bma Diplodus spuntazzo  | Arnoglossus laterna           | Carta-do-Mediterrâneo     | MS                 | Bmi, Bma, HP       |                                                           |
| Atherina boyeri Peixe-rei-do-Mediterrâneo ES HZ Atherina presbyter Peixe-rei MM Bmi, Bma, HP Atherina sp. Peixe-rei MM Bmi, Bma, HP Ballstes capriscus Peixe-porco MS PL, HZ Belone belone Peixe-agulha MS PL, HZ Belone belone Peixe-agulha MS HP Boops boops Boga MS HP Boops boops Boga MS HP Bothus podos Carta-de-olhos-grandes MS HP Callionymus lyra Peixe-pau-lira MS Bmi, BMa Callionymus reticulatus Peixe-pau-lira MS Bmi, BMa Callionymus reticulatus Peixe-pau-liratado MS Bmi, BMa Callionymus risso Peixe-pau-liratado MS Bmi, BMa Callionymus risso Peixe-pau-liratado MS Bmi, BMa Chelidonichtus societus Bodião-da-rocha MS Bmi, BMa Chelidonichthys lucerna Cabra-cabaço MS Bmi, Bma, HP Chelion adratus Tainha-garrento MS Bmi, Bma, HP Chelon narutus Tainha-garrento MS PL Chelon romada Tainha-de-salto MS DV Chelon soliens Tainha-de-salto MS DV Chelon sp. Tainha MS DV Chelon sp. Tainha MS DV Chelon sp. Tainha MS DV Ciliata mustela Laibeque-de-cinco-barbilhos MS Bmi, Bma, HP Cobitis paludica Verdemã comum FW Bmi Congre conger Congro / Safio MS Bmi, Bma, HP Cyprinus carpio Carpa FW HZ Dogetichthys lusitanicus Linguado-Portuguès MS Bmi, Bma, HP Denetx dentex Capatão-legitimo MS Bmi, Bma, HP Dicentrarchus labrau Robalo-legitimo MS Bmi, Bma Diplodus sonularis Sargo-alcorraz MM Bmi, Bma Diplodus spuntazzo Sargo-bicudo MM Bmi, Bma Diplodus spuntazzo Sargo-bicudo MM Bmi, Bma Diplodus spuntazzo  |                               | Carta-pontuada            | MS                 | 1                  |                                                           |
| Atherina sp. Peixe-rei MM Bmi, Bma, HP Balistes capriscus Pebx e-porco MS PL, HZ Belone belone Peix-e-agulha MS HP Boops boops Boga MS HP Bothus podas Carta-de-olhos-grande MS HP Bulpossidium luteum Lingua-de-gato MS Bmi, BMa Callionymus lyra Peixe-pau-lira MS Bmi, BMa Callionymus reiculatus Peixe-pau-lira MS Bmi, BMa Callionymus reiculatus Peixe-pau-listado MS Bmi, BMa Callionymus reiculatus Peixe-pau-listado MS Bmi, BMa Callionymus reiculatus Peixe-pau-listado MS Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, BMa Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, Bma, HP Chelidonichthys lucerna Cabra-cabaço MS Bmi, Bma, HP Chelidonichthys bucerna Cabra-de-bandeira MS Bmi, Bma, HP Chelidonichthys obscurus Cabra-de-bandeira MS Bmi, Bma, HP Chelon curatus Tainha-garrento MS PL Chelon curatus Tainha-fastaça C DV Chelon romada Tainha-fastaça C DV Chelon romada Tainha-fe-salto MS DV Chelon soliens Tainha-de-salto MS DV Chelon soliens Tainha-de-salto MS DV Chelon sp. Tainha MS DV Thinha de-salto MS Bmi, Bma, HP MS DV Chelon sp. Tainha MS DV Thinha de-salto MS Bmi, Bma, HP MS Bmi, Bma Dipleodus benetati Bargo-alcorraz MM Bmi, Bma Bmi, Bma Dipleodus belottii Sargo-do-Senegal M | Atherina boyeri               | Peixe-rei-do-Mediterrâneo | ES                 |                    |                                                           |
| Atherina sp. Peixe-rei MM Bmi, Bma, HP Balistes capriscus Pebx e-porco MS PL, HZ Belone belone Peix-e-agulha MS HP Boops boops Boga MS HP Bothus podas Carta-de-olhos-grande MS HP Bulpossidium luteum Lingua-de-gato MS Bmi, BMa Callionymus lyra Peixe-pau-lira MS Bmi, BMa Callionymus reiculatus Peixe-pau-lira MS Bmi, BMa Callionymus reiculatus Peixe-pau-listado MS Bmi, BMa Callionymus reiculatus Peixe-pau-listado MS Bmi, BMa Callionymus reiculatus Peixe-pau-listado MS Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, BMa Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, Bma, HP Chelidonichthys lucerna Cabra-cabaço MS Bmi, Bma, HP Chelidonichthys bucerna Cabra-de-bandeira MS Bmi, Bma, HP Chelidonichthys obscurus Cabra-de-bandeira MS Bmi, Bma, HP Chelon curatus Tainha-garrento MS PL Chelon curatus Tainha-fastaça C DV Chelon romada Tainha-fastaça C DV Chelon romada Tainha-fe-salto MS DV Chelon soliens Tainha-de-salto MS DV Chelon soliens Tainha-de-salto MS DV Chelon sp. Tainha MS DV Thinha de-salto MS Bmi, Bma, HP MS DV Chelon sp. Tainha MS DV Thinha de-salto MS Bmi, Bma, HP MS Bmi, Bma Dipleodus benetati Bargo-alcorraz MM Bmi, Bma Bmi, Bma Dipleodus belottii Sargo-do-Senegal M |                               | Peixe-rei                 | MM                 | PL, HP             |                                                           |
| Ballstes capriscus         Peixe-agulha         MS         PL, HZ           Belone belone         Peixe-agulha         MS         HP           Boops boops         Boga         MS         HP           Bullstus podas         Carta-de-olhos-grandes         MS         HP           Bullstus podas         Lingua-de-gato         MS         Bmj, BMa           Callionymus preticulatus         Peixe-pau-lira         MS         Bmi, BMa           Callionymus reticulatus         Peixe-pau-listado         MS         Bmi, BMa           Callionymus risculatus         Bodião-da-rocha         MS         Bmi, BMa           Centrolabrus exoletus         Bodião-da-rocha         MS         Bmi, BMa           Centrolabrus exoletus         Bodião-da-rocha         MS         Bmi, Bma, HP           Chelon auditus         Taínha-fata         MS         Bmi, Bma, HP           Chelon saliens         Taínha-fataça         C         DV           Chelon saliens         Taính                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | Peixe-rei                 | MM                 |                    |                                                           |
| Belone belone         Peixe-agulha         MS         HP           Bops boops         Boga         MS         HP           Bothus podos         Carta-de-olhos-grandes         MS         HP           Buglossidium luteum         Lingua-de-gato         MS         Bmi, BMa           Callionymus pracultus         Peixe-pau-lira         MS         Bmi, BMa           Callionymus reticulatus         Peixe-pau-listado         MS         Bmi, BMa           Callionymus risso         Peixe-pau-plintado         MS         Bmi, BMa           Centrolabrus evoletus         Bodião-da-rocha         MS         Bmi, BMa           Centrolabrus evoletus         Bodião-da-rocha         MS         Bmi, BMa           Chelidonichthys lucerno         Cabra-cabaço         MS         Bmi, Bma, HP           Chelidonichthys bucerno         Cabra-de-bandeira         MS         Bmi, Bma, HP           Chelon labrosus         Tainha-garrento         MS         PL           Chelon labrosus         Tainha-fesarto         MS         DV           Chelon saliens         Tainha-de-salto         MS         DV           Chelon saliens         Tainha-de-salto         MS         DV           Chelon sp.         Tainha         MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Peixe-porco               | MS                 |                    |                                                           |
| Boops boops         Boga         MS         HP           Bothus podas         Carta-de-olhos-grandes         MS         HP           Bujossidium luteum         Lingua-de-gato         MS         Bmi, BMa           Callionymus lyra         Peixe-pau-lira         MS         Bmi, BMa           Callionymus reticulatus         Peixe-pau-listado         MS         Bmi, BMa           Callionymus reticulatus         Peixe-pau-listado         MS         Bmi, BMa           Callionymus risso         Peixe-pau-lintado         MS         Bmi, BMa           Centrolabrus exoletus         Bodião-da-rocha         MS         Bmi, BMa           Chelidonichthys losscurus         Cabra-da-baço         MS         Bmi, Bma, HP           Chelon duratus         Tainha-garrento         MS         PL           Chelon labrosus         Tainha-fataça         C         DV           Chelon saliens         Tainha-da-fataça         C         DV           Chelon saliens         Tainha-da-fataça         C         DV           Chloru surve         Carliotas mustela         MS         DV           Chloru surve         Carliotas mustela         MS         DV           Chloru surve         Carliotas         MS         Bmi,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Belone belone                 |                           | MS                 |                    |                                                           |
| Bothus podas         Carta-de-olhos-grandes         MS         HP           Buglossidium luteum         Lingua-de-gato         MS         Bmi, BMa           Callionymus lyra         Peixe-pau-lira         MS         Bmi, BMa           Callionymus reticulatus         Peixe-pau-listado         MS         Bmi, BMa           Callionymus risso         Peixe-pau-listado         MS         Bmi, BMa           Callionymus risso         Peixe-pau-listado         MS         Bmi, BMa           Callionymus risso         Peixe-pau-listado         MS         Bmi, BMa           Centrolabrus exoletus         Bodião-da-rocha         MS         Bmi, BMa           Centrolabrus exoletus         Bodião-da-rocha         MS         Bmi, BMa           Chelidonichthys lucerna         Cabra-cabaço         MS         Bmi, Bma, HP           Chelon auratus         Tainha-desador         MS         DV           Chelon auratus         Tainha-garrento         MS         DV           Chelon auratus         Tainha-desalto         MS         DV           Chelon auratus         Tainha-desalto         MS         DV           Chelon soliens         Tainha-desalto         MS         Bmi, Bma, HP           Chelon soliens         Tainha-desa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Boops boops                   |                           |                    | HP                 |                                                           |
| Buglossidium luteum Callionymus lyra Peixe-pau-lira MS Bmi, BMa Callionymus maculatus Peixe-pau-lira MS Bmi, BMa Callionymus reticulatus Peixe-pau-liratado MS Bmi, BMa Callionymus reticulatus Peixe-pau-liratado MS Bmi, BMa Callionymus reticulatus Peixe-pau-listado MS Bmi, BMa Callionymus reticulatus Peixe-pau-listado MS Bmi, BMa Callionymus risso Peixe-pau-listado MS Bmi, BMa Callionymus risso Peixe-pau-listado MS Bmi, BMa Chelidonichthys lucerna Cabra-cabaço MS Bmi, Bma Chelidonichthys lucerna Cabra-de-bandeira MS Bmi, Bma, HP Chelon auratus Tainha-de-bandeira MS DV Chelon adurosus Tainha-fataça C DV Chelon ramada Tainha-fataça C DV Chelon soliens Tainha-de-salto MS DV Chelon soliens Tainha-de-salto Ciliata mustela Laibeque-de-cinco-barbilhos Darbilhos Colitis paludica Verdemă comum FW Bmi Conger conger Congro / Safio MS Bmi, Bma, HP Cyprious carpio Carpa FW HZ Dagetichthys lusitanicus Linguado-Português MS Bmi, Bma, HP Deltentosteus quadrimaculatus Caboz-marinho MS Dentex dentex Capatão-legitimo MS Bmi, Bma Dicologlossa cuneata Lingua MS Bmi, Bma Dicologlossa cuneata Lingua MS Bmi, Bma Diplodus se hunciatus Sargo-alcorraz MM Bmi, Bma Diplodus sepundirs Sargo-alcorraz MM Bmi, Bma Diplodus sepundirs Sargo-legitimo MM Bmi, Bma Bmi, Bma Diplodus sepundirs Sargo-legitimo MM Bmi, Bma Bmi, Bm |                               |                           |                    |                    |                                                           |
| Callionymus lyra Peixe-pau-lira MS Bmi, BMa Callionymus maculatus Peixe-pau-malhado MS Bmi, BMa Bmi, BMa Peixe-pau-listado MS Bmi, BMa Bmi, BMa Peixe-pau-listado MS Bmi, BMa Bmi, BMa Bmi, BMa Peixe-pau-pintado MS Bmi, BMa Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, BMa Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, BMa Bmi, BMa Callionymus risso Peixe-pau-pintado MS Bmi, BMa Bmi, BMa Chelidonichthys lucerna Cabra-cabaço MS Bmi, Bma, HP Chelidonichthys lucerna Cabra-de-bandeira MS Bmi, Bma, HP Chelidonichthys obscurus Tainha-fae-bandeira MS Bmi, Bma, HP Chelon auratus Tainha-fae, MS DV Chelon auratus Tainha-fae, MS DV Chelon ramada Tainha-fataça C DV Chelon saliens Tainha-de-salto MS DV Chelon saliens Tainha-de-salto MS DV Chelon sp. Tainha MS DV Tainha MS DV Chelon sp. Tainha MS DV Tainha MS Bmi, Bma, HP Cobitis paludica Verdemā comum FW Bmi Bmi, Bma, HP Cobitis paludica Verdemā comum FW Bmi Bmi, Bma, HP Conger conger Conger Oconger Conger Safio MS Bmi, Bma, HP Cyprinus carpio Carpa FW HZ Dagetichthys lusitanicus Linguado-Portuguės MS Bmi, Bma, HP Deltentosteus quadrimaculatus Cabor-marinho MS Bma, HP Deltentosteus quadrimaculatus Cabor-marinho MS Bma, HP Dentex macrophthalmus Cachucho MS HP Dentex dentex Capatão-legitimo MM HZ, HP Dicentorarchus punctotus Robalo-baila MM HZ, HP Dicentorarchus and Diplodus cundaris Sargo-alcorraz MM Bmi, Bma Diplodus annularis Sargo-alcorraz MM Bmi, Bma Diplodus puntazzo Sargo-alcorraz MM Bmi, Bma Diplodus puntazzo Sargo-legitimo MM Bmi, Bma Echiichthys vipera Peixe-aranha-menor MS Bmi, Bma B | ·                             |                           |                    |                    |                                                           |
| Callionymus maculatus         Peixe-pau-Istado         MS         Bmi, BMa           Callionymus reticulatus         Peixe-pau-Istado         MS         Bmi, BMa           Callionymus risso         Peixe-pau-pintado         MS         Bmi, BMa           Centrolabrus exoletus         Bodião-da-rocha         MS         Bmi, BMa           Chelidonichthys lucerna         Cabra-de-bandeira         MS         Bmi, Bma, HP           Chelidonichthys obscurus         Cabra-de-bandeira         MS         Bmi, Bma, HP           Chelon auratus         Tainha-garrento         MS         DV           Chelon labrosus         Tainha-liça         MS         DV           Chelon saliens         Tainha-de-salto         MS         DV           Chelon saliens         Tainha-de-salto         MS         DV           Chelon suliens         Tainha-de-salto         MS         DV           Chilatus linguadula         Carta-de-bio         MS         Bmi, Bma, HP           Ciliata mustela         Congro / Safio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                           |                    |                    |                                                           |
| Callionymus reticulatus         Peixe-pau-listado         MS         Bmi, BMa           Callionymus risso         Peixe-pau-pintado         MS         Bmi, BMa           Centrolabrus exoletus         Bodião-da-rocha         MS         Bmi, BMa           Chelidonichthys lucerna         Cabra-de-bandeira         MS         Bmi, Bma, HP           Chelon auratus         Tainha-garrento         MS         PL           Chelon labrosus         Tainha-liça         MS         DV           Chelon ramada         Tainha-liça         MS         DV           Chelon ramada         Tainha-de-salto         MS         DV           Chelon suliens         Tainha-de-salto         MS         Bmi, Bma, HP           Chelon suliens         Tainha-de-salto         MS         Bmi, Bma, HP           Ciliata mustela         Laibeque-de-cinco-barrino         MS         Bmi, Bma, HP           Ciliata mustela         Carta-de-bico         MS <td>· · · · ·</td> <td>· ·</td> <td></td> <td>· ·</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · ·                     | · ·                       |                    | · ·                |                                                           |
| Callionymus risso         Peixe-pau-pintado         MS         Bmi, BMa           Centrolabrus exoletus         Bodião-da-rocha         MS         Bmi, BMa           Chelidonichthys lucerna         Cabra-cabaço         MS         Bmi, BMa, HP           Chelidonichthys obscurus         Cabra-de-bandeira         MS         Bmi, Bma, HP           Chelon auratus         Taínha-garrento         MS         PL           Chelon ramada         Taínha-liça         MS         DV           Chelon soliens         Taínha-dacşalto         MS         DV           Chelon sp.         Taínha-de-salto         MS         DV           Chelon sp.         Taínha-de-salto         MS         DV           Ciliata mustela         Laibeque-de-cinco-barbilhos         MS         Bmi, Bma, HP           Ciliata mustela         Carta-de-bico         MS         Bmi, Bma, HP           Ciliatus linguatula         Carta-de-bico         MS         Bmi, Bma, HP           Cobitis poludica         Verdemã comum         FW         Bmi           Congro / Safio         MS         Bmi, Bma, HP           Cyroscion regalis         Corvinata-real         MM         Bmi, Bma, HP           Cyroscion regalis         Corvinata-real         MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                             | ·                         |                    |                    |                                                           |
| Centrolabrus exoletus         Bodião-da-rocha         MS         Bmi, BMa           Chelidonichthys lucerna         Cabra-cabaço         MS         Bmi, Bma, HP           Chelidonichthys obscurus         Cabra-de-bandeira         MS         Bmi, Bma, HP           Chelon auratus         Taínha-garrento         MS         PL           Chelon labrosus         Taínha-liça         MS         DV           Chelon saliens         Taínha-de-salto         MS         Bmi, Bma, HP           Clidata mustela         Láibeque-de-cinco-bartainho         MS         Bmi, Bma, HP           Cothits paludica         Verdemã comum         FW         Bmi           Cobitis paludica         Verdemã comum         FW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                           |                    |                    |                                                           |
| Chelidonichthys lucerna         Cabra-cabaço         MS         Bmi, Bma, HP           Chelidonichthys obscurus         Cabra-de-bandeira         MS         Bmi, Bma, HP           Chelon uardus         Taínha-garrento         MS         PL           Chelon labrosus         Taínha-liça         MS         DV           Chelon ramada         Taínha-de-salto         MS         DV           Chelon saliens         Taínha-de-salto         MS         DV           Chelon sp.         Taínha         MS         DV           Ciliata mustela         Laibeque-de-cinco-barbilhos         MS         Bmi, Bma, HP           Ciliata mustela         Carta-de-bico         MS         Bmi, Bma, HP           Cobritis paludica         Verdemã comum         FW         Bmi           Congro / Safio         MS         Bmi, Bma, HP         Coroirat-de-bico         MS         Bmi, Bma, HP           Cynoscion regalis         Coroirata-real         MM         Bmi, Bma, HP         Cyrinus carpio         Carpa         FW         HZ           Dagetichthys lusitanicus         Linguado-Português         MS         Bmi, Bma, HP         Deletentactus quadrimaculatus         Caboz-marinho         MS         Bmi, Bma, HP         Deletentactus quadrimaculatus         Caboz-mari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                           |                    |                    |                                                           |
| Chelidonichthys obscurus         Cabra-de-bandeira         MS         Bmi, Bma, HP           Chelon auratus         Taínha-garrento         MS         PL           Chelon ramada         Taínha-fiaça         C         DV           Chelon soliens         Taínha-de-salto         MS         DV           Chelon sp.         Taínha         MS         DV           Chelon sp.         Taínha         MS         DV           Ciliata mustela         Laibeque-de-cinco-barbilhos         MS         Bmi, Bma, HP           Ciliata mustela         Carta-de-bico         MS         Bmi, Bma, HP           Citharus linguatula         Carta-de-bico         MS         Bmi, Bma, HP           Cobitis paludica         Verdemã comum         FW         Bmi           Copitis paludica         Verdemã comum         FW         Bmi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                           |                    | · '                |                                                           |
| Chelon auratus         Taínha-garrento         MS         PL           Chelon lobrosus         Taínha-liça         MS         DV           Chelon ramada         Taínha-liça         C         DV           Chelon saliens         Taínha-de-salto         MS         DV           Chelon sp.         Taínha         MS         Bmi, Bma, HP           Cobatáila         Verdemã comum         FW         Bmi, Bma, HP           Cobitis paludica         Verdemã comum         FW         Bmi, Bma, HP           Conger conger         Congro / Safio         MS         Bmi, Bma, HP           Cyrinus carpio         Captão         MS         Bmi, Bma, HP           Digetichy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | ,                         |                    | +                  |                                                           |
| Chelon labrosus     Taínha-liça     MS     DV       Chelon ramada     Taínha-fataça     C     DV       Chelon saliens     Taínha-de-salto     MS     DV       Chelon sp.     Taínha     MS     DV       Chelon sp.     Taínha-de-salto     MS     Bmi, Bma, HP       Chelon sp.     Taínha-de-salto     MS     Bmi, Bma, HP       Coparcichitys laidanica     Corvedeã comum     FW     Bmi, Bma       Dayais pastinaca     Uge     MS     Bmi, Bma, HP       Deltentosteus quadrimaculatus     Caboz-marinho     MS     Bmi, Bma, HP       Deltentosteus quadrimaculatus     Caboz-marinho     MS     Bmi, Bma, HP       Dentex dentex     Capatão-legítimo     MS     HP       Dicentrarchus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                             |                           |                    |                    |                                                           |
| Chelon ramada       Taínha-fataça       C       DV         Chelon saliens       Taínha de-salto       MS       DV         Chelon sp.       Taínha       MS       DV         Ciliata mustela       Laibeque-de-cinco-barbilhos       MS       Bmi, Bma, HP         Citharus linguatula       Carta-de-bico       MS       Bmi, Bma, HP         Cobitis paludica       Verdemã comum       FW       Bmi         Conger conger       Congro / Safio       MS       Bmi, Bma, HP         Cynoscion regalis       Corvinata-real       MM       Bmi, Bma, HP         Cyprinus carpio       Carpa       FW       HZ         Dagetichithys lusitanicus       Linguado-Português       MS       Bmi, Bma       HP         Dasyatis pastinaca       Uge       MS       Bmi, Bma, HP       Bmi, Bma       HP         Deltentosteus quadrimaculatus       Caboz-marinho       MS       Bma, Bma, HP       Bmi, Bma, HP         Dentex macrophthalmus       Cabaz-marinho       MS       Bmi, Bma, HP         Dentex macrophthalmus       Cachucho       MS       HP         Dicologlossa cuneata       Robalo-legitimo       MM       HZ, HP         Dicologlossa puneata       Robalo-baila       MM       HZ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                           |                    |                    |                                                           |
| Chelon saliens     Taínha-de-salto     MS     DV       Chelon sp.     Taínha     MS     DV       Ciliata mustela     Laibeque-de-cinco-barbilhos     MS     Bmi, Bma, HP       Citharus linguatula     Carta-de-bico     MS     Bmi, Bma, HP       Cobitis paludica     Verdemā comum     FW     Bmi       Conger conger     Congro / Safio     MS     Bmi, Bma, HP       Cynoscion regalis     Corvinata-real     MM     Bmi, Bma, HP       Cyprinus carpio     Carpa     FW     HZ       Dagetichthys lusitanicus     Linguado-Português     MS     Bmi, BMa       Dasyatis pastinaca     Uge     MS     Bmi, Bma, HP       Deltentosteus quadrimaculatus     Caboz-marinho     MS     Bmi, Bma, HP       Dentex dentex     Capatão-legítimo     MS     HP       Dentex dentex     Capatão-legítimo     MS     HP       Dentex macrophthalmus     Cachucho     MS     HP       Dicentrarchus labrax     Robalo-legítimo     MM     HZ, HP       Dicologlossa cuneata     Língua     MS     Bmi, Bma       Dicologlossa hexophthalma     Língua     MS     Bmi, Bma       Diplodus sanculata     Peixe-ventosa     MS     Bmi       Diplodus bellottii     Sargo-alcorraz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                           |                    |                    |                                                           |
| Chelon sp.     Taínha     MS     DV       Ciliata mustela     Laibeque-de-cinco-barbilhos     MS     Bmi, Bma, HP       Citharus linguatula     Carta-de-bico     MS     Bmi, Bma, HP       Cobitis paludica     Verdemā comum     FW     Bmi       Conger conger     Congro / Safio     MS     Bmi, Bma, HP       Cynoscion regalis     Corvinata-real     MM     Bmi, Bma, HP       Cyprinus carpio     Carpa     FW     HZ       Dagetichthys lusitanicus     Linguado-Português     MS     Bmi, Bma       Dagetichthys lusitanicus     Linguado-Português     MS     Bmi, Bma       Dasyatis pastinaca     Uge     MS     Bmi, Bma       Deltentosteus quadrimaculatus     Caboz-marinho     MS     Bmi, Bma       Dentex dentex     Capatão-legítimo     MS     Bma, HP       Dentex macrophthalmus     Cachucho     MS     HP       Dicentrarchus labrax     Robalo-legítimo     MM     HZ, HP       Dicentrarchus punctatus     Robalo-legítimo     MM     HZ, HP       Dicologlossa cuneata     Língua     MS     Bmi, Bma       Diplodus sa pophthalma     Língua     MS     Bmi, Bma       Diplodus contacta     Peixe-ventosa     MS     Bmi       Diplodus bellottii     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                           | _                  | +                  |                                                           |
| Ciliata mustela Citharus linguatula Carta-de-bico MS Bmi, Bma, HP  Cobitis paludica Verdemă comum FW Bmi Conger conger Congro / Safio MS Bmi, Bma, HP  Cynoscion regalis Corvinata-real MM Bmi, Bma, HP  Cyprinus carpio Carpa FW HZ  Dagetichthys lusitanicus Linguado-Português MS Bmi, Bma, HP  Dentex dentex Capatão-legítimo Dicentrarchus punctatus Dicologlossa cuneata Língua Dicologlossa hexophthalma Diplodus annularis Diplodus curvinus Diplodus sargus Sargo-legítimo MS Diplodus sargus Sargo-legítimo MS Diplodus sargus Sargo-legítimo MS Diplodus sp. Sargo-legítimo MM Diplodus vulgaris Sargo-asfia MM Bmi, Bma Bmi                                                                                                                                                                                                                                                 |                               |                           |                    |                    |                                                           |
| Cillata Misseld  Carta-de-bico  MS  Bmi, Bma, HP  Cobitis paludica  Verdemă comum  FW  Bmi  Congro Conger  Congro / Safio  MS  Bmi, Bma, HP  Cynoscion regalis  Corvinata-real  MM  Bmi, Bma, HP  Cyprinus carpio  Carpa  FW  HZ  Dagetichthys lusitanicus  Linguado-Português  MS  Bmi, Bma, HP  Deltentosteus quadrimaculatus  Caboz-marinho  MS  Bmi, Bma, HP  Dentex dentex  Capatão-legítimo  Dicentrarchus labrax  Robalo-legítimo  MM  HZ, HP  Dicentrarchus punctatus  Robalo-baila  Dicologlossa cuneata  Língua  Dicologlossa hexophthalma  Diplecogaster bimaculata  Diplodus annularis  Sargo-alcorraz  MM  Diplodus cervinus  Diplodus cervinus  Sargo-veado  MS  Diplodus sargus  Sargo-legítimo  MM  Diplodus sargus  Sargo-legítimo  MM  Bmi, Bma  Diplodus sargus  Sargo-legítimo  MM  Bmi, Bma  Diplodus sargus  Sargo-safia  MM  Bmi, Bma  Bmi, Bma  Diplodus vulgaris  Sargo-safia  MM  Bmi, Bma  Bmi, Bma  Diplodus vulgaris  Sargo-safia  MM  Bmi, Bma  Bmi, Bma  Bmi, Bma  Bmi, Bma  Bmi, Bma  Diplodus vulgaris  Sargo-safia  MM  Bmi, Bma  Bmi, Bma  Diplodus vulgaris  Sargo-afia  MM  Bmi, Bma  Bmi, Bma  Diplodus vulgaris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chelon sp.                    |                           | IVIS               | DV                 |                                                           |
| Cobitis paludicaVerdemã comumFWBmiConger congerCongro / SafioMSBmi, Bma, HPCynoscion regalisCorvinata-realMMBmi, Bma, HPCyprinus carpioCarpaFWHZDagetichthys lusitanicusLinguado-PortuguêsMSBmi, BMaDasyatis pastinacaUgeMSBmi, Bma, HPDeltentosteus quadrimaculatusCaboz-marinhoMSBma, HPDentex dentexCapatão-legítimoMSHPDentex macrophthalmusCachuchoMSHPDicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus sargusSargo-legítimoMMBmi, BmaDiplodus sargusSargo-legítimoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchilichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                           | MS                 |                    |                                                           |
| Conger congerCongro / SafioMSBmi, Bma, HPCynoscion regalisCorvinata-realMMBmi, Bma, HPCyprinus carpioCarpaFWHZDagetichthys lusitanicusLinguado-PortuguêsMSBmi, BMaDasyatis pastinacaUgeMSBmi, Bma, HPDeltentosteus quadrimaculatusCaboz-marinhoMSBma, HPDentex dentexCapatão-legítimoMSHPDentex macrophthalmusCachuchoMSHPDicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus sargusSargo-legítimoMMBmi, BmaDiplodus sargusSargo-legítimoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Citharus linguatula           | Carta-de-bico             | MS                 | Bmi, Bma, HP       |                                                           |
| Cynoscion regalisCorvinata-realMMBmi, Bma, HPCyprinus carpioCarpaFWHZDagetichthys lusitanicusLinguado-PortuguêsMSBmi, BMaDasyatis pastinacaUgeMSBmi, Bma, HPDeltentosteus quadrimaculatusCaboz-marinhoMSBma, HPDentex dentexCapatão-legítimoMSHPDentex macrophthalmusCachuchoMSHPDicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cobitis paludica              | Verdemã comum             | FW                 | Bmi                |                                                           |
| Cyprinus carpioCarpaFWHZDagetichthys lusitanicusLinguado-PortuguêsMSBmi, BMaDasyatis pastinacaUgeMSBmi, Bma, HPDeltentosteus quadrimaculatusCaboz-marinhoMSBma, HPDentex dentexCapatão-legítimoMSHPDentex macrophthalmusCachuchoMSHPDicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conger conger                 | Congro / Safio            | MS                 | Bmi, Bma, HP       |                                                           |
| Dagetichthys lusitanicusLinguado-PortuguêsMSBmi, BMaDasyatis pastinacaUgeMSBmi, Bma, HPDeltentosteus quadrimaculatusCaboz-marinhoMSBma, HPDentex dentexCapatão-legítimoMSHPDentex macrophthalmusCachuchoMSHPDicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cynoscion regalis             | Corvinata-real            | MM                 | Bmi, Bma, HP       |                                                           |
| Dasyatis pastinacaUgeMSBmi, Bma, HPDeltentosteus quadrimaculatusCaboz-marinhoMSBma, HPDentex dentexCapatão-legítimoMSHPDentex macrophthalmusCachuchoMSHPDicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cyprinus carpio               | Carpa                     | FW                 | HZ                 |                                                           |
| Deltentosteus quadrimaculatusCaboz-marinhoMSBma, HPDentex dentexCapatão-legítimoMSHPDentex macrophthalmusCachuchoMSHPDicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dagetichthys lusitanicus      | Linguado-Português        | MS                 | Bmi, BMa           |                                                           |
| Dentex dentexCapatão-legítimoMSHPDentex macrophthalmusCachuchoMSHPDicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dasyatis pastinaca            | Uge                       | MS                 | Bmi, Bma, HP       |                                                           |
| Dentex macrophthalmusCachuchoMSHPDicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Deltentosteus quadrimaculatus | Caboz-marinho             | MS                 | Bma, HP            |                                                           |
| Dicentrarchus labraxRobalo-legítimoMMHZ, HPDicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dentex dentex                 | Capatão-legítimo          | MS                 | HP                 |                                                           |
| Dicentrarchus punctatusRobalo-bailaMMHZ, HPDicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dentex macrophthalmus         | Cachucho                  | MS                 | НР                 |                                                           |
| Dicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dicentrarchus labrax          | Robalo-legítimo           | MM                 | HZ, HP             |                                                           |
| Dicologlossa cuneataLínguaMSBmi, BmaDicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dicentrarchus punctatus       | Robalo-baila              | MM                 | HZ, HP             |                                                           |
| Dicologlossa hexophthalmaLínguaMSBmi, BmaDiplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | Língua                    | MS                 | 1                  |                                                           |
| Diplecogaster bimaculataPeixe-ventosaMSBmiDiplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | Língua                    | MS                 | Bmi, Bma           |                                                           |
| Diplodus annularisSargo-alcorrazMMBmi, BmaDiplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                           | MS                 |                    |                                                           |
| Diplodus bellottiiSargo-do-SenegalMMBmi, BmaDiplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | Sargo-alcorraz            | MM                 | Bmi, Bma           |                                                           |
| Diplodus cervinusSargo-veadoMSHV, BmiDiplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diplodus bellottii            | Sargo-do-Senegal          | MM                 | Bmi, Bma           |                                                           |
| Diplodus puntazzoSargo-bicudoMMBmi, BmaDiplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                           | MS                 | +                  |                                                           |
| Diplodus sargusSargo-legítimoMMOVDiplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                           | MM                 | 1                  |                                                           |
| Diplodus sp.SargoMMBmi, BmaDiplodus vulgarisSargo-safiaMMBmi, BmaEchiichthys viperaPeixe-aranha-menorMSBmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | _                         |                    |                    |                                                           |
| Diplodus vulgaris     Sargo-safia     MM     Bmi, Bma       Echiichthys vipera     Peixe-aranha-menor     MS     Bmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                             |                           |                    | Bmi, Bma           |                                                           |
| Echiichthys vipera Peixe-aranha-menor MS Bmi, Bma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                           |                    | +                  |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | _                         |                    | +                  |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Biqueirão                 |                    |                    |                                                           |

| Espécies/ <i>Taxa</i>                  | Nome comum                          | Grupo<br>Ecológico | Grupo<br>Funcional       | Espécies sensíveis<br>e/ou com estatuto de<br>conservação |
|----------------------------------------|-------------------------------------|--------------------|--------------------------|-----------------------------------------------------------|
| Eutrigla gurnardus                     | Cabra-morena                        | MS                 | НР                       | conscivação                                               |
| Gaidropsarus vulgaris                  | Laibeque-de-três-barbilhos          | MS                 | HZ, HP                   |                                                           |
| Gobio gobio                            | Góbio                               | FW                 | HZ                       |                                                           |
| Gobius auratus                         | Caboz-dourado                       | MS                 | Bmi                      |                                                           |
| Gobius niger                           | Caboz-negro                         | ES                 | Bmi, HP                  |                                                           |
| Gobius paganellus                      | Caboz-da-rocha                      | ES                 | Bmi                      |                                                           |
| Gobius sp.                             | Góbio                               | ES                 | Bmi, HZ, HP              |                                                           |
| Halobatrachus didactylus               | Charroco                            | ES                 | Bmi, HP                  |                                                           |
| Hippocampus guttulatus                 | Cavalo-marinho                      | ES                 | Bmi                      | S                                                         |
| Hippocampus hippocampus                | Cavalo-marinho                      | MS                 | Bmi                      | S                                                         |
|                                        | Cavalo-marinho                      | ES                 | Bmi                      | S                                                         |
| Hippocampus sp.<br>Labrus bergylta     | Bodião-reticulado                   |                    |                          | 3                                                         |
|                                        |                                     | MS<br>MS           | Bmi<br>Bmi               |                                                           |
| Lepidorhombus boscii                   | Areeiro-de-quatro-manchas           |                    |                          |                                                           |
| Lepidorhombus whiffiagonis             | Areeiro                             | MS                 | Bmi                      |                                                           |
| Lepidotrigla cavillone                 | Ruivo                               | MS                 | Bmi                      |                                                           |
| Lipophrys pholis                       | Marachomba-frade                    | MS                 | Bmi, Bma                 |                                                           |
| Lithognathus mormyrus                  | Ferreira                            | MS                 | Bmi, Bma                 |                                                           |
| Luciobarbus bocagei                    | Barbo comum                         | FW                 | PL, HZ                   |                                                           |
| Luciobarbus comizo                     | Cumba                               | FW                 | PL, HZ                   |                                                           |
| Luciobarbus sp.                        | Barbo                               | FW                 | Bmi, BMa                 |                                                           |
| Luciobarbus sclateri                   | Barbo-do-sul                        | FW                 | PL, HZ                   |                                                           |
| Luciobarbus steindachneri              | Barbo-de-Steindachneri              | FW                 | Bmi, BMa                 |                                                           |
| Merluccius merluccius                  | Pescada-branca                      | MS                 | НР                       |                                                           |
| Microchirus azevia                     | Azevia                              | MS                 | Bmi, Bma                 |                                                           |
| Microchirus boscanion                  | Azevia-marginada                    | MS                 | Bmi, Bma                 |                                                           |
| Monochirus hispidus                    | Cascarra                            | MS                 | Bmi, Bma                 |                                                           |
| Mugil cephalus                         | Taínha-olhalvo                      | С                  | DV                       |                                                           |
| Mullus barbatus                        | Salmonete-da-vasa                   | MS                 | Bmi, Bma                 |                                                           |
| Mullus surmuletus                      | Salmonete-legítimo                  | MS                 | Bmi, Bma                 |                                                           |
| Mustelus mustelus                      | Cação                               | MS                 | Bmi, Bma                 |                                                           |
| Myliobatis aquila                      | Ratão-águia                         | MS                 | Bmi, Bma                 |                                                           |
| Nerophis ophidion                      | Marinha                             | ES                 | Bmi,HZ                   | S                                                         |
| Pagellus acarne                        | Besugo                              | MS                 | Bmi, Bma                 |                                                           |
| Pagellus bogaraveo                     | Goraz                               | MS                 | Bmi, Bma, HP             |                                                           |
| Pagrus auriga                          | Pargo-sêmola                        | MS                 | Bmi, Bma, HP             |                                                           |
| Pagrus pagrus                          | Pargo-legítimo                      | MS                 | Bmi, Bma, HP             |                                                           |
| Parablennius gattorugine               | Marachomba-babosa                   | MS                 | Bmi, Bma, HP             |                                                           |
| Parablennius pilicornis                | Marachomba                          | MS                 | HZ, HV                   |                                                           |
| Pegusa impar                           | Linguado-do-Adriático               | MS                 | Bmi, BMa                 |                                                           |
| Pegusa lascaris                        | Linguado-da-areia                   | MS                 | Bmi, BMa                 |                                                           |
|                                        |                                     |                    | +                        |                                                           |
| Petromyzon marinus  Platichthys flesus | Lampreia-do-mar<br>Solha-das-pedras | MM                 | Bmi, BMa<br>Bmi, Bma, HP |                                                           |
| Pollachius pollachius                  | Juliana                             | MS                 | HP                       |                                                           |
|                                        |                                     |                    |                          |                                                           |
| Pomatoschistus knerii                  | Caboz                               | MS                 | HZ                       |                                                           |
| Pomatoschistus microps                 | Caboz-comum                         | ES                 | Bmi                      |                                                           |
| Pomatoschistus minutus                 | Caboz-da-areia                      | ES                 | Bmi                      |                                                           |
| Pomatoschistus pictus                  | Caboz-da-areia                      | MS                 | Bmi                      |                                                           |
| Pomatoschistus sp.                     | Caboz                               | ES                 | Bmi                      |                                                           |
| Raja clavata                           | Raia-lenga                          | MS                 | Bmi, BMa                 |                                                           |
| Raja microocellata                     | Raia-zimbreira                      | MS                 | HP                       |                                                           |
| Raja montagui                          | Raia-manchada                       | MS                 | Bmi, BMa                 |                                                           |
| Raja sp.                               | Raia                                | MS                 | Bmi, Bma, HP             |                                                           |
| Raja undulata                          | Raia-curva                          | MS                 | Bmi, BMa                 |                                                           |
| Salmo trutta                           | Truta-marisca                       | А                  | OV                       |                                                           |
| Sardina pilchardus                     | Sardinha                            | MS                 | PL                       |                                                           |
| Sarpa salpa                            | Salema                              | MS                 | PL                       |                                                           |

| Espécies/ <i>Taxa</i> Nome comum |                           | Grupo<br>Ecológico | Grupo<br>Funcional | Espécies sensíveis<br>e/ou com estatuto de<br>conservação |
|----------------------------------|---------------------------|--------------------|--------------------|-----------------------------------------------------------|
| Scomber scombrus                 | Sarda                     | MS                 | PL, HP             |                                                           |
| Scophthalmus maximus             | Pregado                   | MS                 | HP                 |                                                           |
| Scophthalmus rhombus             | Rodovalho                 | MM                 | HP                 |                                                           |
| Scorpaena notata                 | Rascasso-escorpião        | MS                 | Bma, HP            |                                                           |
| Scorpaena porcus                 | Rascasso-de-pintas        | MS                 | Bma, HP            |                                                           |
| Serranus cabrilla                | Serrano-alecrim           | MS                 | Bma, HP            |                                                           |
| Serranus hepatus                 | Serrano-ferreiro          | MS                 | Bma, HP            |                                                           |
| Solea senegalensis               | Linguado-branco           | MM                 | Bmi, BMa           |                                                           |
| Solea solea                      | Linguado-legítimo         | MM                 | Bmi, BMa           |                                                           |
| Solea sp.                        | Linguado                  | MM                 | Bmi, BMa           |                                                           |
| Sparus aurata                    | Dourada                   | MS                 | OV                 |                                                           |
| Sphoeroides spengleri            | Peixe-balão               | MS                 | Bmi, BMa           |                                                           |
| Spicara maena                    | Trombeiro-choupa          | MS                 | OV                 |                                                           |
| Spondyliosoma cantharus          | Choupa                    | MM                 | OV                 |                                                           |
| Sprattus sprattus                | Espadilha                 | MS                 | PL                 |                                                           |
| Symphodus bailloni               | Bodião                    | MS                 | Bmi, BMa           |                                                           |
| Symphodus cinereus               | Bodião-cinzento           | MS                 | Bmi, BMa           |                                                           |
| Symphodus melops                 | Bodião-vulgar             | MS                 | Bmi, BMa           |                                                           |
| Symphodus roissali               | Bodião-manchado           | MS                 | Bmi, BMa           |                                                           |
| Symphodus sp.                    | Bodião                    | MS                 | Bmi, BMa           |                                                           |
| Syngnathus abaster               | Marinha                   | ES                 | Bmi                | S                                                         |
| Syngnathus acus                  | Marinha-comum             | ES                 | Bmi, HP            | S                                                         |
| Syngnathus sp.                   | Marinha                   | ES                 | Bmi, HP            | S                                                         |
| Syngnathus typhle                | Marinha-de-focinho-grosso | ES                 | Bmi, HP            | S                                                         |
| Taurulus bubalis                 | Escorpião-roco            | MS                 | HZ                 |                                                           |
| Torpedo torpedo                  | Tremelga-de-olhos         | MS                 | Bmi, BMa           |                                                           |
| Trachurus trachurus              | Carapau                   | MS                 | Bmi, Bma, HP       |                                                           |
| Trigla lyra                      | Cabra-lira                | MS                 | Bmi, Bma, HP       |                                                           |
| Trisopterus luscus               | Faneca                    | MM                 | Bmi, Bma, HP       |                                                           |
| Umbrina canariensis              | Calafate-das-canárias     | MS                 | Bmi, BMa           |                                                           |
| Zeugopterus regius               | Bruxa                     | MS                 | Bmi, BMa           |                                                           |
| Zeus faber                       | Peixe-galo                | MS                 | Bmi, Bma, HP       |                                                           |

## Anexo V – Normas de qualidade ambiental do estado químico

Quadro V.1 – Normas de qualidade aplicáveis às águas interiores (rios e albufeiras) e biota (peixe de águas interiores e bivalves de águas costeiras).

| Nº  | Nome da Substância                     | Número<br>CAS | Água Superficial Interior<br>NQA-MA <sup>(1)</sup> (μg/l)                                                                                                                                                                            | Água Superficial interior<br>NQA-CMA <sup>(2)</sup> (μg/l)                                                                                                                                                                        | Biota NQA (3 <sup>)</sup><br>(μg/kg de peso<br>húmido) |
|-----|----------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 1   | Alacloro                               | 15972-60-8    | 0,3                                                                                                                                                                                                                                  | 0,7                                                                                                                                                                                                                               | -                                                      |
| 2   | Antraceno                              | 120-12-7      | 0,1                                                                                                                                                                                                                                  | 0,1                                                                                                                                                                                                                               | -                                                      |
| 3   | Atrazina                               | 1912-24-9     | 0,6                                                                                                                                                                                                                                  | 2,0                                                                                                                                                                                                                               | -                                                      |
| 4   | Benzeno                                | 71-43-2       | 10                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                | -                                                      |
| 5   | Éteres difenílicos<br>bromados (PBDE)  | 32534-81-9    | -                                                                                                                                                                                                                                    | 0,14                                                                                                                                                                                                                              | 0,0085                                                 |
| 6   | Cádmio e compostoso de cádmio          | 7440-43-9     | $\leq$ 0,08 (CaCO <sub>3</sub> <40 mg/l)<br>0,08 (40 $\leq$ CaCO <sub>3</sub> <50 mg/l)<br>0,09 (50 $\leq$ CaCO <sub>3</sub> <100 mg/l)<br>0,15 (100 $\leq$ CaCO <sub>3</sub> <200 mg/l)<br>0,25 (CaCO <sub>3</sub> $\geq$ 200 mg/l) | $\leq$ 0,45 (CaCO <sub>3</sub> <40 mg/l)<br>0,45 (40 $\leq$ CaCO <sub>3</sub> <50 mg/l)<br>0,6 (50 $\leq$ CaCO <sub>3</sub> <100 mg/l)<br>0,9 (100 $\leq$ CaCO <sub>3</sub> <200 mg/l)<br>1,5 (CaCO <sub>3</sub> $\geq$ 200 mg/l) | -                                                      |
| 6-A | Tetracloreto de carbono                | 56-23-5       | 12                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                 | -                                                      |
| 7   | Cloroalcanos C10-13                    | 85535-84-8    | 0,4                                                                                                                                                                                                                                  | 1,4                                                                                                                                                                                                                               | -                                                      |
| 8   | Clorfenvinfos                          | 470-90-6      | 0,1                                                                                                                                                                                                                                  | 0,3                                                                                                                                                                                                                               | -                                                      |
| 9   | Clorpirifos (Clorpirifos-<br>etilo)    | 2921-88-2     | 0,03                                                                                                                                                                                                                                 | 0,1                                                                                                                                                                                                                               | -                                                      |
| 9-A | Pesticidas ciclodienos:                |               |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                        |
|     | Aldrina                                | 309-00-2      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                        |
|     | Dieldrina                              | 60-57-1       | ∑ = 0,01                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                 | -                                                      |
|     | Endrina                                | 72-20-8       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                        |
|     | Isodrina                               | 465-73-6      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                        |
| 9-B | DDT total                              | n.a.          | 0,025                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                 | -                                                      |
|     | p, p-DDT                               | 50-29-3       | 0,01                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                 | -                                                      |
| 10  | 1,2-Dicloroetano                       | 107-06-2      | 10                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                 | -                                                      |
| 11  | Diclorometano                          | 75-09-2       | 20                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                 | -                                                      |
| 12  | Ftalato de di(2-etil-hexilo)<br>(DEHP) | 117-81-7      | 1,3                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                 | -                                                      |
| 13  | Diurão                                 | 330-54-1      | 0,2                                                                                                                                                                                                                                  | 1,8                                                                                                                                                                                                                               | -                                                      |
| 14  | Endossulfão                            | 115-29-7      | 0,005                                                                                                                                                                                                                                | 0,01                                                                                                                                                                                                                              | -                                                      |
| 15  | Fluoranteno                            | 206-44-0      | 0,0063                                                                                                                                                                                                                               | 0,12                                                                                                                                                                                                                              | 30                                                     |

| Nº       | Nome da Substância                                            | Número<br>CAS   | Água Superficial Interior<br>NQA-MA <sup>(1)</sup> (μg/l) | Água Superficial interior<br>NQA-CMA <sup>(2)</sup> (μg/l) | Biota NQA (3 <sup>)</sup><br>(µg/kg de peso<br>húmido)         |
|----------|---------------------------------------------------------------|-----------------|-----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|
| 16       | Hexaclorobenzeno                                              | 118-74-1        | -                                                         | 0,05                                                       | 10                                                             |
| 17       | Hexaclorobutadieno                                            | 87-68-3         | -                                                         | 0,6                                                        | 55                                                             |
| 18       | Hexaclorociclo-hexano (lindano)                               | 608-73-1        | 0,02                                                      | 0,04                                                       | -                                                              |
| 19       | Isoproturão                                                   | 34123-59-6      | 0,3                                                       | 1,0                                                        | -                                                              |
| 20       | Chumbo e compostos de chumbo                                  | 7439-92-1       | 1,2                                                       | 14                                                         | -                                                              |
| 21       | Mercúrio e compostos de<br>mercúrio                           | 7439-97-6       | -                                                         | 0,07                                                       | 20                                                             |
| 22       | Naftaleno                                                     | 91-20-3         | 2                                                         | 130                                                        | -                                                              |
| 23       | Níquel e compostos de<br>níquel                               | 7440-02-0       | 4                                                         | 34                                                         | -                                                              |
| 24       | Nonilfenóis (4-nonilfenol)                                    | 84852-15-3      | 0,3                                                       | 2                                                          | -                                                              |
| 25       | Octilfenóis ((4-(1,1',3,3'-<br>tetrametilbutil)-fenol))       | 140-66-9        | 0,1                                                       |                                                            | -                                                              |
| 26       | Pentaclorobenzeno                                             | 608-93-5        | 0,007                                                     |                                                            | -                                                              |
| 27       | Pentaclorofenol                                               | 87-86-5         | 0,4                                                       | 1                                                          | -                                                              |
| 28       | Hidrocarbonetos<br>aromáticos policíclicos<br>(HAP)           | -               |                                                           |                                                            | -                                                              |
|          | Benzo(a)pireno                                                | 50-32-8         | 1,7x10 <sup>-4</sup>                                      | 0,27                                                       | 5                                                              |
|          | Benzo(b)fluoranteno                                           | 205-99-2        | -                                                         | 0,017                                                      | -                                                              |
|          | Benzo(k)fluoranteno                                           | 207-08-9        | -                                                         | 0,017                                                      | -                                                              |
|          | Benzo(g,h,i)perileno                                          | 191-24-2        | -                                                         | 0,0082                                                     | -                                                              |
|          | Indeno(1,2,3-cd)pireno                                        | 193-39-5        | -                                                         | -                                                          | -                                                              |
| 29       | Simazina                                                      | 122-34-9        | 1                                                         | 4                                                          | -                                                              |
| 29-<br>A | Tetracloroeteno                                               | 127-18-4        | 10                                                        | -                                                          | -                                                              |
| 29-<br>B | Tricloroeteno                                                 | 79-01-6         | 10                                                        | -                                                          | -                                                              |
| 30       | Compostos de<br>tributilestanho (catião<br>tributilestanho)   | 36643-28-4      | 0,0002                                                    | 0,0015                                                     | -                                                              |
| 31       | Triclorobenzenos                                              | 12002-48-1      | 0,4                                                       | -                                                          | -                                                              |
| 32       | Triclorometano                                                | 67-66-3         | 2,5                                                       | -                                                          | -                                                              |
| 33       | Trifluralina                                                  | 1582-09-8       | 0,03                                                      | -                                                          | -                                                              |
| 34       | Dicofol                                                       | 115-32-2        | 1,3x10 <sup>-3</sup>                                      | -                                                          | 33                                                             |
| 35       | Ácido<br>perfluorooctanossulfónico<br>e seus derivados (PFOS) | 1763-23-1       | 6,5x10 <sup>-4</sup>                                      | 36                                                         | 9,1                                                            |
| 36       | Quinoxifena                                                   | 124495-18-<br>7 | 0,15                                                      | 2,7                                                        |                                                                |
| 37       | Dioxinas e compostos<br>semelhantes a dioxinas                | -               | -                                                         | -                                                          | Soma<br>PCDD+PCDF+P<br>CB-DL 0,0065<br>µg.kg <sup>-1</sup> TEQ |
| 38       | Aclonifena                                                    | 74070-46-5      | 0,12                                                      | 0,12                                                       | -                                                              |
| 39       | Bifenox                                                       | 42576-02-3      | 0,012                                                     | 0,04                                                       | -                                                              |
| 40       | Cibutrina                                                     | 28159-98-0      | 0,0025                                                    | 0,016                                                      | -                                                              |

| Νº | Nome da Substância                 | Número<br>CAS             | Água Superficial Interior<br>NQA-MA <sup>(1)</sup> (μg/l) | Água Superficial interior<br>NQA-CMA <sup>(2)</sup> (μg/l) | Biota NQA (3 <sup>)</sup><br>(μg/kg de peso<br>húmido) |
|----|------------------------------------|---------------------------|-----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|
| 41 | Cipermetrina                       | 52315-07-8                | 8x10 <sup>-5</sup>                                        | 6x10 <sup>-4</sup>                                         | -                                                      |
| 42 | Diclorvos                          | 62-73-7                   | 6x10 <sup>-4</sup>                                        | 7x10 <sup>-4</sup>                                         | -                                                      |
| 43 | Hexabromociclododecano (HBCDD)     | -                         | 0,0016                                                    | 0,5                                                        | 167                                                    |
| 44 | Heptacloro e heptacloro<br>epóxido | 76-44-<br>8/1024-57-<br>3 | 2x10 <sup>-7</sup>                                        | 3x10 <sup>-4</sup>                                         | 6,7x10 <sup>-3</sup>                                   |
| 45 | Terbutrina                         | 886-50-0                  | 0,065                                                     | 0,34                                                       | -                                                      |

- (1) NQA MA Norma de qualidade ambiental média anual
- (2) NQA-CMA Norma de qualidade ambiental concentração máxima admissível
- (3) A NQA para o fluoranteno e benzo(a)pireno diz respeito a bivalves; A NQA para dioxinas e compostos semelhantes a dioxinas diz respeito a peixes e bivalves. Para as restantes substâncias a NQA diz respeito a peixes.

Quadro V.2 – Normas de qualidade aplicáveis às águas de transição e costeiras

|     |                                    |            | ,                                                                              |                                                                                                                                                                                                                                   |
|-----|------------------------------------|------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nº  | Nome da Substância                 | Número CAS | Águas superficiais de<br>transição e costeiras<br>NQA-MA <sup>(1)</sup> (μg/l) | Águas superficiais de<br>transição e costeiras NQA-<br>CMA <sup>(2)</sup> (μg/l)                                                                                                                                                  |
| 1   | Alacloro                           | 15972-60-8 | 0,3                                                                            | 0,7                                                                                                                                                                                                                               |
| 2   | Antraceno                          | 120-12-7   | 0,1                                                                            | 0,1                                                                                                                                                                                                                               |
| 3   | Atrazina                           | 1912-24-9  | 0,6                                                                            | 2,0                                                                                                                                                                                                                               |
| 4   | Benzeno                            | 71-43-2    | 8                                                                              | 50                                                                                                                                                                                                                                |
| 5   | Éteres difenílicos bromados (PBDE) | 32534-81-9 | -                                                                              | 0,014                                                                                                                                                                                                                             |
| 6   | Cádmio e compostoso de cádmio      | 7440-43-9  | 0,2                                                                            | $\leq 0,45$ (CaCO <sub>3</sub> <40 mg/l)<br>0,45 (40 $\leq$ CaCO <sub>3</sub> <50 mg/l)<br>0,6 (50 $\leq$ CaCO <sub>3</sub> <100 mg/l)<br>0,9 (100 $\leq$ CaCO <sub>3</sub> <200 mg/l)<br>1,5 (CaCO <sub>3</sub> $\geq$ 200 mg/l) |
| 6-A | Tetracloreto de carbono            | 56-23-5    | 12                                                                             | -                                                                                                                                                                                                                                 |
| 7   | Cloroalcanos C10-13                | 85535-84-8 | 0,4                                                                            | 1,4                                                                                                                                                                                                                               |
| 8   | Clorfenvinfos                      | 470-90-6   | 0,1                                                                            | 0,3                                                                                                                                                                                                                               |
| 9   | Clorpirifos (Clorpirifos-etilo)    | 2921-88-2  | 0,03                                                                           | 0,1                                                                                                                                                                                                                               |
| 9-A | Pesticidas ciclodienos:            |            |                                                                                |                                                                                                                                                                                                                                   |
|     | Aldrina                            | 309-00-2   |                                                                                |                                                                                                                                                                                                                                   |
|     | Dieldrina                          | 60-57-1    | ∑ = 0,005                                                                      | -                                                                                                                                                                                                                                 |
|     | Endrina                            | 72-20-8    |                                                                                |                                                                                                                                                                                                                                   |
|     | Isodrina                           | 465-73-6   |                                                                                |                                                                                                                                                                                                                                   |
| 9-B | DDT total                          | n.a.       | 0,025                                                                          | -                                                                                                                                                                                                                                 |
|     | p, p-DDT                           | 50-29-3    | 0,01                                                                           | -                                                                                                                                                                                                                                 |
| 10  | 1,2-Dicloroetano                   | 107-06-2   | 10                                                                             | -                                                                                                                                                                                                                                 |
| 11  | Diclorometano                      | 75-09-2    | 20                                                                             | -                                                                                                                                                                                                                                 |

| Nº   | Nome da Substância                                       | Número CAS  | Águas superficiais de<br>transição e costeiras<br>NQA-MA <sup>(1)</sup> (μg/l) | Águas superficiais de<br>transição e costeiras NQA-<br>CMA <sup>(2)</sup> (μg/I) |
|------|----------------------------------------------------------|-------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 12   | Ftalato de di(2-etil-hexilo) (DEHP)                      | 117-81-7    | 1,3                                                                            | -                                                                                |
| 13   | Diurão                                                   | 330-54-1    | 0,2                                                                            | 1,8                                                                              |
| 14   | Endossulfão                                              | 115-29-7    | 0,005                                                                          | 0,004                                                                            |
| 15   | Fluoranteno                                              | 206-44-0    | 0,0063                                                                         | 0,12                                                                             |
| 16   | Hexaclorobenzeno                                         | 118-74-1    | -                                                                              | 0,05                                                                             |
| 17   | Hexaclorobutadieno                                       | 87-68-3     | -                                                                              | 0,6                                                                              |
| 18   | Hexaclorociclo-hexano (lindano)                          | 608-73-1    | 0,002                                                                          | 0,02                                                                             |
| 19   | Isoproturão                                              | 34123-59-6  | 0,3                                                                            | 1,0                                                                              |
| 20   | Chumbo e compostos de chumbo                             | 7439-92-1   | 1,3                                                                            | 14                                                                               |
| 21   | Mercúrio e compostos de mercúrio                         | 7439-97-6   | -                                                                              | 0,07                                                                             |
| 22   | Naftaleno                                                | 91-20-3     | 2                                                                              | 130                                                                              |
| 23   | Níquel e compostos de níquel                             | 7440-02-0   | 8,6                                                                            | 34                                                                               |
| 24   | Nonilfenóis (4-nonilfenol)                               | 84852-15-3  | 0,3                                                                            | 2,0                                                                              |
| 25   | Octilfenóis ((4-(1,1',3,3'-<br>tetrametilbutil)-fenol))  | 140-66-9    | 0,01                                                                           | -                                                                                |
| 26   | Pentaclorobenzeno                                        | 608-93-5    | 0,0007                                                                         | -                                                                                |
| 27   | Pentaclorofenol                                          | 87-86-5     | 0,4                                                                            | 1                                                                                |
| 28   | Hidrocarbonetos aromáticos policíclicos (HAP)            | -           | -                                                                              | -                                                                                |
|      | Benzo(a)pireno                                           | 50-32-8     | 1,7x10 <sup>-4</sup>                                                           | 0,027                                                                            |
|      | Benzo(b)fluoranteno                                      | 205-99-2    | -                                                                              | 0,017                                                                            |
|      | Benzo(k)fluoranteno                                      | 207-08-9    | -                                                                              | 0,017                                                                            |
|      | Benzo(g,h,i)perileno                                     | 191-24-2    | -                                                                              | 0,0082                                                                           |
|      | Indeno(1,2,3-cd)pireno                                   | 193-39-5    | -                                                                              | -                                                                                |
| 29   | Simazina                                                 | 122-34-9    | 1                                                                              | 4                                                                                |
| 29-A | Tetracloroeteno                                          | 127-18-4    | 10                                                                             | -                                                                                |
| 29-B | Tricloroeteno                                            | 79-01-6     | 10                                                                             | -                                                                                |
| 30   | Compostos de tributilestanho<br>(catião tributilestanho) | 36643-28-4  | 0,0002                                                                         | 0,0015                                                                           |
| 31   | Triclorobenzenos                                         | 12002-48-1  | 0,4                                                                            | -                                                                                |
| 32   | Triclorometano                                           | 67-66-3     | 2,5                                                                            | -                                                                                |
| 33   | Trifluralina                                             | 1582-09-8   | 0,03                                                                           | -                                                                                |
| 34   | Dicofol                                                  | 115-32-2    | 3,2x10 <sup>-5</sup>                                                           | -                                                                                |
| 35   | Ácido perfluorooctanossulfónico e seus derivados (PFOS)  | 1763-23-1   | 1,3x10 <sup>-4</sup>                                                           | 7,2                                                                              |
| 36   | Quinoxifena                                              | 124495-18-7 | 0,015                                                                          | 0,54                                                                             |
| 37   | Dioxinas e compostos semelhantes a dioxinas              | -           | -                                                                              | -                                                                                |
| 38   | Aclonifena                                               | 74070-46-5  | 0,012                                                                          | 0,012                                                                            |
| 39   | Bifenox                                                  | 42576-02-3  | 0,0012                                                                         | 0,004                                                                            |
| 40   | Cibutrina                                                | 28159-98-0  | 0,0025                                                                         | 0,016                                                                            |

| Nº | Nome da Substância              | Número CAS        | Águas superficiais de<br>transição e costeiras<br>NQA-MA <sup>(1)</sup> (μg/l) | Águas superficiais de<br>transição e costeiras NQA-<br>CMA <sup>(2)</sup> (μg/l) |
|----|---------------------------------|-------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 41 | Cipermetrina                    | 52315-07-8        | 8x10 <sup>-6</sup>                                                             | 6x10 <sup>-5</sup>                                                               |
| 42 | Diclorvos                       | 62-73-7           | 6x10 <sup>-5</sup>                                                             | 7x10 <sup>-5</sup>                                                               |
| 43 | Hexabromociclododecano (HBCDD)  | -                 | 0,0008                                                                         | 0,05                                                                             |
| 44 | Heptacloro e heptacloro epóxido | 76-44-8/1024-57-3 | 1x10 <sup>-8</sup>                                                             | 3x10 <sup>-5</sup>                                                               |
| 45 | Terbutrina                      | 886-50-0          | 0,0065                                                                         | 0,034                                                                            |

- NQA MA Norma de qualidade ambiental média anual
   NQA-CMA Norma de qualidade ambiental concentração máxima admissível

# Anexo VI – Exceções aos limiares nas massas de água subterrâneas

### Quadro VI.1 - Exceções aos limiares

| PARÂMETRO              | MASSA DE ÁGUA SUBTERRÂNEA                                               | LIMIAR |
|------------------------|-------------------------------------------------------------------------|--------|
|                        | O33 Caldas da Rainha-Nazaré                                             | 2600   |
| Condutividade          | M3 – Mexilhoeira Grande-Portimão                                        | 3267   |
| (μS/cm)                | M4 – Ferragudo-Albufeira                                                | 4500   |
|                        | M7 Quarteira                                                            | 2800   |
|                        | A0X1RH1 – Maciço Antigo Indiferenciado da Bacia do Minho                | 5,4    |
|                        | A0X1RH2_ZV2006 Maciço Antigo Indiferenciado da Bacia do Cávado          | 5,1    |
|                        | A0X3RH2 Maciço Antigo Indiferenciado da Bacia do Leça                   | 5,1    |
|                        | A0X1RH3 Maciço Antigo Indiferenciado da Bacia do Douro                  | 5,4    |
| рН                     | A0X1RH4 Maciço Antigo Indiferenciado da Bacia do Vouga                  | 5,4    |
|                        | A12 Luso                                                                | 5,0    |
|                        | O19 Alpedriz                                                            | 5,4    |
|                        | O25 – Torres Vedras                                                     | 4,6    |
|                        | A0Z2RH6 – Zona Sul Portuguesa da Bacia do Mira                          | 4,7    |
|                        | A1 – Veiga de Chaves                                                    | 16     |
|                        | A0X2RH4 Maciço Antigo Indiferenciado da Bacia do Mondego                | 12     |
|                        | O01RH4_C2 – Orla Ocidental Indiferenciado da Bacia do Vouga             | 16     |
| Arsénio total          | A0X1RH5 Maciço Antigo Indiferenciado da Bacia do Tejo                   | 11     |
| (μg/I)                 | A4 – Estremoz Cano                                                      | 13     |
|                        | A0Z1RH6_C2 Zona Sul Portuguesa da Bacia do Sado                         | 20     |
|                        | A11 – Elvas – Campo Maior                                               | 12     |
|                        | M17 – Monte Gordo                                                       | 12     |
| Chumbo total<br>(μg/l) | A0X1RH1 – Maciço Antigo Indiferenciado da Bacia do Minho                | 15     |
|                        | O04RH5 – Orla Ocidental Indiferenciado das Bacias das Ribeiras do Oeste | 299    |
|                        | A0Z2RH6 – Zona Sul Portuguesa da Bacia do Mira                          | 399    |
|                        | T6 – Bacia de Alvalade                                                  | 514    |
| Cloreto (mg/l)         | M1 Covões                                                               | 260    |
|                        | M3 – Mexilhoeira Grande-Portimão                                        | 960    |
|                        | M4 – Ferragudo-Albufeira                                                | 270    |
|                        | M6 – Albufeira-Ribeira de Quarteira                                     | 376    |

| PARÂMETRO                | MASSA DE ÁGUA SUBTERRÂNEA                                              | LIMIAR |
|--------------------------|------------------------------------------------------------------------|--------|
|                          | M7 Quarteira                                                           |        |
|                          | M10 – São João da Venda-Quelfes                                        | 473    |
| Sulfato (mg/l)           | O23 Paço                                                               | 460    |
|                          | A0X1RH3 Maciço Antigo Indiferenciado da Bacia do Douro                 |        |
|                          | A0X2RH4 Maciço Antigo Indiferenciado da Bacia do Mondego               |        |
| Alumínio total<br>(μg/l) | O10_C2 – Leirosa–Monte Real                                            |        |
|                          | O29 Louriçal                                                           |        |
|                          | O25 – Torres Vedras                                                    |        |
| Crómio total             | A5 – Elvas-Vila Boim                                                   | 55     |
| (μg/I)                   |                                                                        |        |
| Ferro total              | A0X1RH3 Maciço Antigo Indiferenciado da Bacia do Douro                 | 380    |
| (μg/l)                   | O1_C2 – Quaternário de Aveiro                                          | 420    |
|                          | O2 – Cretácico de Aveiro                                               | 390    |
|                          | O9_C2 – Penela-Tomar                                                   | 310    |
|                          | O10_C2 – Leirosa-Monte Real                                            | 660    |
|                          | O12 – Vieira de Leiria-Marinha Grande                                  | 390    |
|                          | A3 – Monforte-Alter do Chão                                            | 230    |
|                          | O04RH5 – Orla Ocidental Indiferenciado das Bacias das Ribeiras do Tejo | 610    |
|                          | O19 Alpedriz                                                           | 240    |
|                          | O23 Paço                                                               | 320    |
|                          | O25 – Tores Vedras                                                     | 3280   |
|                          | A0X1RH6_C2 – Maciço Antigo Indiferenciado da Bacia do Sado             | 740    |
|                          | A0Z1RH6_C2 – Zona Sul Portuguesa da Bacia do Sado                      | 380    |
|                          | A0Z2RH6 Zona Sul Portuguesa da Bacia do Mira                           | 3400   |
|                          | A0Z1RH7_C2 Zona Sul Portuguesa da Bacia do Guadiana                    | 720    |
|                          | M17 – Monte Gordo                                                      | 840    |
|                          | A0Z1RH8_C2 Zona Sul Portuguesa das Bacias das Ribeiras do Barlavento   | 960    |
|                          | A0Z3RH8_C2 Zona Sul Portuguesa das Bacias das Ribeiras do Sotavento    | 410    |
|                          | M2 – Almádena-Odeáxere                                                 | 340    |
|                          | M3 – Mexilhoeira Grande-Portimão                                       | 430    |
|                          | M4 – Ferragudo-Albufeira                                               | 1560   |
|                          | M6 – Albufeira-Ribeira de Quarteira                                    | 1090   |
|                          | M7 Quarteira                                                           | 490    |
|                          | M8 – São Brás de Alportel                                              | 960    |
|                          | M9 – Almansil-Medronhal                                                | 950    |
|                          | M10 – São João da Venda-Quelfes                                        | 880    |
|                          | M11 – Chão de Cevada-Quinta João de Ourém                              | 580    |
|                          | M13 – Peral-Moncarapacho                                               | 420    |
|                          | M14 Malhão                                                             | 650    |
|                          | M15 – Luz-Tavira                                                       | 220    |
|                          | M16 – São Bartolomeu                                                   | 400    |
|                          | M18 e M19 – Campina de Faro – Subsistemas de Vale de Lobo e Faro       | 840    |
|                          | A0X4RH2_ZV2006 – Maciço Antigo Indiferenciado da Bacia do Cávado       | 60     |
|                          | A0X1RH3 – Maciço Antigo Indiferenciado da Bacia do Douro               | 170    |
| Manganês total           | A1 – Veiga de Chaves                                                   | 140    |
| (μg/l)                   | A0X1RH4 – Maciço Antigo Indiferenciado da Bacia do Vouga               | 140    |
|                          | A0X2RH4 – Maciço Antigo Indiferenciado da Bacia do Mondego             | 140    |
|                          | O01RH4_C2 – Orla Ocidental Indiferenciado da Bacia do Vouga            | 110    |

| PARÂMETRO    | MASSA DE ÁGUA SUBTERRÂNEA                                             | LIMIAR |
|--------------|-----------------------------------------------------------------------|--------|
|              | O1_C2 – Quaternário de Aveiro                                         | 120    |
|              | O10_C2 – Leirosa-Monte Real                                           | 230    |
|              | A0X1RH5 – Maciço Antigo Indiferenciado da Bacia do Tejo               | 140    |
|              | A3 – Monforte-Alter do Chão                                           | 60     |
|              | O01RH5_C2 Orla Ocidental Indiferenciado da Bacia do Tejo              | 70     |
|              | O04RH5 Orla Ocidental Indiferenciado das Bacias das Ribeiras do Oeste | 150    |
|              | O23 Paço                                                              | 370    |
|              | O25 – Torres Vedras                                                   | 600    |
|              | O28 – Pisões-Atrozela                                                 | 850    |
|              | O33 – Caldas da Rainha Nazaré                                         | 80     |
|              | T7 – Aluviões do Tejo                                                 | 360    |
|              | A0X1RH6_C2 Maciço Antigo Indiferenciado da Bacia do Sado              | 200    |
|              | A0Z1RH6 C2 – Zona Sul Portuguesa da Bacia do Sado                     | 380    |
|              | A0Z2RH6 Zona Sul Portuguesa da Bacia do Mira                          | 2640   |
|              | A0Z1RH7_C2 Zona Sul Portuguesa da Bacia do Guadiana                   | 760    |
|              | M17 – Monte Gordo                                                     | 90     |
|              | A0Z1RH8_C2 Zona Sul Portuguesa das Bacias das Ribeiras do Barlavento  | 730    |
|              | A0Z4RH8 – Várzea de Aljezur                                           | 250    |
|              | M3 – Mexilhoeira Grande-Portimão                                      | 140    |
|              | M6 – Albufeira-Ribeira de Quarteira                                   | 90     |
|              |                                                                       |        |
|              | M8 – São Brás de Alportel                                             | 80     |
|              | M10 – São João da Venda-Quelfes                                       | 90     |
|              | M16 – São Bartolomeu                                                  | 80     |
|              | O14 – Pousos-Caranguejeira                                            | 28     |
| Níquel total | O19 Alpedriz                                                          | 40     |
| (μg/I)       | O25 – Torres Vedras                                                   | 42     |
|              | A0Z2RH6 Zona Sul Portuguesa da Bacia do Mira                          | 54     |
|              | A0Z2RH8_C2 Zona Sul Portuguesa da Bacia do Arade                      | 50     |
|              | A0X1RH1 – Maciço Antigo Indiferenciado da Bacia do Minho              | 97     |
|              | A0X1RH3 – Maciço Antigo Indiferenciado da Bacia do Douro              | 170    |
|              | A1 – Veiga de Chaves                                                  | 63     |
|              | A0X1RH4 – Maciço Antigo Indiferenciado da Bacia do Vouga              | 83     |
|              | A0X2RH4 – Maciço Antigo Indiferenciado da Bacia do Mondego            | 62     |
|              | O2 – Cretácico de Aveiro                                              | 70     |
|              | O5 Tentúgal                                                           | 59     |
|              | 07 – Figueira da Foz-Gesteira                                         | 70     |
|              | O31_C2 – Condeixa-Alfarelos                                           | 77     |
| Zinco total  | A0X1RH5 Maciço Antigo Indiferenciado da Bacia do Tejo                 | 65     |
| (μg/I)       | A2 Escusa                                                             | 53     |
|              | A3 – Monforte-Alter do Chão                                           | 60     |
|              | A4 – Estremoz-Cano                                                    | 82     |
|              | O01RH5_C2 Orla Ocidental Indiferenciado da Bacia do Tejo              | 62     |
|              | O04RH5 Orla Ocidental Indiferenciado das Bacias das Ribeiras do Oeste | 164    |
|              | O15 Ourém                                                             | 91     |
|              | O18 Maceira                                                           | 200    |
|              | O19 Alpedriz                                                          | 69     |
|              | O20_C2 – Maciço Calcário Estremenho                                   | 65     |
|              |                                                                       |        |

| PARÂMETRO | MASSA DE ÁGUA SUBTERRÂNEA                                        | LIMIAR |
|-----------|------------------------------------------------------------------|--------|
|           | O25 – Torres Vedras                                              | 581    |
|           | O28 – Pisões-Atrozela                                            | 79     |
|           | O33 – Caldas da Rainha-Nazaré                                    | 204    |
|           | T1_C2 – Bacia do Tejo-Sado/Margem Direita                        | 90     |
|           | T3 Bacia do Tejo-Sado/Margem Esquerda                            | 66     |
|           | T7 – Aluviões do Tejo                                            | 94     |
|           | A0X1RH6_C2 Maciço Antigo Indiferenciado da Bacia do Sado         | 82     |
|           | A0Z1RH6_C2 Zona Sul Portuguesa da Bacia do Sado                  | 168    |
|           | A0Z2RH6 Zona Sul Portuguesa da Bacia do Mira                     | 170    |
|           | A6 – Viana do Alentejo-Alvito                                    | 148    |
|           | A0X1RH7_C2 Maciço Antigo Indiferenciado da Bacia do Guadiana     | 145    |
|           | A11 – Elvas-Campo Maior                                          | 64     |
|           | A0Z2RH8_C2 Zona Sul Portuguesa da Bacia do Arade                 | 215    |
|           | M3 Mexilhoeira Grande-Portimão                                   | 109    |
|           | M4 Ferragudo-Albufeira                                           | 113    |
|           | M5 – Querença-Silves                                             | 93     |
|           | M6 Albufeira-Ribeira de Quarteira                                | 164    |
|           | M7 Quarteira                                                     | 98     |
|           | M8 São Brás de Alportel                                          | 172    |
|           | M10 São João da Venda-Quelfes                                    | 52     |
|           | M11 Chão de Cevada-Quinta João de Ourém                          | 262    |
|           | M16 São Bartolomeu                                               | 200    |
|           | M18 e M19 – Campina de Faro – Subsistemas de Vale de Lobo e Faro | 249    |



Rua da Murgueira, 9 Zambujal - Alfragide 2610-124 Amadora

geral@apambiente.pt T. (+351) 21 472 82 00

apambiente.pt

