Relatório do
Subgrupo Energia para uma
Estratégia Nacional de Adaptação às
Alterações Climáticas
Medidas e Ações de Adaptação do
SETOR ENERGÉTICO

Dezembro 2012
Índice Geral

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice Geral</td>
<td>2</td>
</tr>
<tr>
<td>Índice de Figuras</td>
<td>3</td>
</tr>
<tr>
<td>Índice de Tabelas</td>
<td>4</td>
</tr>
<tr>
<td>Sumário Executivo</td>
<td>6</td>
</tr>
<tr>
<td>Capítulo 1 - Introdução</td>
<td>7</td>
</tr>
<tr>
<td>1.1. Enquadramento</td>
<td>7</td>
</tr>
<tr>
<td>1.2. ENAAC - Objetivos e sua abordagem</td>
<td>10</td>
</tr>
<tr>
<td>1.3. Entidades Envolvidas no Grupo “Energia e Indústria” (Subgrupo Energia)</td>
<td>13</td>
</tr>
<tr>
<td>1.4. Trabalho Desenvolvido pelo Subgrupo Energia</td>
<td>16</td>
</tr>
<tr>
<td>Capítulo 2 – Metodologia Aplicada</td>
<td>20</td>
</tr>
<tr>
<td>2.1. Trabalho Desenvolvido pelo Subgrupo Energia</td>
<td>20</td>
</tr>
<tr>
<td>Capítulo 3 – Vulnerabilidades do setor energético às alterações climáticas</td>
<td>24</td>
</tr>
<tr>
<td>3.1. Infraestruturas Lineares</td>
<td>24</td>
</tr>
<tr>
<td>3.2. Infraestruturas Fixas</td>
<td>29</td>
</tr>
<tr>
<td>Capítulo 4 – Recomendações das Medidas e Ações de Adaptação às Alterações Climáticas</td>
<td>36</td>
</tr>
<tr>
<td>4.1. Medidas de adaptação transversais</td>
<td>38</td>
</tr>
<tr>
<td>4.2. Medidas de Adaptação Específicas</td>
<td>42</td>
</tr>
<tr>
<td>Capítulo 5 – Barreiras à Adaptação</td>
<td>50</td>
</tr>
<tr>
<td>5.1. Barreiras à adaptação genéricas</td>
<td>50</td>
</tr>
<tr>
<td>5.2. Barreiras à adaptação do setor</td>
<td>51</td>
</tr>
<tr>
<td>5.3. Interações com outros setores</td>
<td>53</td>
</tr>
<tr>
<td>Capítulo 6 – Conclusões e recomendações futuras</td>
<td>54</td>
</tr>
<tr>
<td>Referências Bibliográficas:</td>
<td>56</td>
</tr>
<tr>
<td>Siglas</td>
<td>57</td>
</tr>
<tr>
<td>Glossário</td>
<td>59</td>
</tr>
<tr>
<td>Anexo I – Cenários Energéticos e Climáticos</td>
<td>61</td>
</tr>
<tr>
<td>Anexo II – Fichas B – Caraterização das Áreas de Risco e Vulnerabilidade</td>
<td>87</td>
</tr>
<tr>
<td>Anexo III – Fichas C – Ficha de Risco Climático</td>
<td>146</td>
</tr>
</tbody>
</table>
Índice de Figuras

Figura 1 - Cronograma dos trabalhos desenvolvidos pelo Subgrupo Energia.................20
Índice de Tabelas

Tabela 1 - Variáveis climáticas críticas associadas às vulnerabilidades principais identificadas nas infraestruturas lineares ... 24
Tabela 2 - Variáveis climáticas críticas associadas às vulnerabilidades principais identificadas nas infraestruturas de produção de eletricidade ... 29
Tabela 3 - Variáveis climáticas críticas associadas às vulnerabilidades principais identificadas nas atividades de produção, armazenamento e abastecimento de matérias-primas e expedição de produtos petrolíferos acabados e gás natural................................. 34
Tabela 4 - Tipos de medidas de adaptação .. 37
Tabela 5 - Medidas de adaptação identificadas para as infraestruturas lineares – transporte e distribuição de eletricidade ... 42
Tabela 6: Medidas de adaptação identificadas para as infraestruturas lineares – transporte de produtos petrolíferos ... 44
Tabela 7 - Medidas de adaptação identificadas para as infraestruturas lineares – transporte de gás .. 45
Tabela 8 - Medidas de adaptação identificadas para as infraestruturas fixas – eletricidade, abastecimento de matérias-primas e produção e expedição de produtos petrolíferos acabados e gás ... 46
Agradecimentos

O Subgrupo Energia pretende expressar o sincero agradecimento ao Professor Doutor Paulo Ferrão, ao Professor Doutor Tiago Domingos, ao Professor Doutor Rodrigo Proença de Oliveira e muito especialmente à Engenheira Simone Ferreira Pio pelo contributo que deram no enriquecimento do presente relatório.
Sumário Executivo

No âmbito da Estratégia Nacional de Adaptação às Alterações Climáticas (ENAAC) aprovada através da Resolução do Conselho de Ministros n.º 24/2010, de 1 de abril, foram identificados nove setores estratégicos para desenvolverem ações de adaptação aos efeitos das alterações climáticas. Cada setor estratégico foi enquadrado num Grupo de Trabalho setorial. O Subgrupo do setor Energia elaborou o Relatório que teve como objetivo prioritário a identificação de medidas e ações de adaptação, minimização e prevenção para as vulnerabilidades identificadas nas infraestruturas das empresas do setor energético. Este Relatório foi estruturado em seis capítulos que contemplam o âmbito, os objetivos, a metodologia adotada, a caracterização das áreas de risco e vulnerabilidades das principais infraestruturas do setor energético, a identificação das medidas e ações de adaptação às alterações climáticas e as barreiras à adaptação.

O Relatório conclui que as maiores empresas já empreenderam um conjunto de medidas, algumas representando investimentos consideráveis, que visam diminuir o impacte das alterações climáticas. No entanto, foram identificadas ações, que devem ser empreendidas num futuro próximo, de modo a permitir uma melhor adaptação às alterações climáticas por parte das empresas e da sociedade em geral. Do conjunto destas ações evidencia-se: a necessidade de se definir um modelo de governação para a adaptação às alterações climáticas, que inclua normativo adequado para o incentivo a medidas de adaptação e a articulação entre todas as partes interessadas; a importância da integração nos instrumentos de gestão territorial das medidas identificadas nas contribuições setoriais para a ENAAC; a integração nos planos de emergência internos da abordagem de adaptação às alterações climáticas; e a disponibilização de toda a informação sobre as alterações climáticas num sítio de internet de acesso público.
Capítulo 1 - Introdução

O aumento do conhecimento e da consciencialização sobre as alterações climáticas e sobre os impactes verificados e esperados sobre os sistemas naturais, a atividade económica, o tecido social e a vida dos cidadãos, tem vindo a ditar um crescente interesse pelo desenvolvimento de políticas de adaptação às alterações climáticas.

A Estratégia Nacional de Adaptação às Alterações Climáticas (ENAAC) vem concretizar o reconhecimento da dimensão nacional da vertente de adaptação às alterações climáticas, dando-lhe maior visibilidade política e complementando os esforços que os países terão de fazer conducentes ao controlo das emissões de gases com efeitos de estufa.

1.1. Enquadramento

As alterações climáticas têm vindo a ser identificadas como uma das maiores ameaças ambientais, sociais e económicas que o planeta enfrenta na actualidade (Stern, 2006).

Segundo o 4.º relatório de avaliação do IPCC (Intergovernmental Panel on Climate Change), é altamente provável que o aumento observado da temperatura média global, desde meados do século XX, seja uma consequência do aumento da concentração dos gases com efeito de estufa de origem antropogénica.

Nesse relatório, ficaram evidentes as assimetrias regionais na distribuição de impactes, sendo em particular identificada a região Mediterrânica e o Sul da Europa como uma das mais vulneráveis e que irá sofrer impactes negativos mais significativos. Para o Sul da Europa, as projeções apontam para temperaturas mais altas e situações de seca, redução das disponibilidades hídricas e consequente diminuição da contribuição da potência hídrica, implicações no turismo e, em geral, redução da produtividade agrícola. São também projetados aumentos do risco na saúde devido ao aumento das ondas de calor e à frequência dos fogos florestais. Apesar da incerteza que essas previsões de longo prazo ainda comportam, o relatório do IPCC assenta já numa base analítica de mudança climática verificada. Na verdade, as observações diretas de alterações do clima atual permitem inferir que o aquecimento do sistema climático é inequívoco, evidenciado pelo aumento das temperaturas globais do ar e dos oceanos, fusão do gelo e neve e subida do nível médio do mar. Evocando o princípio da precaução, torna-se premente a consciencialização das sociedades, a nível global, para a adaptação às alterações climáticas.

Em Portugal, esta reflexão tem sido objeto de vários projetos de investigação, destacando-se os Projetos SIAM e SIAM II (Climate Change in Portugal, Scenarios, Impacts and Adaptation Measures), e o Projeto CLIMAAT (Clima e Meteorologia dos Arquipélagos Atlânticos), fundamentais para o desenvolvimento dos trabalhos da ENAAC.
O Projeto SIAM teve como objetivo a realização da primeira avaliação integrada dos impactes e medidas de adaptação às alterações climáticas em Portugal Continental no século XXI e foi também a primeira realizada para um país do Sul da Europa. Os estudos basearam-se em cenários prospetivos do clima obtidos a partir de modelos de circulação geral da atmosfera e incidiram sobre um conjunto de setores socioeconómicos e sistemas biofísicos, designadamente recursos hídricos, zonas costeiras, agricultura, saúde humana, energia, florestas, biodiversidade e pescas. O relatório final da primeira fase do Projeto foi editado em 2002.

O projeto CLIMAAT visou a implementação da cooperação científica destinada ao desenvolvimento de metodologias específicas para a abordagem do estudo da meteorologia e do clima das regiões insulares atlânticas e da sua envolvente. O projeto CLIMAAT visou, também a recolha, compilação da informação climática relevante e ainda, a promoção da posição geoestratégica dos territórios insulares atlânticos no domínio da climatologia e meteorologia por se revelarem plataformas ideais para observação situadas numa vasta zona rarefeita de pontos de monitorização.

Com o objetivo de contrariar esta tendência, foi criada uma plataforma Europeia para a Adaptação Climática - CLIMATE-ADAPT - designada por EU Clearing House mechanism². Esta plataforma, com cariz dinâmico, conta com um repositório de um conjunto importante de informação sobre esta temática, nomeadamente, informação sobre estratégias nacionais, regionais e setoriais de adaptação às alterações climáticas, ferramentas para trabalhar a dimensão adaptação de forma prática, referências de estudos de caso pesquisáveis por setor e/ou impacte.

¹ Esta componente consistiu na divulgação dos resultados obtidos no projeto SIAM I e na auscultação de um conjunto de partes interessadas de modo a obter contributos para o projeto SIAM II.
² Disponível para consulta em http://climate-adapt.eea.europa.eu/web/guest/home
Medidas de adaptação

Conceitualmente, a «Adaptação» (às alterações climáticas, doravante designada simplesmente por «Adaptação») vertente do combate às alterações climáticas onde se enquadra a ENAAC, é um ajustamento nos sistemas naturais ou humanos como resposta a estímulos climáticos verificados ou esperados, que moderem danos ou explorem oportunidades benéficas. A «Adaptação» pode ser:

- «Antecipatória»: Medidas tomadas antes dos impactes das alterações climáticas serem observados. Também referida como adaptação proactiva;
- «Autónoma»: Medidas tomadas, não como resposta consciente a estímulos climáticos, mas que são desencadeadas por alterações ecológicas em sistemas naturais e por alterações de mercado e de bem-estar em sistemas humanos. Também referida como adaptação espontânea;
- «Planeada»: Medidas que resultam de decisão política deliberada, baseadas na consciência de que as condições se alteraram ou estarão prestes a alterar-se, e que são necessárias para regressar a, ou manter, um estado desejado.

Segundo o sitio da União Europeia: “Adaptation to Climate Change”, a «Adaptação» consiste na antecipação dos efeitos adversos das alterações climáticas e na tomada de ação adequada para prevenir ou minimizar o dano que elas podem causar. A ação antecipatória permite diminuir custos futuros. Tendo em conta os efeitos de caráter transversal das alterações climáticas as estratégias de adaptação são necessárias a todos os níveis da sociedade.

Medidas de mitigação

A outra componente fundamental do combate às alterações climáticas é a mitigação, componente esta que tem tido maior desenvolvimento. A este respeito, pese embora não se insira no âmbito do presente trabalho, é relevante destacar, para efeitos de enquadramento, os aspetos seguidamente apresentados.

O Protocolo de Quioto, para além de uma série de questões mais vastas, estabeleceu que a União Europeia, como um todo, está obrigada a uma redução das emissões de gases com efeito de estufa (GEE) de 8% em relação às emissões verificadas em 1990. No acordo de partilha de responsabilidades a nível comunitário ficou estabelecido que Portugal limitaria as suas emissões em 27% acima do valor das emissões verificadas em 1990, até 2012.

3 De acordo com as definições do IPCC (IPCC,2001) e com a Resolução do Conselho de Ministros nº24/2010 que aprovou a ENAAC.

4 http://ec.europa.eu/clima/policies/adaptation/index_en.htm
O montante de emissões de GEE que Portugal não poderá exceder no período compreendido entre 2008 e 2012, ou seja, a Quantidade Atribuída (QA), é de 382 milhões de toneladas de equivalentes de CO₂ (Mt CO₂e), representando um valor anual médio de 76,39 Mt CO₂e.

À data de 23 de novembro de 2012, o Sistema de Previsão do Cumprimento de Quioto estima que no período de cumprimento do Protocolo de Quioto 2008-2012, Portugal esteja 0,32% acima da quantidade que lhe foi atribuída, o que, de acordo com a Agência Portuguesa do Ambiente, equivale a emitir mais 1,21 Mt CO₂e do que o teto estabelecido de emissões de GEE.

Importa evidenciar que no âmbito da mitigação, Portugal dispõe de três instrumentos fundamentais para o cumprimento dos seus objetivos:

- O Programa Nacional para as Alterações Climáticas;
- O Plano Nacional de Atribuição de Licenças de Emissão para o período 2008-2012, que enquadraram, em Portugal, o comércio europeu de licenças de emissão de GEE (CELE) neste período. O CELE terá continuidade no período 2013-2020 (fase III) através das novas disposições enquadradas pela Diretiva n.º 2009/29/CE, do Parlamento Europeu e do Conselho, de 23 de abril de 2009, que altera a Diretiva n.º 2003/87/CE, e que se encontra em fase final de transposição;
- O Fundo Português de Carbono.

1.2. ENAAC - Objetivos e sua abordagem

O Governo Português definiu na ENAAC um conjunto de linhas de força para que Portugal se possa preparar para as alterações de clima mais prováveis, respondendo de forma conveniente com medidas de adaptação a aplicar em diversos setores. Com efeito, a temática das alterações climáticas em geral, e a adaptação aos seus efeitos em particular, são desafios transversais que requerem o envolvimento de um vasto conjunto de setores e uma abordagem integrada.

A ENAAC foi o resultado de um processo de análise e consulta interministerial conduzido pela Comissão para as Alterações Climáticas – CAC. Em 2009 foi constituído um Grupo de Trabalho interministerial, composto por representantes de organismos públicos. As bases para a proposta da ENAAC foram apresentadas ao Fórum para as Alterações Climáticas em 2009, e uma proposta de Estratégia foi objeto de consulta pública. A ENAAC foi aprovada pela Resolução do Conselho de Ministros n.º 24/2010, de 1 de abril. A ENAAC pretende aumentar a consciencialização sobre as alterações climáticas, manter atualizado e disponível o conhecimento científico sobre as mesmas e os seus impactes e, ainda, reforçar as medidas que Portugal deverá adotar, à semelhança da comunidade internacional, com vista ao controlo dos seus efeitos.

Neste sentido, foram definidos quatro objetivos para a ENAAC:
Informação e Conhecimento – constitui a base de todo o exercício de adaptação às alterações climáticas e foca-se sobre a necessidade de consolidar e desenvolver uma base sólida científica e técnica;

Redução da Vulnerabilidade e Aumento da Capacidade de Resposta – constitui o fulcro desta estratégia, e corresponde ao trabalho de identificação, definição de prioridades e aplicação das principais medidas de adaptação;

Promoção da Participação, Sensibilização e Divulgação – identifica o imperativo de levar a todos os agentes sociais o conhecimento sobre alterações climáticas e a transmitir a necessidade de ação e, sobretudo, suscitar a maior participação possível por parte desses agentes na definição e aplicação desta estratégia;

Desenvolvimento da Cooperação a Nível Internacional – aborda as responsabilidades de Portugal em matéria de cooperação internacional na área da adaptação às alterações climáticas, bem como no acompanhamento das negociações levadas a cabo nos diversos fora internacionais.

Segundo a Resolução do Conselho de Ministros n.º 24/2010, o primeiro período de aplicação da ENAAC teria duração de dois anos, após o qual seria elaborado um relatório de progresso e, com base na evolução do conhecimento científico sobre estas matérias, seriam desenvolvidos novos objetivos e metas. Deveria ainda ser elaborado um relatório detalhado, a cada cinco anos, o qual incluiria, a apresentação global dos resultados alcançados, as áreas em desenvolvimento, as questões emergentes que careçam de investigação e aprofundamento, as recomendações que se entendam adequadas, por objetivo ou setor e ainda a discussão e avaliação da revisão da ENAAC.

A adaptação às alterações climáticas é um tema intersectorial que requer um esforço intenso de coordenação, pelo que foi criado um grupo de coordenação, constituído por:

- O ex Comité Executivo da Comissão para as Alterações Climáticas (CECAC), atualmente integrado na Agência Portuguesa do Ambiente (APA) que coordena;
- Coordenadores dos grupos de trabalho setoriais;
- Um representante do Ministério dos Negócios Estrangeiros;
- Um representante de cada uma das Regiões Autónomas; e
- Um representante da Associação Nacional de Municípios Portugueses.

Dada a sua abrangência intersectorial, a aplicação da Estratégia que envolve vários atores públicos e privados, ficou sob a coordenação interministerial da Comissão para as Alterações Climáticas, apoiada pelo CECAC.
Também segundo a mesma Resolução do Conselho de Ministros foram identificados os domínios e os setores estratégicos onde se iriam focar os esforços de identificação de impactes e a definição de medidas de adaptação. A seleção dos setores adotou uma metodologia que procurou capitalizar o conhecimento e o envolvimento das partes interessadas, com uma contenção do número total de grupos setoriais que permitisse manter a coerência da estratégia. Foram identificados como setores estratégicos em relação aos quais seriam desenvolvidas ações de adaptação aos efeitos das alterações climáticas:

- Saúde humana;
- Energia e indústria;
- Ordenamento do território e cidades;
- Agricultura, floresta e pescas;
- Turismo;
- Recursos hídricos;
- Biodiversidade;
- Zonas costeiras;
- Segurança de pessoas e bens.

Cada setor estratégico foi enquadrado num grupo de trabalho setorial. As entidades coordenadoras dos vários grupos setoriais eram, à data da publicação da Resolução do Conselho de Ministros:

- CECAC (Coordenação geral);
- Instituto de Meteorologia (IM);
- Agência Portuguesa do Ambiente (APA);
- Instituto Português de Apoio ao Desenvolvimento (IPAD);
- Instituto da Água (INAG);
- Direção-Geral do Ordenamento do Território e Desenvolvimento Urbano (DGOTDU);
- Autoridade Nacional de Proteção Civil (ANPC);
- Direção-Geral de Saúde (DGS);
- Direção-Geral de Energia e Geologia (DGE).

5 Entretanto já várias destas instituições foram alvo de reestruturação, pelo que se mantém a designação que tinham a 1 de abril de 2010.
• Direção-Geral de Atividades Económicas (DGAE);
• Instituto do Turismo de Portugal;
• Gabinete de Prospecção e Planeamento do Ministério da Agricultura, Desenvolvimento Rural e Pescas (GPP/MADRP);
• Instituto da Conservação da Natureza e Biodiversidade (ICNB);
• Associação Nacional de Municípios Portugueses (ANMP);
• Região Autónoma dos Açores (RAA);
• Região Autónoma da Madeira (RAM).

1.3. Entidades Envolvidas no Grupo “Energia e Indústria” (Subgrupo Energia)

A Resolução do Conselho de Ministros n.º 24/2010, estabeleceu que os grupos de trabalho setoriais deveriam operar de forma autónoma, mas com um programa de atividades comum. As funções dos grupos de trabalho setoriais são:

• A tipificação, a identificação e, quando possível, a quantificação dos principais impactes para o setor que decorrem dos cenários climáticos em análise;
• A identificação de linhas de ação e de medidas de adaptação que permitam reduzir ou mitigar esses impactes;
• A identificação da necessidade e o lançamento de estudos setoriais específicos para aprofundar aspectos considerados prioritários para a elaboração de medidas de adaptação setorial;
• A identificação de fontes de financiamento para a aplicação de ações de adaptação ou sugestão de novas fontes de financiamento;
• O desenvolvimento de ferramentas metodológicas para proceder à “validação climática” de políticas e medidas na sua área específica;
• O início da “validação climática” dos instrumentos legais em elaboração, avaliação ou em revisão;
• O início da aplicação da metodologia de “validação climática” dos instrumentos legais em vigor.

A coordenação de cada grupo de trabalho é assegurada pelo(s) relevante(s) organismo(s) da administração central com competências no setor em análise, os responsáveis nomeados para o setor Energia e Indústria foram a Direção Geral de Energia e Geologia, a Direção Geral de Atividades Económicas e o Ministério da Economia, da Inovação e do Desenvolvimento.
Por sua vez a composição dos grupos de trabalho foi aprovada pelo grupo de coordenação mediante proposta do coordenador do respetivo grupo.

Logo no início dos trabalhos o Grupo de Trabalho Setorial “Energia e Indústria” foi dividido em dois Subgrupos: o Subgrupo da Energia e o Subgrupo da Indústria de modo a otimizar o processo. O Subgrupo da Energia integra os seguintes representantes:

- Direção-Geral de Energia e Geologia (DGEG);
- Direção-Geral das Atividades Económicas (DGAE);
- EDP-Energias de Portugal;
- EDP Produção;
- EDP Distribuição;
- GALP Energia;
- REN-Redes Energéticas Nacionais;
- Entidade Reguladora dos Serviços Energéticos (ERSE);
- APREN-Associação de Energias Renováveis;
- TURBOGAS, Produtora Energética, S.A.;
- Tejo Energia, S.A.;
- ELECGAS, S.A..

A **DGEG**, é a entidade da Administração Pública Portuguesa, que tem por missão contribuir para a conceção, promoção e avaliação das políticas relativas à energia e aos recursos geológicos, numa ótica do desenvolvimento sustentável e de garantia da segurança do abastecimento. Tem como atribuições: contribuir para a definição, realização e avaliação da execução das políticas energética e dos recursos geológicos; apoiar a participação do Ministério da Economia e do Emprego (MEE) no domínio comunitário e internacional, na área da energia e dos recursos geológicos; assegurar o planeamento do aprovisionamento, produção e utilização dos recursos energéticos; e assegurar o apoio no âmbito da gestão das reservas petrolíferas. A DGEG é a entidade coordenadora do Subgrupo Energia.

A **DGAE**, é a entidade da Administração Pública Portuguesa, que tem por missão a promoção e o desenvolvimento de um ambiente institucional mais favorável à competitividade, à inovação empresarial e ao desenvolvimento regional, através do apoio à conceção, execução, divulgação e avaliação de políticas dirigidas às atividades industriais, do comércio, do turismo e dos serviços, assegurando a coordenação das relações internacionais no âmbito de atuação do MEE.
O **Grupo EDP**, é um dos maiores operadores do setor energético da Península Ibérica e o maior grupo industrial português. O grupo EDP é uma multinacional baseada em Portugal que está presente em 12 países, sendo os mais relevantes a Espanha, o Brasil e os Estados Unidos. O Grupo desenvolve as suas atividades nas áreas de produção, comercialização e distribuição de electricidade e comercialização e distribuição de gás.

A **EDP Produção** é a empresa do Grupo EDP responsável pela promoção, dinamização e gestão, de modo direto ou indireto, das instalações, empreendimentos e atividades na área da produção convencional e venda de energia, nomeadamente sob a forma de eletricidade, e pela elaboração de estudos e o desenvolvimento de projetos no mesmo âmbito, bem como pela prestação de quaisquer outros serviços conexos.

A **EDP Distribuição** é uma empresa pertencente ao Grupo EDP, que exerce as atividades de Operador da Rede de Distribuição em Portugal Continental, sendo titular da concessão para a exploração da Rede Nacional de Distribuição (RND) de Energia Elétrica em Média Tensão (MT) e Alta Tensão (AT), e das concessões municipais de distribuição de energia elétrica em Baixa Tensão (BT).

A **GALP Energia** é um grupo integrado de produtos petrolíferos e gás natural de Portugal, com atividades que se estendem desde a exploração e produção de petróleo e gás natural, à refinaria e distribuição de produtos petrolíferos, à distribuição e venda de gás natural e à geração de energia elétrica.

A **REN** é uma empresa que atua em duas áreas de negócio: o transporte de eletricidade em muito alta tensão e a gestão técnica global do Sistema Elétrico Nacional e o transporte de gás natural em alta pressão e a gestão técnica global do Sistema Nacional de Gás Natural, sendo titular das respetivas concessões de serviço público.

A **ERSE** é a entidade responsável pela regulação dos setores do gás natural e da eletricidade e tem por missão proteger adequadamente os interesses dos consumidores em relação a preços, qualidade de serviço, acesso à informação e segurança de abastecimento; fomentar a concorrência eficiente, nomeadamente no quadro da construção do mercado interno da energia, garantindo às empresas reguladas o equilíbrio económico-financeiro no âmbito de uma gestão adequada e eficiente; estimular a utilização eficiente da energia e a defesa do meio ambiente; e ainda arbitrar e resolver litígios.

A **APREN** é uma associação sem fins lucrativos, que tem por objetivo coordenar, representar e defender os interesses comuns dos seus membros, dando-lhes uma ferramenta para a participação no desenvolvimento de políticas energéticas e ambientais relacionados com o uso dos recursos naturais renováveis para a produção de energia elétrica.

A **TURBOGÁS** é a proprietária da Central de Ciclo Combinado da Tapada do Outeiro, a gás natural.
A **Tejo Energia** é a proprietária da Central Termoeléctrica do Pego, a carvão.

A **ELECGAS** é a proprietária e o operador da Central de Ciclo Combinado do Pego (ELECGAS), a gás natural.

A Equipa de Trabalho do Subgrupo Energia é constituída pelos seguintes membros:

- Eng.ª Isabel Soares (DGEG);
- Eng.ª Luísa Silvério (DGEG);
- Dr. Ângelo Neves (DGAE);
- Eng.º Neves de Carvalho (EDP);
- Eng.ª Luísa Almeida Serra (EDP);
- Eng.º João Gonçalves (EDP Produção) substituído pelo Eng.º Seca Teixeira a partir de fevereiro de 2012 (EDP Produção);
- Eng.ª Patrícia Veloso (EDP Produção);
- Eng.º João Garcia Monteiro (EDP Distribuição);
- Eng.ª Sandra Aparício (GALP Energia);
- Eng.ª Nicole Ribeiro (GALP Energia);
- Eng.º Francisco Parada (REN);
- Eng.º Helder Milheiras (ERSE);
- Eng.ª Isabel Cancela de Abreu (APREN);
- Dr.ª Carla Silva (TURBOGÁS);
- Eng.º António Silva (Tejo Energia);
- Eng.º Nuno Figueiredo (ELECGAS).

1.4. Trabalho Desenvolvido pelo Subgrupo Energia

1.4.1. Âmbito do Trabalho

O presente relatório consta da contribuição do Subgrupo Energia para a ENAAC, que tem como objetivo prioritário a identificação de medidas e ações de adaptação, focando-se na minimização e prevenção para as vulnerabilidades identificadas nas infraestruturas das empresas do Setor Energético face aos efeitos inevitáveis das alterações climáticas em Portugal.
Assim, este incluiu a identificação de medidas de adaptação de caráter transversal e específicas para os riscos climáticos que se entenderam como mais significativos associados às instalações do setor da energia.

As medidas de adaptação devem ser a resposta que os decisores e operadores terão que adotar para fazer face aos riscos e impactes previamente identificados, resultantes das alterações climáticas. Essas medidas poderão anular ou reduzir significativamente o risco de danos; potenciar os benefícios; reduzir ou mitigar as consequências de fenómenos resultantes das alterações do clima.

A implementação das medidas de adaptação deve ser precedida de uma análise dos benefícios esperados (que dependem do impacte que se mitigá e da probabilidade dele ocorrer), bem como dos custos incorridos na sua execução.

1.4.2. Finalidades do Trabalho

Para além do objetivo prioritário referido, destacam-se os seguintes objetivos específicos:

- Caracterização das áreas de risco e vulnerabilidade das infraestruturas lineares e fixas;
- Identificação dos impactes de curto, médio e longo prazo nas infraestruturas lineares e fixas;
- Identificação de ações e medidas de adaptação para os riscos das infraestruturas lineares e fixas;
- Identificação das medidas de adaptação de caráter transversal;
- Identificação das principais barreiras existentes à adaptação e das interdependências com outros Setores;
- Identificação das principais lacunas de conhecimento em termos do setor energético no âmbito da adaptação às alterações climáticas e recomendação de ações para colmatação dessas lacunas.

As medidas de adaptação devem ser a resposta que os decisores e operadores terão que adotar para fazer face aos riscos e impactes previamente identificados, resultantes das alterações climáticas. Essas medidas poderão anular ou reduzir significativamente o risco de danos; potenciar os benefícios; reduzir ou mitigar as consequências de fenómenos resultantes das alterações do clima.

A implementação das medidas de adaptação deve ser precedida de uma análise dos benefícios esperados (que dependem do impacte que se mitigá e da probabilidade dele ocorrer), bem como dos custos incorridos na sua execução.
1.4.3. Estrutura do Relatório

O presente documento do Subgrupo Energia encontra-se estruturado em sete capítulos e três anexos:

- Neste Capítulo 1, é feito um breve enquadramento à ENAAC, são caracterizadas as Entidades do Subgrupo Energia e definidos o âmbito e os objetivos do trabalho;
- No Capítulo 2, é definida a metodologia adotada;
- No Capítulo 3, são caracterizadas as principais áreas de risco e vulnerabilidade identificadas nas instalações do Setor Energético, subdivididas em infraestruturas lineares (transporte e distribuição de eletricidade e transporte de combustíveis) e infraestruturas fixas (relacionadas com as atividades de produção de eletricidade, abastecimento de matérias-primas e produção e expedição de produtos petrolíferos e gás natural);
- No Capítulo 4, são apresentadas as medidas e ações de adaptação às alterações climáticas, a partir das vulnerabilidades e dos impactes identificados nas infraestruturas descritas no capítulo 3, bem como medidas de aplicação transversal;
- No Capítulo 5, são identificadas as principais barreiras à adaptação e as interdependências existentes com outros Setores;
- No Capítulo 6, são apresentadas as principais conclusões e identificadas as lacunas existentes em termos de conhecimento;
- No Anexo I, são apresentados os Cenários Prospetivos para o Setor Energético e os Cenários Climáticos;
- No Anexo II, são apresentadas as Fichas B – caracterização das principais áreas de risco e vulnerabilidade identificadas nas infraestruturas lineares e fixas do Setor Energético;
- No Anexo III, são apresentadas as Fichas C – fichas de risco climático das infraestruturas lineares e fixas do Setor Energético.

Em conformidade com a Resolução do Conselho de Ministros n.º 24/2010, em complemento à participação direta nos grupos de trabalho, foi promovida a participação, na revisão técnica do relatório, de:

- Professor Paulo Ferrão (Universidade Técnica de Lisboa- Instituto Superior Técnico) - Investigador e membro do meio académico com competências específicas no setor;
- Professor Tiago Domingos (Universidade Técnica de Lisboa- Instituto Superior Técnico) - Investigador e membro do meio académico com competências específicas no setor;
- Professor Rodrigo Proença de Oliveira – Investigador, membro do meio académico com competências específicas no setor (Universidade Técnica de Lisboa- Instituto Superior
Técnico), Presidente de uma organização não-governamental de ambiente (Associação Portuguesa de Recursos Hídricos):

Capítulo 2 – Metodologia Aplicada

Para o desenvolvimento do trabalho do Subgrupo Energia foi delineada uma metodologia que assentou na decomposição em sete atividades, de acordo com a cronologia que se ilustra na figura seguinte.

![Cronograma dos trabalhos desenvolvidos pelo Subgrupo Energia](image)

Legenda:

A – Desenvolvimento da metodologia de trabalho

B – Caracterização das áreas de risco e vulnerabilidade das infraestruturas lineares e fixas

C – Identificação dos impactes de curto, médio e longo prazo das infraestruturas lineares e fixas

D – Ações e medidas de adaptação para os riscos das infraestruturas lineares e fixas

E – Sinergias entre os trabalhos desenvolvidos pelas várias entidades do grupo

F – Recomendações das medidas de adaptação e respetivo calendário de implementação das infraestruturas lineares e fixas

G – Conclusão dos trabalhos do subgrupo “energia”

H- Apresentação ao CECAC do relatório do Subgrupo “energia”

Figura 1 - Cronograma dos trabalhos desenvolvidos pelo Subgrupo Energia

2.1. Trabalho Desenvolvido pelo Subgrupo Energia

Como ponto de partida, auscultaram-se as entidades participantes no Subgrupo Energia a fim de aferir se já tinham sido desenvolvidos, a título individual, trabalhos/estudos sobre as implicações das alterações climáticas. Tendo por base o conhecimento e a experiência dos membros do Subgrupo Energia sobre a temática das alterações climáticas e a adaptação, complementada com a análise de bibliografia relevante, a primeira Atividade (A), consistiu essencialmente na definição de diretrizes que orientassem a prossecução dos trabalhos a desenvolver.
Considerando os diferentes tipos de instalações existentes em cada setor de atividade, entendeu-se adequado agrupar as instalações em:

- Infraestruturas lineares, que incluem as linhas de transporte e de distribuição de eletricidade, bem como outras infraestruturas de transporte de combustíveis;
- Infraestruturas fixas, que compreendem as instalações de produção, transformação e armazenagem de energia (incluindo produtos petrolíferos e gás natural), assim como terminais portuários, em particular os terminais de petróleo e gás e carvão.

Após este ponto prévio foram desenvolvidos trabalhos de caraterização das áreas de risco e vulnerabilidades (Atividade B) e identificação de impactes (Atividade C), em duas etapas essencialmente de recolha da informação existente, com base na experiência de cada entidade e os dados históricos de eventos relacionados com as alterações climáticas, incidindo, em particular, na análise dos eventos extremos. A opção de concentrar a análise em eventos extremos, deveu-se ao facto de não ser expectável que a maior parte da componente da oferta do setor energético nacional esteja associada a impactes negativos significativos, tendo em conta que a resposta obtida no âmbito do Projeto SIAM (Santos et al 2001) do lado da oferta, indica:

- Impactes não significativos nas centrais termoelétricas, uma vez que estas instalações, de um modo geral, apresentam menor vulnerabilidade;
- Possibilidade de aumento de produção nas centrais hidroelétricas a norte, pelo previsível aumento de disponibilidade de água associado ao incremento de precipitação nesta região;
- Redução da produção nas restantes centrais hidroelétricas, pela previsível diminuição de disponibilidade de água associada ao decréscimo da precipitação nas regiões Centro e Sul;
- Aumento das perdas no transporte e produção de eletricidade em cerca de 1,6%, pelo aumento da temperatura;
- Melhor desempenho dos sistemas solares, bem como efeitos pouco significativos nos sistemas oceânicos e eólicos, pelo aumento da temperatura.

É de referir que os cenários climáticos considerados se encontram reunidos no Anexo I. Neste anexo é apresentada uma análise climatológica para o período de 1961-1990, assim como uma avaliação das tendências climáticas predominantes para Portugal Continental.

A Atividade C, identificação de impactes, teve também um caráter prospetivo, uma vez que os impactes em causa foram caraterizados para cenários de futuro de médio e longo prazo, entendendo-se tais prazos para os horizontes 2020 e 2030, respetivamente.
A opção pelos anos de 2020 e 2030 foi assumida de modo consensual pelo Subgrupo de Trabalho ao constatar não ser possível utilizar os novos cenários climáticos de longo prazo, os quais estão ainda em fase de preparação. A opção por aquelas datas deve-se ao facto de permitir delimitar um período temporal de médio/longo prazo, embora não demasiado afastado do presente, para o qual o Subgrupo de Trabalho assumiu uma suficiente previsibilidade da evolução dos padrões climáticos, designadamente quanto à tipologia dos fenómenos meteorológicos extremos, tendo-se assumido, para efeitos de análise prospetiva, que seria em tudo semelhante à que se tem registado nos últimos anos, divergindo apenas no sentido de maiores intensidade, frequência e expressão geográfica.

A opção por aquelas datas teve também por base um horizonte em que os cenários de oferta de energia apresentam ainda um grau de previsibilidade razoável (essencialmente 2020), em particular no que respeita ao conhecimento da evolução das tecnologias utilizadas e aos períodos de vida útil das instalações presentemente em serviço ou que, por se encontrarem em fase adiantada de projeto e construção, entrarão em funcionamento no período até 2020.

No Anexo I apresentam-se também os cenários energéticos, onde se pretendem resumir as estratégias e tendências delineadas, quer no contexto internacional, como nacional. Salienta-se que, as projeções consideradas têm por base a melhor informação existente e disponível à data.

De modo a facilitar a recolha e sistematização da informação, para as Atividades B e C foram construídas fichas tipo, uma por cada tipo de atividade, constantes dos Anexos II e III.

Para a Atividade B, foram preenchidas fichas por instalação ou instalações do mesmo tipo, nas quais se procedeu à caracterização de áreas de risco e vulnerabilidades, através da descrição de:

- Ocorrências passadas, compreendendo aspetos gerais das ocorrência;
- Consequências dos fenómenos;
- Avaliação de risco;
- Ações aplicadas, nomeadamente de resposta a emergências; e
- Ações corretivas e preventivas.

Para a Atividade C optou-se pela mesma metodologia de preenchimento de fichas, nas quais se procedeu à identificação das medidas de adaptação para cada variável climática. As fichas da atividade C são compostas por:

- Caracterização geral da instalação;
- Cartografia relevante;
• Variáveis climáticas críticas para a instalação e dos respetivos limites operacionais de projeto;
• Vulnerabilidades relevantes e impactes, tendo em conta os diferentes horizontes temporais;
• Medidas de adaptação de caráter transversal ou específicas;
• Lacunas de conhecimento, fronteiras de responsabilidade e responsável do projeto.

Na identificação de vulnerabilidades foram consideradas as instalações mais relevantes na perspetiva de cada uma das entidades representadas no Subgrupo de Trabalho e foram apenas indicados os cenários temporais relevantes para as instalações em causa. A título de exemplo, refere-se que não foram consideradas na análise instalações cuja desativação se perspetiva num horizonte de 2 a 3 anos.

Seguidamente procedeu-se a um trabalho de consolidação, consubstanciado nas atividades D e E, que corresponderam à identificação de sinergias, ações e medidas de adaptação adotadas ou a adotar e com interação com outros setores. Destas atividades decorreram medidas de vários níveis, a desenvolver pelos setores privado e público, que foram catalogadas como medidas de:

• Aplicação transversal;
• Prevenção estratégica;
• Prevenção pontuais;
• Gestão de emergências;

e que na prática consubstanciaram as atividades F e G.

Com estas atividades, que resultaram de um trabalho de análise conjunta por parte dos membros do Subgrupo de Trabalho, obteve-se uma caracterização global para o setor do lado da oferta de energia, mas identificando também reações associadas à procura de energia (atividade H).

Face às barreiras e lacunas de conhecimento identificadas ao longo das diferentes etapas, identificou-se um conjunto de recomendações a adotar a fim de ultrapassar as dificuldades encontradas, estando as mesmas explanadas no capítulo final do presente relatório.
Capítulo 3 – Vulnerabilidades do setor energético às alterações climáticas

De acordo com a comunidade científica internacional, as alterações climáticas estarão na origem do aumento provável de fenómenos climáticos extremos (IPCC, 2001), os quais se tem verificado que têm impacte nas infraestruturas do setor energético, em particular nas de caráter linear, como sejam as redes de transporte e distribuição de eletricidade e gás natural.

No presente capítulo apresentam-se as principais vulnerabilidades às alterações climáticas para as infraestruturas mais relevantes das atividades do setor energético. Tal como na atividade de recolha de informação por parte dos membros do grupo de trabalho, a apresentação das vulnerabilidades surge associada à variável climática crítica que a origina. Por uma questão organizativa, optou-se por sistematizar grande parte da informação em tabelas.

A análise das vulnerabilidades das infraestruturas foi efetuada à luz dos dados e tendências climáticas disponíveis à data de elaboração do presente relatório, tendo em conta informação histórica, informação resultante de recolha bibliográfica e a realidade do país. Foram identificadas as situações consideradas mais relevantes, atendendo às características das infraestruturas do setor energético a nível nacional (essencialmente associadas à sua localização geográfica).

Acrece referir que existem alguns aspetos relevantes, que são desenvolvidos e apresentados após as referidas tabelas.

Neste capítulo apresenta-se também uma panorâmica do setor da energia face às medidas de adaptação em curso e que têm permitido diminuir o grau de vulnerabilidade das diversas atividades, a qual se apresenta após as tabelas referidas.

Refere-se ainda que o detalhe da descrição dos principais fenómenos climáticos extremos e o seu impacte nas várias infraestruturas está disponível no Anexo II do presente relatório.

3.1. Infraestruturas Lineares

<table>
<thead>
<tr>
<th>Variáveis climáticas críticas</th>
<th>Vulnerabilidades</th>
<th>Impactes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aumento de temperatura, com</td>
<td>Efeitos diretos</td>
<td></td>
</tr>
<tr>
<td>aumento da frequência de</td>
<td>nas linhas</td>
<td></td>
</tr>
<tr>
<td>incêndios florestais</td>
<td>aéreas, aumento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>da flecha dos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>condutores,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>avarias de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equipamentos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sensíveis em</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subestações,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>entre outros,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>podendo as</td>
<td></td>
</tr>
<tr>
<td></td>
<td>linhas sair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>de serviço</td>
<td></td>
</tr>
<tr>
<td>Variáveis climáticas críticas</td>
<td>Vulnerabilidades</td>
<td>Impactes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Precipitação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aumento de frequência e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intensidade de nevões fortes,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>podendo causar queda de árvores,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bem como esforços anormais nas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linhas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redução da precipitação</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aumento de frequência e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intensidade de ventos ciclónicos,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>podendo originar danos diversos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nas linhas, torres, antenas de rádio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 De acordo com os artigos 10º, 12º e 13º do Regulamento de Segurança de Linhas Elétricas de Alta Tensão.
Variáveis climáticas críticas

<table>
<thead>
<tr>
<th></th>
<th>Vulnerabilidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>e suportes de comunicação para Sistemas de Comando e Controlo da rede elétrica</td>
<td>Ventos de intensidade excecional (superiores a 125 km/h), podendo originar queda de árvores sobre os condutores, podendo ocasionar saídas de serviço prolongadas (afeta fundamentalmente as redes de distribuição).</td>
</tr>
</tbody>
</table>

Infraestruturas lineares: transporte de combustíveis

<table>
<thead>
<tr>
<th></th>
<th>Vulnerabilidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento da frequência e severidade dos períodos de seca, podendo causar a contração do solo a longo prazo</td>
<td>A ocorrência de secas e a consequente contração do solo pode provocar danos estruturais em gasodutos/oleodutos, podendo pôr em causa a integridade física dos mesmos, assim como o transporte de produtos petrolíferos e gás natural</td>
</tr>
<tr>
<td>Aumento da frequência de eventos de precipitação intensa que originem deslizamento de terras/derrocadas do meio de suporte</td>
<td>O deslizamento de terras pode causar danos estruturais em gasodutos/oleodutos. Para além da ameaça da integridade física da infraestrutura, este tipo de evento pode também dificultar o acesso e/ou atuação em caso de emergência</td>
</tr>
<tr>
<td>Aumento da frequência de eventos de precipitação intensa</td>
<td>Danificação de vias de comunicação que impeçam o transporte de combustíveis e que possam impedir o funcionamento de centrais termoelétricas, com vulnerabilidade maior para as centrais a biomassa e para centrais a carvão</td>
</tr>
<tr>
<td>Queda intensa de neve ("nevão")</td>
<td>Rotura da tubagem, falha no abastecimento</td>
</tr>
<tr>
<td>Queda intensa de neve ("nevão")</td>
<td>Em fase de construção poderá provocar atraso das obras/entrada em exploração.</td>
</tr>
</tbody>
</table>

Pode causar limitação do acesso; falta de

7 De acordo com os artigos 10º, 12º e 13º do Regulamento de Segurança de Linhas Eléctricas de Alta Tensão.
Variáveis climáticas críticas

<table>
<thead>
<tr>
<th></th>
<th>Vulnerabilidades</th>
<th>Impactes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vento</td>
<td>Ventos fortes</td>
<td>manutenção/reparação e cessação do abastecimento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em fase de construção poderá provocar atraso das obras/entrada em exploração.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pode causar queda de objetos/equipamentos/estruturas; acidentes com trabalhadores; danos na tubagem, falhas de abastecimento</td>
</tr>
</tbody>
</table>

Para além dos aspectos supra identificados, importa desenvolver alguns outros, conforme se apresenta de seguida.

No que respeita aos ventos ciclónicos, e porque existe alguma confusão de conceitos relativamente a eventos de grande tempestade, é de destacar a informação constante da *Technical Brochure 344 do CIGRÉ (Conference Internationale des Grands Reseaux Electrique)* em que, por definição, estes últimos são aqueles que afetam várias regiões e países em simultâneo.

Assim, os acontecimentos ocorridos nos últimos anos em Portugal Continental podem ser definidos como ventos ou outros fenómenos de alguma intensidade, nomeadamente tufões, tornados, ciclones, nevões, que são mais localizados. Existem ainda outros fatores que servem para definir um grande evento como sejam os danos diretos causados nas redes, as saídas imprevistas de serviço, os diversos impactes na população, a utilização ou não de sistemas de emergência e a necessidade de rever, ou não, as condições de projeto.

Os fenómenos meteorológicos8 extremos que têm afetado as infraestruturas de transporte e distribuição de energia têm sido muito localizados e basicamente caracterizados por ação de ciclones, chuva, granizo e neve. Estes eventos têm vindo a ganhar expressão nos últimos anos, sendo mais evidente a partir de 2009:

- Tornado de Silves e de Lagoa em novembro de 2012;
- Tempestade tropical Nadine em 2012 nos Açores;

8 Fenómenos meteorológicos são eventos localizados no tempo e no espaço. Fenómenos climáticos são fenómenos em que existe alteração substancial e persistente das variáveis meteorológicas, por exemplo a situação de seca.
• Furacão Gordon em 2012 nos Açores;
• Temporal Xynthia, fevereiro e março de 2010;
• Tornado na zona de Tomar em dezembro de 2010;
• Temporal Klaus, em janeiro de 2009, que percorreu essencialmente França, Espanha e Itália e também Portugal, tendo afetando basicamente redes de média tensão e baixa tensão;
• Temporal do Oeste, dezembro de 2009;
• Tempestade tropical, Vince em 2005 em Portugal continental.

As empresas de transporte e distribuição de energia têm vindo a melhorar significativamente o seu conhecimento sobre as formas de atuar e reagir na ocorrência de fenómenos climáticos extremos, melhorando os procedimentos e consequentemente a resposta a implementar em situações de crise. A título de exemplo, na empresa de distribuição de eletricidade, nomeadamente, nas redes de média e baixa tensão, o tempo de reposição integral do serviço, que chegou a ser cerca de 72 horas nos primeiros incidentes de 2009, diminuiu para menos de 24 horas nos fenómenos climáticos extremos que ocorreram no final de 2010.

A curto prazo e face ao histórico de fenómenos climáticos extremos registados, não são projetados impactes significativos especificamente nas infraestruturas lineares de transporte de produtos petrolíferos e de gás natural. No entanto, a médio/longo prazo, o aumento da ocorrência e intensidade de eventos extremos pode potenciar impactes significativos nessas infraestruturas, com consequências a nível do transporte por oleodutos ou por gasodutos.

Contudo, face à natureza das projeções climáticas existentes, com um grau considerável de incerteza associado, e à própria natureza das infraestruturas, a atuação num horizonte temporal de médio/longo prazo carecerá de uma análise mais aprofundada e em articulação com os planos de adaptação que estão a ser delineados a nível do planeamento territorial, nomeadamente, de ordenamento do território e de gestão de recursos hídricos.
3.2. Infraestruturas Fixas

3.2.1. Identificação das variáveis climáticas críticas para as atividades de produção de eletricidade

Tabela 2 - Variáveis climáticas críticas associadas às vulnerabilidades principais identificadas nas infraestruturas de produção de eletricidade

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>Variáveis climáticas críticas</th>
<th>Vulnerabilidades</th>
<th>Impactes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequenas centrais de produção de eletricidade</td>
<td>Precipitação</td>
<td>Aumento da frequência de eventos de precipitação intensa</td>
<td>Inundação em centrais hídricas ou térmicas, causando a saída de serviço de centrais</td>
</tr>
<tr>
<td>Centrais de produção de eletricidade</td>
<td>Precipitação</td>
<td>Aumento da frequência de eventos de precipitação intensa</td>
<td>Caudal elevado dos rios poderá provocar o bloqueio dos filtros das bombas de captação de água</td>
</tr>
<tr>
<td>Centrais hidroelétricas</td>
<td>Precipitação</td>
<td>Aumento do caudal que origine arrasto de grandes quantidades de materiais diversos nos cursos de água.</td>
<td>Aumento da frequência das operações de remoção destes materiais junto de barragens e eventuais problemas de funcionamento de centrais termelétricas por colmatação dos sistemas de adução dos circuitos de refrigeração.</td>
</tr>
<tr>
<td></td>
<td>Precipitação</td>
<td>Aumento da frequência de eventos de precipitação intensa</td>
<td>Redução do valor da queda útil, traduzindo-se no limite, na saída de serviço das centrais hídricas.</td>
</tr>
<tr>
<td></td>
<td>Precipitação</td>
<td>Aumento da frequência de eventos de precipitação intensa</td>
<td>Obriga à intervenção das centrais hídricas na laminagem de cheias, com a deslocação da produção para horas de menor rentabilidade</td>
</tr>
<tr>
<td>Tecnologia</td>
<td>Variáveis climáticas críticas</td>
<td>Vulnerabilidades</td>
<td>Impactes</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Centrais termoelétricas</td>
<td>Aumento de temperatura que pode causar ondas de calor</td>
<td>Aquecimento da fonte fria das centrais térmicas, originando a redução da sua eficiência, com a consequente diminuição da capacidade de geração</td>
<td>Deterioração da qualidade da água dos cursos de água que servem os sistemas de abastecimento das centrais térmicas, que podem ficar fora de serviço</td>
</tr>
<tr>
<td>Temperatura</td>
<td>Aumento de temperatura que pode causar ondas de calor</td>
<td>Aumento da temperatura da água, podendo causar um crescimento anómalo de algas que perturbe o funcionamento do circuito de refrigeração, podendo obrigar à saída de serviço</td>
<td></td>
</tr>
<tr>
<td>Precipitação</td>
<td>Aumento da severidade das secas, com diminuição dos níveis freáticos, aumentando o risco de intrusão salina</td>
<td>Problemas acrescidos de manutenção, na sequência do aumento dos níveis de corrosão dos equipamentos e dos problemas de segurança de processos e equipamentos que lhes estão associados</td>
<td></td>
</tr>
<tr>
<td>Vento</td>
<td>Aumento de frequência e intensidade dos ventos</td>
<td>Insuficiente caudal para funcionamento do sistema de refrigeração e para abastecimento de água, podendo originar paragem em centrais térmicas</td>
<td>Liberação de algas que perturba o funcionamento do circuito de</td>
</tr>
<tr>
<td>Tecnologia</td>
<td>Variáveis climáticas críticas</td>
<td>Vulnerabilidades</td>
<td>Impactes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Centrais termoelétricas a biomassa</td>
<td></td>
<td>Aumento da temperatura, com aumento da probabilidade de incêndios nas áreas de armazenagem de matéria-prima</td>
<td>Perigo do incêndio se alastrar para as infraestruturas circundantes, paragem de operação da central quer devido a possíveis danos causados por incêndio como por indisponibilidade de matéria-prima</td>
</tr>
<tr>
<td>Ação conjunta de vários agentes climáticos</td>
<td></td>
<td>Produtividade e distribuição geográfica das espécies florestais, degradação de ecossistemas</td>
<td>Diminuição da disponibilidade de matéria-prima (biomassa), o que pode levar à dificuldade de operação das centrais por falta de recurso</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Profusão de agentes bióticos (invasoras, pragas e doenças), como por exemplo o nemáptodo do pinheiro</td>
<td>No caso do aproveitamento energético da biomassa, a morte de espécies florestais poderá levar ao aumento da disponibilidade de matéria-prima para queima</td>
</tr>
<tr>
<td>Eólica</td>
<td>Precipitação</td>
<td>Aumento da frequência e intensidade de nevões fortes, podendo prejudicar o funcionamento dos aerogeradores</td>
<td>A acumulação de gelo/neve nas pás pode condicionar a boa exploração dos aerogeradores, podendo levar à saída de serviço</td>
</tr>
<tr>
<td></td>
<td>Vento</td>
<td>Aumento de frequência e intensidade de ventos fortes, podendo obrigar à paragem dos aerogeradores</td>
<td>Eventual paragem dos aerogeradores por motivos de segurança, com perda de tempo de produção</td>
</tr>
</tbody>
</table>
Para além dos elementos supra identificados, no que respeita às infraestruturas de produção de eletricidade, importa desenvolver alguns aspetos.

Conforme referido no capítulo 2, a caraterização do setor foi feita pelo lado da oferta de energia, mas foi possível identificar também reações associadas à procura de energia, destacando-se, pela sua relevância, dois efeitos expectáveis:

- O aumento anómalo da procura de eletricidade para arrefecimento em ocasiões de ondas de calor, que se esperam mais frequentes com as alterações climáticas, que poderá ainda ser coincidente com a diminuição de eficiência das centrais termoelétricas, verificando-se um efeito cumulativo; e
- O aumento de procura de eletricidade para aquecimento, com consequente sobrecarga de rede elétrica, em vagas de frio, que são cada vez mais frequentes.

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>Variáveis climáticas críticas</th>
<th>Vulnerabilidades</th>
<th>Impactes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Fotovoltaico</td>
<td>Temperatura</td>
<td>Aumento da frequência de vagas de calor</td>
<td>Podem originar problemas nos sistemas de controlo e consequente saída de serviço</td>
</tr>
<tr>
<td></td>
<td>Precipitação</td>
<td>Aumento da frequência de eventos de precipitação intensa</td>
<td>Períodos de chuvas muito intensas podem originar inundações imprevisíveis que causem infiltrações nos painéis por enchacamento e consequente saída de serviço</td>
</tr>
<tr>
<td></td>
<td>Vento</td>
<td>Aumento de frequência e intensidade de ventos fortes, podendo causar quebra de vidros dos painéis</td>
<td>Pode ocasionar a quebra do vidro dos painéis solares fotovoltaicos, levando à saída de serviço</td>
</tr>
</tbody>
</table>
Em relação à atividade de produção de eletricidade, é de referir a importância de se avaliar a dimensão dos impactes em função da potência instalada de determinada tecnologia, assim como em função da potência unitária de cada instalação de determinada tecnologia. Ou seja, dever-se-á olhar com maior atenção para os impactes relativos às tecnologias de maior potência instalada, ou aqueles que afectam centrais de maior potência\(^9\). As centrais térmicas a biomassa residual florestal, quer as dedicadas quer as de cogeração, estão dependentes da disponibilidade do recurso, e portanto são afetadas indiretamente pelas variáveis climáticas que afetam a biomassa.

Os centros electroprodutores de cogeração, independentemente do recurso que utilizam, estão sempre associados a uma determinada indústria, a fonte de consumo da energia térmica produzida, pelo que são indiretamente afetados pelas suas vulnerabilidades.

Tal como no caso das infraestruturas lineares, o subsetor de produção convencional de eletricidade tem vindo a melhorar significativamente o seu conhecimento sobre as formas de atuar e reagir em infraestruturas fixas na ocorrência de fenómenos climáticos extremos.

Em termos de centros de produção hídrica, as afetações mais frequentes devidas a fatores climáticos têm sido as cheias. Importa referir que os principais centros de produção hídrica estão dimensionados para a chamada “cheia do milénio”, possuindo descarregadores de cheia dimensionados para gerir grandes afluências.

Mesmo assim, no âmbito da última revisão do Regulamento de Segurança de Barragens houve necessidade de proceder à instalação de medidas de segurança complementares em algumas barragens, estando em particular, a ser instalados descarregadores complementares de cheias nas barragens de Paradela, Salamonde e Caniçada, na bacia do rio Cávado.

Em termos de centros de produção térmica, os eventos que têm tido mais impacte sobre a generalidade das instalações são os fenómenos hidrológicos de magnitude significativa, o vento forte com ondulação marítima acentuada e a seca.

3.2.2. Identificação das variáveis climáticas críticas para as atividades de produção e abastecimento de matérias-primas, armazenamento e expedição de produtos petroliéros acabados e gás natural

À semelhança do acima mencionado, destaca-se que numa perspetiva de curto prazo e considerando a pouca expressão dos efeitos decorrentes de fenómenos climáticos registados à data, não são projetados impactes significativos nas infraestruturas fixas analisadas. No entanto, tendo por base as tendências climáticas que a comunidade científica apresenta, as principais vulnerabilidades destas infraestruturas, por variável climatológica crítica, são as seguintes:

\(^9\) No caso de centros eletroprodutores que utilizam fontes de energia renováveis como a energia eólica ou solar, apesar da potência total da tecnologia poder ser relevante, a verdade é que esta potência está distribuída por vários equipamentos individuais. Importa portanto diferenciar as vulnerabilidades passíveis de impactar todo o conjunto, daquelas que afetam apenas um dos equipamentos.
<table>
<thead>
<tr>
<th>Variáveis climáticas críticas</th>
<th>Vulnerabilidades</th>
<th>Impactes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>Aumento de temperatura que pode causar ondas de calor</td>
<td>Afetação das características das matérias-primas e produtos petrolíferos acabados e gás natural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diminuição do desempenho das Torres de Refrigeração de Refinarias, por operação a temperaturas mais elevadas que os valores médios diários no período de referência</td>
</tr>
<tr>
<td>Precipitação</td>
<td>Aumento da frequência de eventos de precipitação intensa que originem inundações</td>
<td>Incapacidade de escoamento e tratamento de efluentes líquidos gerados e sobrenchimento das bacias de contenção presentes nas refinarias</td>
</tr>
<tr>
<td></td>
<td>Diminuição da frequência de eventos de precipitação que originem seca extrema</td>
<td>Escassez de água de refrigeração</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aumento de pressão do reservatório, libertação de gás para a atmosfera e inflamação</td>
</tr>
<tr>
<td>Vento</td>
<td>Aumento de frequência e intensidade de ventos fortes</td>
<td>Afetação da segurança das infraestruturas de produção de produtos petrolíferos com unidades e/ou estruturas em altura</td>
</tr>
<tr>
<td>Vento e Altura significativa das ondas</td>
<td>Agravamento das situações de temporal que cause forte agitação marítima e consequente erosão costeira</td>
<td>Possível afetação da estabilidade das infraestruturas portuárias, devido a inundações, intensificação de erosão costeira. Afetação da estabilidade e das condições de segurança nas operações de carga e descarga de navios/monobóia (dependente do tipo de navio e do tipo de cais).</td>
</tr>
<tr>
<td>Subida do nível médio do mar</td>
<td>Sobrelevação efetiva do mar, projetada</td>
<td>Impactes que carecem de melhor estudo (no entanto, existe a possibilidade de afetação das</td>
</tr>
</tbody>
</table>
Tendo por base as vulnerabilidades identificadas e, para além dos impactes acima mencionados, podem enunciar-se outros riscos técnicos e implicações operacionais decorrentes, que poderão pôr em causa a segurança de infraestruturas e suspensão de produção e distribuição de produtos petrolíferos e gás natural, nomeadamente:

- Potenciais atrasos na entrega de matérias-primas destes produtos, devido a uma potencial afetação na segurança da infraestrutura considerada (ex. impactes associados a determinadas variáveis climáticas são suscetíveis de ser sentidos a nível regional, principalmente nas infraestruturas portuárias, e ter um efeito nacional, nomeadamente na importação de matérias-primas);
- Reencaminhamento de matérias-primas, produtos petrolíferos e gás natural para outras instalações portuárias, com consequentes alterações nas rotas de abastecimento destes produtos;
- Para casos de impacte de significância elevada, com interrupção do serviço prestado durante largos períodos de tempo (ex. rutura em infraestruturas portuárias afetas à distribuição de produtos petrolíferos, poderia interromper o abastecimento energético de Portugal Continental).

Face ao registo muito pontual de eventos climáticos extremos com impacte e magnitude significativa para as instalações de produção e abastecimento de matérias-primas e expedição de produtos petrolíferos acabados, não se verificou ainda necessidade de introduzir alterações relevantes nos procedimentos operacionais existentes. Por outro lado, não houve necessidade de modificar de forma evidente os procedimentos de resposta a emergência e/ou planos de contingência. De um modo geral, as situações atípicas causadas por fenómenos climáticos têm vindo a ser geridas caso a caso, mas de forma integrada na operação das instalações, i.e., de forma a garantir a continuidade da operação em condições de segurança e sem pôr em risco a sua qualidade.
Capítulo 4 – Recomendações das Medidas e Ações de Adaptação às Alterações Climáticas

Em Portugal as empresas do setor da energia identificaram vários riscos (e oportunidades) originados pelas alterações climáticas que já podem ter, ou poderão vir a ter impacte tanto a nível dos ativos como da geração de cash-flow. De modo a mitigar o efeito negativo dos riscos, as empresas desenvolveram medidas e ações de adaptação às alterações climáticas. A maioria das medidas e ações enquadram-se na designada adaptação antecipatória, ou seja, são uma resposta planeada e antecipada que evita e minimiza a necessidade de grandes investimentos na área da emergência, que por sua vez poderão ser insuficientes para garantir a segurança de pessoas, de bens e do ambiente em geral.

A gestão de risco no setor energético é um elemento crucial, pois o negócio está exposto a um elevado número de riscos:

- **Estratégicos** – tecnologia, tendências do setor, entre outros;
- **De mercado** – preço de petróleo, preço do gás, preço do carvão, preço de CO2, variações cambiais, liquidez, taxa de juro, instrumentos financeiros, entre outros;
- **Regulatórios** – regulamentação respeitante a emissões, água, biodiversidade, comercialização, cobrança, preço da eletricidade, entre outros;
- **Operacionais** – sistemas, tecnologias e informação, processo, fornecedores, segurança e saúde de trabalhadores e comunidade, ambiente, entre outros.

As medidas de adaptação que são definidas pelas empresas do setor da energia assentam numa óptica de prevenção e minimização dos riscos e impactes, incorporando os resultados da avaliação do risco e das vulnerabilidades das infraestruturas na gestão estratégica do negócio e a nível da gestão operacional dos ativos, tendo como meta a garantia do nível do serviço e do valor do ativo.

Em termos gerais as medidas de ação e adaptação consideradas encontram-se estruturadas de acordo com a tipologia apresentada no quadro:
Este tipo de medidas podem ser incluídas em planos de adaptação às alterações climáticas que as empresas possam vir a implementar. Nestes planos poder-se-ão identificar medidas de adaptação e de melhoria de resposta às alterações climáticas, em horizontes temporais de curto, médio e longo prazos, com carácter transversal ou específico.

Em termos da gestão dos planos de adaptação das infraestruturas do setor da energia, torna-se relevante e condicionante a interligação com os planos de adaptação de outros setores, especialmente daqueles que se traduzirão em efeitos a nível da gestão e ordenamento do território, dos recursos hídricos, entre outros.

A nível estratégico, as empresas poderão incorporar a avaliação do risco das alterações climáticas na gestão do seu portfólio de negócios e em particular, na gestão dos seus ativos. A nível técnico e operacional, as ações poderão dividir-se nos seguintes eixos de atuação:

- Monitorização e atualização das vulnerabilidades identificadas nas infraestruturas, conforme a melhoria de dados e cenários climáticos disponíveis;
- Melhoria das previsões de clima – em colaboração com entidades competentes – para melhor prever a ocorrência de eventos climáticos extremos a nível local e regional;
- Adaptação processual e operacional, conforme a concretização dos dados e cenários climáticos a nível local;
• Resposta à emergência, promovendo a contínua melhoria e atualização de planos de emergência interna e de continuidade de operações, e participando ativamente nos planos de emergência externos;

• Gestão do conhecimento, destacando-se a importância da formação contínua dos colaboradores e parceiros da empresa, para a inevitabilidade das alterações climáticas e impactes associados nas infraestruturas;

• Coordenação com entidades competentes, no que respeita a articulação e integração de ações e medidas de gestão territorial.

Por outro lado, tanto no caso dos produtos petrolíferos, como da eletricidade e do gás, entende-se como essencial consciencializar a população para a utilização destes recursos de forma eficiente, bem como para a possibilidade de aumento de custos inerentes a possíveis falhas ou interrupção de abastecimento que possam vir a ocorrer, decorrente da concretização dos impactes identificados. As medidas propostas pelas empresas constituem esforços para evitar estas situações, mas não as permitem eliminar.

O processo de identificação e avaliação das medidas e ações de adaptação deve ponderar os custos, benefícios, prioridade, prazo de implementação e identificar os responsáveis e todos os agentes intervenientes, de modo a garantir que as medidas são eficazes, eficientes e justas. Deverá ser dada prioridade às medidas “no regrets” e “win-win”, com efeitos desde o curto-médio prazo ao longo prazo.

Este relatório apresenta, numa primeira parte, as medidas de adaptação mais generalistas que se podem aplicar transversalmente ao setor, e em seguida, as medidas mais específicas que foram divididas por infraestruturas lineares e infraestruturas fixas.

4.1. Medidas de adaptação transversais

Para todos os tipos de infraestruturas o projeto deve incorporar as melhores práticas de construção. Adicionalmente, durante a fase de projeto, deve fazer-se uma análise de vulnerabilidades a que a infraestrutura poderá estar sujeita, tendo em conta:

• Condições meteorológicas características do local, com base em cenários climáticos quando existentes ou nos dados históricos, nomeadamente a pluviosidade, o vento, a temperatura, intempéries, entre outros.

10 “Sem arrependimentos”
11 “Ganhador-ganhador”
• Condições climatéricas – com base nos cenários existentes, análise do impacte de:
 o Aumento da temperatura global;
 o Diminuição da precipitação média anual no centro e sul do país e aumento da precipitação média anual no norte;
 o Concentração da precipitação, com o aumento de risco de cheias;
 o Aumento de frequência e intensidade de episódios de seca; e
 o Aumento da frequência e da intensidade de tempestades.

• Testes de stress em infraestruturas mais vulneráveis – análise das consequências de ocorrências típicas de cenários extremos pré-definidos, com por exemplo:
 o Onda de calor;
 o Onda de frio;
 o Intempéries e tempestades tropicais;
 o Cheias; e Secas prolongadas.

O projeto deverá incorporar as conclusões destas análises numa óptica técnica e económica, usando critérios de razoabilidade. Idealmente o projeto deverá dotar a infraestrutura de flexibilidade de modo a permitir a adopção das medidas de adaptação na medida em que o clima assim o for exigindo.

Para as infraestruturas existentes, em operação, e com uma vida útil restante ainda considerável, será importante ponderar a análise de vulnerabilidade, em linha com os critérios anteriores e tendo em conta a escala temporal, ou seja, se a infraestrutura tiver uma vida útil de mais vinte ou trinta anos dever-se-ão contemplar as alterações climáticas previstas para o mesmo prazo.

Em função desta análise dever-se-ão identificar todas as vulnerabilidades da estrutura existente, devendo ser feita uma hierarquização das mesmas segundo os seguintes critérios:

• Potencial impacte;
• Custo e benefício das medidas de adaptação respetivas;
• Prioridade de intervenção.

As medidas de adaptação poderão ser:

• Medidas de Prevenção Estratégicas:
 o Diversificação de ativos;
Avaliação da exposição global do negócio às alterações climáticas, por ativo e por unidade de negócio, fazendo uso de cenários que incorporam as variações das variáveis climatéricas;

Gestão do conhecimento, através de sensibilização sobre as alterações climáticas aos colaboradores, fornecedores e clientes, de modo a difundir a adaptação ao maior número de parceiros, tanto à escala empresarial como individual;

Adequação do Capital humano e das organizações, que deverão estar preparados para incorporar a mudança no seu modo de pensar e de agir, deverão ser desenvolvidas competências técnicas para gerar novas respostas para problemas novos.

♦ Medidas de Prevenção Pontuais:

- Construção de muros de proteção face a cheias;
- Construção/melhoria de barreiras e sistemas de defesa (por exemplo quebra-mar) nas infraestruturas portuárias, que possam vir a ser afetadas;
- Instalação de sistemas de bombagem, com alimentação independente, para a retirada água de zonas inundáveis;
- Colocação ou recolocação dos equipamentos estratégicos a cotas mais elevadas;
- Aumento da disponibilidade das equipas de emergência, em épocas mais propícias a eventos extremos;
- Aumento dos stocks, antecipando os impactes decorrentes das épocas mais propícias a eventos extremos;
- Atravessamento de rios por gasodutos fora do leito de cheia, instalado através de perfuração dirigida (só se aplica para a fase de projeto);
- Providenciar a existência de captações de água alternativas para serem usadas somente em condições muito restritas;
- Aumento da robustez de sistemas de drenagem, de sistemas de tratamento de efluentes e de bacias de contenção;
- Criação/reforço de parcerias e de canais de comunicação com prestadores de serviços, clientes, cidadãos e a sociedade em geral.

• Medidas de gestão de emergências:

- Elaboração de Plano de Continuidade de Operações, quando pertinente, com o estabelecimento de processos alternativos que garantam o funcionamento do negócio, incorporando a flexibilidade dos consumos, a definição dos clientes prioritários e garantindo a correta gestão das partes interessadas;
o Desenvolvimento de Planos de Segurança Internos que contemplem fenómenos extremos originados pelas alterações climáticas. Estes planos devem incluir um sistema de previsão e alerta e de treinos e simulacros;

o Participação ativa nos Planos de Emergência Externos que deverão contemplar fenómenos extremos originados pelas alterações climáticas;

o Reforço da componente de comunicação nos instrumentos de resposta à emergência.

É também relevante e condicionante à adaptação do setor energético a ação de Autoridades com competências em algumas áreas chave, nomeadamente:

- Gestão e ordenamento do território, a nível dos instrumentos e regulamentação da intervenção em áreas com estatuto específico;
- Gestão e ordenamento de recursos hídricos, a nível da sua caracterização, disponibilidade e restrições ao uso;
- Gestão das vias de transporte, a nível do seu planeamento e respetiva adaptação.

Não obstante a lista, não exaustiva, de medidas aqui enunciadas, a adaptação às alterações climáticas é um processo de melhoria contínua, face à evolução da investigação e novos modelos que vêm acrescentar mais informação. O refinamento espacial e temporal de previsões existentes12, ou o aumento do conhecimento sobre o grau de probabilidade associado a essas previsões diminuem a incerteza associada a projeções climáticas. É portanto considerado muito relevante o reforço dos mecanismos que permitam atualizar e disponibilizar à sociedade e aos decisores o conhecimento científico que vai sendo produzido, bem como aumentar o conhecimento sobre os desenvolvimentos dos cenários climáticos e socioeconómicos que sirvam de base à implementação da estratégia e respetivos planos de adaptação.

As medidas enunciadas focam-se essencialmente no curto/médio prazos. No longo prazo e para o setor da energia as empresas devem empreender pela diversificação tecnológica e geográfica dos seus ativos e pelo reforço das redes de distribuição e transporte, nomeadamente através da sua implementação em estruturas em anel e reforço de interligações.

12 Na data atual, são os do IPCC.
4.2. Medidas de Adaptação Específicas

4.2.1 Infraestruturas Lineares

Em termos de redes de transporte de eletricidade, de gás e outros produtos petrolíferos, as medidas de adaptação associadas a cada uma das variáveis climáticas são apresentadas nos quadros que se seguem:

<table>
<thead>
<tr>
<th>Variáveis climáticas críticas /Vulnerabilidades</th>
<th>Impacte / Sistema onde ocorre</th>
<th>Medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura / Aumento da temperatura</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Redução da potência nominal</td>
<td>• Identificação dos principais pontos fracos do sistema e realizar de estudos complementares para avaliar a possível expansão do sistema em termos da sua resiliência, nomeadamente através de sistemas em anel ou de interligações.</td>
</tr>
<tr>
<td></td>
<td>• Redução da flexibilidade na gestão das redes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Operação de subestações</td>
<td></td>
</tr>
<tr>
<td>Precipitação / Precipitação intensa, inundações</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inundações;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Redução da segurança do abastecimento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• As subestações podem ficar inoperacionais, conduzindo à redução da segurança no abastecimento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/ Operação de subestações</td>
<td></td>
</tr>
<tr>
<td>Precipitação / Aumento da erosão</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Instabilidade das infraestruturas. As subestações podem ficar inoperacionais, conduzindo à redução da segurança no abastecimento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/ Operação de subestações</td>
<td></td>
</tr>
<tr>
<td>Temperatura / Aumento da temperatura</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Eventual redução da potência nominal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Redução da flexibilidade na gestão das redes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/ Operação de cabos subterrâneos elétricos e linhas aéreas</td>
<td></td>
</tr>
<tr>
<td>Precipitação / Precipitação intensa, inundações e subida do nível médio da água do mar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inundações.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• As instalações podem ficar inoperacionais, conduzindo a perda de resiliência do sistema e perdas no abastecimento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/ Operação de cabos subterrâneos elétricos</td>
<td></td>
</tr>
<tr>
<td>Precipitação / Aumento da erosão</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Instabilidade das infraestruturas. As instalações podem ficar inoperacionais, conduzindo a perda de resiliência do sistema e perdas no</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 5 - Medidas de adaptação identificadas para as infraestruturas lineares – transporte e distribuição de eletricidade
<table>
<thead>
<tr>
<th>Variáveis climáticas críticas /Vulnerabilidades</th>
<th>Impacte / Sistema onde ocorre</th>
<th>Medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>abastecimento. / Operação de cabos subterrâneos elétricos</td>
<td>instalações para a redução dos riscos, nomeadamente soluções diferentes de traçado das redes, etc.</td>
<td></td>
</tr>
<tr>
<td>Temperatura / Aumento da temperatura</td>
<td>• Redução da potência nominal; • Aumento das “flechas” (diminuição da distância dos cabos ao solo, árvores, etc) • Redução da flexibilidade na gestão das redes; • Eventual ocorrência de contornamentos.</td>
<td>• Eventuais modificações nas linhas aéreas como por exemplo, alteamento dos condutores, utilização de outro tipo de condutores, etc.</td>
</tr>
<tr>
<td>Precipitação / Precipitação intensa, inundações e subida do nível médio de água do mar</td>
<td>• Inundações. • Risco de saída de serviço da infraestrutura, e redução da segurança do fornecimento. • As instalações podem ficar inoperacionais, conduzindo a perda de resiliência do sistema e perdas no abastecimento.</td>
<td>• Identificação das infraestruturas sujeitas a riscos de inundaçao; • Avaliação técnico-económica de eventuais investimentos a realizar nestas instalações para a redução dos riscos, nomeadamente soluções diferentes de traçado das redes, utilização de cabos “submarinos”, etc.</td>
</tr>
<tr>
<td>Precipitação / Aumento da erosão</td>
<td>• Instabilidade das infraestruturas. As instalações podem ficar inoperacionais, conduzindo a perda de resiliência do sistema e perdas no abastecimento.</td>
<td>• Identificação das infraestruturas sujeitas a riscos de erosão; • Avaliação técnico-económica de eventuais investimentos a realizar nestas instalações para a redução dos riscos, nomeadamente soluções construtivas diferentes, como por exemplo apoios reforçados, condutores especiais, etc.</td>
</tr>
<tr>
<td>Vento e Temperatura / Ventos extremos (ex.: ciclones), nevões</td>
<td>• Eventual queda de condutores e apoios • As instalações podem ficar inoperacionais, conduzindo a perda de resiliência do sistema e perdas no abastecimento.</td>
<td>• Identificação das infraestruturas sujeitas a estes riscos; • Avaliação técnico-económica de eventuais investimentos a realizar nestas instalações para a mitigação dos riscos, nomeadamente soluções construtivas diferentes, como por exemplo apoios reforçados, condutores especiais, etc.</td>
</tr>
<tr>
<td>Precipitação / Tempestades (trovoadas intensas)</td>
<td>• Eventual saída de serviço das linhas • As instalações podem ficar inoperacionais, conduzindo a perda de resiliência do sistema e perdas no abastecimento.</td>
<td>• Identificação das infraestruturas sujeitas a estes riscos; • Avaliação técnico-económica de eventuais investimentos a realizar nestas instalações para a mitigação dos riscos, nomeadamente melhor coordenação de isolamento, etc.</td>
</tr>
<tr>
<td>Temperatura, Vento, Precipitação / Aumento temperatura; Precipitação intensa, inundações e subida do nível médio de água do mar</td>
<td>• Redução da potência nominal • Eventual saída de serviço das instalações • Eventual queda de condutores e apoios • Eventual ocorrência de contornamentos • Redução da flexibilidade na gestão do sistema, com eventual</td>
<td>• Necessidade de executar mais estudos, designadamente na avaliação das restrições para a gestão da rede. • Definição e implementação Plano de Emergência. • Formação e treino para gestão de situações de crise.</td>
</tr>
<tr>
<td>Variáveis climáticas críticas /Vulnerabilidades</td>
<td>Impacte / Sistema onde ocorre</td>
<td>Medidas de adaptação</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Precipitação / Aumento de períodos de seca e de precipitação intensa</td>
<td>necessidade de reposição faseada do abastecimento. / Gestão do sistema elétrico</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 6: Medidas de adaptação identificadas para as infraestruturas lineares – transporte de produtos petrolíferos

<table>
<thead>
<tr>
<th>Variáveis climáticas críticas / Vulnerabilidades</th>
<th>Impacte / Sistema onde ocorre</th>
<th>Medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação / Aumento de períodos de seca e de precipitação intensa</td>
<td>• Possível afetação estrutural do oleoduto, decorrentes da ocorrência de secas e diminuição/contração do solo, no horizonte temporal de curto médio prazo. • Possível afetação estrutural do oleoduto, decorrentes da ocorrência de precipitação e na eventualidade de deslocação/deslizamento de terrenos. • Falhas ou interrupções do serviço da infraestrutura. / Oleoduto</td>
<td>• Análise de testes de stress ao oleoduto para aferir a probabilidade e a dimensão de uma possível afetação estrutural • Análise técnica e económica das ações de fortalecimento do oleoduto • Armazenagem e reencaminhamento temporário de matérias-primas e produtos petrolíferos. • Melhorias no planeamento e gestão de stock de produtos petrolíferos, prevendo falhas ou interrupções do serviço prestado • Formação de colaboradores e parceiros da empresa para a ocorrência de situações de operação anormal e de atuação extraordinárias de emergência;</td>
</tr>
<tr>
<td>Tabela 7 - Medidas de adaptação identificadas para as infraestruturas lineares – transporte de gás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variáveis climáticas críticas/Vulnerabilidades</td>
<td>Impacte / Sistema onde ocorre</td>
<td>Medidas de adaptação</td>
</tr>
</tbody>
</table>
| **Vento/ Ventos fortes** | • Queda de objetos/equipamentos/estruturas
• Acidentes com trabalhadores; Danos na tubagem
• Atraso nas obras de manutenção
• Atraso na entrada em exploração
/ Rede de distribuição de gás (pontos especiais) | • Formação e sensibilização dos responsáveis sobre a segurança em obra
• Cumprimento das medidas de segurança aplicáveis e exigíveis em obra |
| **Precipitação / Cheia causada por chuva intensa** | • Rotura da tubagem, falha no abastecimento;
• Derrocadas do meio de suporte
/ Rede de distribuição suspensa em obras de arte (pontos especiais) | • Construção de muros de proteção
• Evitar construção em zonas de inundação |
| **Vento/ Ventos fortes** | • Queda de objetos/estruturas próximas
• Rotura da rede, falha no abastecimento
/ Rede de distribuição (pontos especiais). | • Formação e sensibilização dos responsáveis sobre a segurança em obra
• Cumprimento das medidas de segurança aplicáveis e exigíveis em obra |
4.2.2. Infraestruturas Fixas

Em termos de infraestruturas fixas de eletricidade e de gás, assim como abastecimento de matérias-primas e produção e expedição de produtos petrolíferos acabados as medidas de adaptação associadas a cada uma das variáveis climáticas são apresentadas na tabela que se segue:

Tabela 8 - Medidas de adaptação identificadas para as infraestruturas fixas – eletricidade, abastecimento de matérias-primas e produção e expedição de produtos petrolíferos acabados e gás

<table>
<thead>
<tr>
<th>Variáveis climáticas críticas / Vulnerabilidades</th>
<th>Impacte / Sistema onde ocorre</th>
<th>Medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrais hídricas (CH); Centrais térmicas (CT); Parques eólicos (PE); Postos de redução de pressão de gás natural (PRGN); Refinarias/armazenagem e/ou distribuição de produtos petrolíferos (PP); Postos de redução e medida de gás (PR/MG); Unidades Autónomas de regaseificação de gás natural liquefeito (UA)</td>
<td>Precipitação e vento /Eventos climatéricos extremos – tempestades – aumento em frequência e em intensidade</td>
<td>Perturbação e/ou paragem de operação nas CT, CH e PE, PR/MG e UA. Nos PRGN a operação poderá ser seriamente afetada uma vez que os controlos de segurança funcionam em função da pressão, podendo assim ser originadas paragens indevidas. Quando repetidos estes episódios conduzem a maior desgaste dos sistemas de controlo. Perturbação do funcionamento das PP, nomeadamente por perturbação do funcionamento das infraestruturas portuárias. Afetação da segurança das infraestruturas de produção de produtos petrolíferos com unidades e/ou estruturas em altura. Nas PR/MG e UA – limitação do acesso; queda de objetos/estruturas próximas; atraso nas obras/entrada em funcionamento (fase de construção)</td>
</tr>
</tbody>
</table>

| Centrais térmicas (CT); Refinarias/armazenagem e/ou distribuição de produtos petrolíferos (PP) | Temperatura /Eventos climatéricos extremos – alteração das condições físicas e biológicas do meio hídrico | Perturbação das CT refrigeradas com a água do mar por existência de quantidade excessiva de algas no sistema de adução | Instalação de sistemas adicionais de limpeza na adução de centrals para evitar o problema da formação de quantidade excessiva de algas |

| Centrais hídricas (CH); Centrais térmicas (CT); Parques eólicos (PE); Postos de redução de pressão de gás natural (PRGN); Refinarias/armazenagem e/ou distribuição de produtos petrolíferos (PP); Postos de redução e medida de gás (PR/MG) | | | |

46|
<table>
<thead>
<tr>
<th>Variáveis climáticas críticas / Vulnerabilidades</th>
<th>Impacte / Sistema onde ocorre</th>
<th>Medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>gás (PR/MG); Unidades Autónomas de regaseificação de gás natural liquefeito (UA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitação / Precipitação intensa e inundações</td>
<td>• Perturbação e/ou paragem de operação nas CT, PR/MG e nas UA • Nas CH descarregamento de água nos descarregadores de cheia com a consequente perda de turbinamento • Nas PP – inundação produção de efluentes em excesso.</td>
<td>• Uso generalizado de sistemas de previsão • Planos de Emergência internos e externos • Planos de continuidade de negócio • Colocação dos sistemas auxiliares, como por exemplo bombas a cotas mais elevadas • Instalação de sistemas de bombagem em zonas de inundação • Construção de muros de proteção • Duplicação dos circuitos de alimentação aos descarregadores de superfície e instalação de grupos diesel para uso exclusivo dos descarregadores • Verificação hidráulica e critérios de dimensionamento de sistemas de drenagem, tratamento de efluentes líquidos (águas pluviais e resíduais) e bacias de contenção de matérias-primas e produtos petrolíferos acabados • Verificação de critérios de dimensionamento de infraestruturas em altura • Evitar construção em zonas de inundação • Eventual construção de zonas de retenção de cheias, dimensionadas com base no histórico de risco da zona onde está colocada a infraestrutura</td>
</tr>
<tr>
<td>Centrais hídricas (CH); Centrais térmicas (CT); Parques eólicos (PE); Postos de redução de pressão de gás natural (PRGN); Refinarias/armazenagem e/ou distribuição de produtos petrolíferos (PP); Postos de GPL (PGPL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitação / Secas frequentes e mais prolongadas</td>
<td>• Nas CT e nos PGPL possibilidade de paragem por falta de caudal de refrigeração • Nos PGPL – aumento de pressão do reservatório, libertação de gás para a atmosfera e inflamação • Nas CH indisponibilidade de água para turbinamento por se destinar a outros fins, como o abastecimento humano e agrícola. • Nas PP – paragens na operação por indisponibilidade de água para o processo</td>
<td>• Recurso a fornecimento externo de água desmineralizada (para compensação do circuito água-vapor), através do recurso a furos externos e abastecimento público • Quando possível, seleção de Grupos reversíveis em novos projetos que permitam a produção de eletricidade mesmo em situações de seca • Instalação de torres de refrigeração nas novas centrais em vez de sistemas de refrigeração direto aos condensadores, sempre que se justifique.</td>
</tr>
<tr>
<td>Variáveis climáticas críticas / Vulnerabilidades</td>
<td>Impacte / Sistema onde ocorre</td>
<td>Medidas de adaptação</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Centrais hídricas (CH); Centrais térmicas (CT); Parques eólicos (PE); Postos de redução de pressão de gás natural (PRGN); Refinarias/armazenagem e/ou distribuição de produtos petrolíferos (PP); CT – Biomassa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Temperatura / Aumento da temperatura global** | • Nas CT possibilidade de perda de rendimento
• Nas PH indisponibilidade de água para turbinamento devido a maior consumo para abastecimento humano e agrícola.
• Nas PP – Afetação das características das matérias-primas e produtos petrolíferos acabados
• Nas PP – diminuição do desempenho das torres de refrigeração
• Verificação de critérios de dimensionamento de unidades processuais com maior sensibilidade à temperatura | • Reforço/revisão do planeamento do uso da água armazenada nas albufeiras
• Necessidade de verificação das janelas de operação de equipamentos de contenção primária (linhas de transporte e equipamentos de armazenagem, etc.)
• Necessidade de desenvolver trabalhos complementares para corroborar a significância destes impactes no desempenho no setor da refinaria, a curto prazo decorrentes de ondas de calor, e a longo prazo, sob o aumento efetivo da temperatura. |
| **Refinarias/armazenagem e/ou distribuição de produtos petrolíferos (PP)** | | |
| Vento e altura significativa das ondas; Subida do nível médio da água do mar/ Situações de temporal, agitação marítima, erosão costeira e Sobrelevação do mar | • Perturbação do funcionamento das PP, nomeadamente por perturbação do funcionamento das infraestruturas portuárias.
• O abastecimento de matérias-primas e expedição de produtos petrolíferos acabados por via marítima pode ser afetado;
• Impactes nas atividades de produção e distribuição de produtos petrolíferos
/Terminais portuários e monobôia | • Verificação de janelas de operação de carga e descarga dos navios
• Verificação das condições estruturais das estruturas potencialmente afetadas, em unidades processuais existentes e novas unidades em implementação
• Construção ou remodelação de proteções costeiras, nomeadamente transversais para melhorar o acesso do navio ao porto, ou perpendiculares como quebra-mar
• Necessidade de desenvolver trabalhos complementares para corroborar a significância destes impactes. |
| **CT – Biomassa** | | |
| Conjugação de diversos agentes climáticos | • Alteração da disponibilidade e da dispersão geográfica de biomassa residual florestal, fruto da diminuição potencial da produtividade, do aumento dos fogos e das pragas
• Aumento da atividade de pragas florestais, devido ao aumento da | • Verificações de adaptação da floresta, atual e do futuro, e da sociedade (que será quem implementará a adaptação) de modo a fazer face às perspetivas
• Apesar do impacte relacionado com as pragas afetar positivamente a produção de eletricidade em |

48
<table>
<thead>
<tr>
<th>Variáveis climáticas críticas / Vulnerabilidades</th>
<th>Impacte / Sistema onde ocorre</th>
<th>Medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperatura, diminuição da precipitação e aumento da área ardida, resultando em maior disponibilidade de biomassa para queima</td>
<td>centrais termoelétricas a biomassa, terá outras consequências muito mais gravosas, pelo que deverá ser mitigado, através de criação de mecanismos de monitorização e do controlo do risco de entrada de novos agentes bióticos através das importações e da promoção de uma gestão florestal ativa e a promoção da investigação e desenvolvimento para o desenvolvimento de novas (e mais eficazes) medidas de combate às pragas florestais</td>
<td></td>
</tr>
</tbody>
</table>

Nota – As centrais de queima de biomassa possuem para além do risco sobre o ativo o risco sobre a matéria-prima. Para o mitigar existem algumas medidas específicas do setor:

- Considerando a incerteza e complexidade associada aos impactes decorrentes das alterações climáticas, as medidas de adaptação devem resultar em medidas que confiram uma maior resistência, mas sobretudo resiliência aos ecossistemas florestais. Nesta categoria incluem-se diversas medidas adotadas normalmente em florestas geridas de modo sustentável, por exemplo: reduzir o risco de incêndio, diversificar a composição e estrutura dos espaços florestais à escala da paisagem ou controlo de espécies invasoras;
- Investimento em boas práticas de gestão florestal bem como em políticas de prevenção e combate a incêndios;
- Investigação e desenvolvimento na área do melhoramento genético deverá continuar a ser fomentada, nomeadamente no que diz respeito à capacidade das árvores a resistir a pragas, que potenciam a maior intervenção de insetos e outras doenças.
Capítulo 5 – Barreiras à Adaptação

A implementação de um Plano Nacional de Adaptação às Alterações Climáticas eficaz e estruturado, implica a adoção de uma política multissetorial com envolvimento das Autoridades Competentes, empresas e organizações não-governamentais. As medidas e ações de adaptação devem ser delineadas e estruturadas à escala nacional, bem como a uma escala regional e local, em consonância com a magnitude e significância dos impactes estimados e, tanto quanto possível, com a participação das diferentes partes interessadas.

5.1. Barreiras à adaptação genéricas

As alterações climáticas revestem-se de incertezas significativas na avaliação de risco e impactes a longo prazo. Com efeito, é essencial definir uma estratégia de adaptação a médio e longo prazo, definir os setores prioritários, sujeitá-los a uma avaliação contínua e assumir a natureza cíclica e dinâmica que lhe é inerente. De facto, o crescente conhecimento e o desenvolvimento de novos cenários climáticos a nível regional, novos dados climáticos e conhecimento sobre os impactes e benefícios da implementação de medidas de adaptação, exigem o acompanhamento contínuo do plano de adaptação definido.

Segundo o sítio adaptação.clima.pt (dezembro de 2012) as principais barreiras que podem limitar a implementação de um Plano Nacional de Adaptação às Alterações Climáticas são:

- Conhecimento limitado da natureza e magnitude dos riscos e vulnerabilidades climáticas – atuais e/ou futuros;
- Ausência de políticas, regulamentos, normativos que promovam a adaptação ou orientações que encorajam a perpetuação do status quo;
- Existência de restrições legais ou regulatórias que representam impedimentos reais à adoção de medidas;
- Custos significativos das medidas de adaptação identificadas face aos orçamentos disponíveis;
- Ausência de capacidade e competências técnicas dentro das organizações;
- Rigidez e conflitos sociais, culturais ou financeiros e aversão à mudança (existentes ou percecionados como tal);
- Tomada de decisões e processos de planeamento focadas no curto-prazo;
- Incapacidade para lidar com incerteza;
- Pouca consciencialização da necessidade de adaptação por parte dos decisores;
- Acreditar que existe muito tempo para começar a decidir sobre adaptação;
- Ausência de conhecimento e de precedentes na implementação de medidas de adaptação;
O plano de medidas e ações de adaptação às alterações climáticas implica esforços humanos, sociais e financeiros adicionais, na medida que se baseia na assunção da ocorrência de fenómenos climatéricos extremos e graduais (i. e. tempestade, cheias, sobrelevaração do nível do mar, entre outros). Com efeito, a tomada de decisões associadas à adaptação de alterações climáticas com base em projeções climáticas poderá dificultar a disponibilidade de meios humanos, sociais e financeiros e, em última instância, a implementação de um plano de adaptação detalhado.

Por outro lado, a regulamentação e a legislação podem ser obstáculos para a adaptação das infraestruturas de suporte ao setor e, consequentemente, para o desenvolvimento de um sistema mais resiliente. Por exemplo, os mecanismos de planeamento territorial em vigor podem não ser compatíveis com a adaptação, particularmente quando as necessidades identificadas em termos de infraestruturas estão sujeitas a decisões de planeamento local. A opinião pública também pode ser uma barreira para a adaptação e o desenvolvimento das infraestruturas locais, embora a maioria dos cidadãos entenda a necessidade de assegurar o fornecimento de energia. A adequada compreensão por parte do público sobre as medidas de adaptação decorrentes das mudanças climáticas e da urgência da sua implementação poderá apresentar-se como fundamental, especialmente para que o público em geral, os políticos, os prestadores de serviços e os reguladores possam participar no debate em curso.

5.2. Barreiras à adaptação do setor

Dentro do setor da energia, as empresas de distribuição e transporte de eletricidade e de gás têm interdependências, entre outros, com:

- Redes europeias de energia (interligações);
- Produtores de energia;
- Grandes clientes e consumidores;
- Distribuidores e comercializadores de energia;
- Instalações portuárias.

No trabalho desenvolvido pelo Subgrupo Energia identificaram-se como principais barreiras à adoção de medidas de adaptação às alterações climáticas específicas do sector:

- Aceitação da necessidade de implementar medidas de adaptação e das interdependências com as partes interessadas, nomeadamente por parte de Autoridades Competentes e de Reguladores
 - Parte da população está sensibilizada para a temática das alterações climáticas. No entanto, as ações de adaptação a implementar pelas empresas podem representar sobrecustos que poderão não ser reconhecidos pelas entidades
reguladoras e como tal não poderão ser refletidas no preço final do fornecimento de eletricidade e de gás;

- As relações com entidades externas são condição fundamental para a implementação das medidas de adaptação, quer no que respeita a condições normais de funcionamento, quer em situações de emergência. Estão neste caso, todas as entidades oficiais, governamentais, autarquias, proteção civil e outras. A relação com as entidades reguladoras é de primordial importância, nomeadamente no que respeita à definição dos patamares de investimento necessários à gestão das situações normais de funcionamento, manutenção e reforço das redes, que implicam crescimento, para responder aos aumentos da procura.¹³

- Necessidade de adequar os recursos das empresas às novas realidades originadas pelas alterações climáticas:
 - Recursos humanos - As empresas terão que garantir, em permanência, a competência técnica dos seus recursos humanos para o desenvolvimento de novos projetos e a gestão das infraestruturas em serviço;
 - Capacidade Financeira das empresas - As empresas terão que garantir, em permanência disponibilidade financeira para o desenvolvimento de novos projetos e a gestão das infraestruturas em serviço;
 - Dimensão das empresas – A sociedade deverá contribuir para a correção da assimetria entre grandes e pequenas empresas para fazerem face às alterações climáticas, através da disseminação de informação, boas práticas e recursos.

- Alterações nos padrões de consumo e conceito de rede - O setor energético está em permanente mudança. Dentro da escala temporal a que referem os eventuais efeitos das alterações climáticos no setor serão observadas alterações significativas, nomeadamente:
 - Na oferta de energia, com o aumento da produção distribuída e o aumento da utilização de fontes renováveis de energia;
 - No transporte e distribuição, em particular da eletricidade, com a consolidação e implementação do modelo de redes inteligentes;
 - Na procura de energia, com o surgimento de novas aplicações e usos (ex. veículos elétricos) e com aumento da eficiência energética.

- Interdependência entre a cogeração e o cliente utilizador do vapor.

Todas estas circunstâncias trarão alterações significativas no modelo de funcionamento do setor energético, as quais deverão ser consideradas no âmbito da adaptação às alterações climáticas.

¹³ A relação de interdependência estreita entre as redes de transporte e de distribuição de energia potencia a ocorrência de falhas em cascata, caso ocorram fenómenos climáticos extremos. Assim, é fundamental que as entidades concessionárias de transporte e de distribuição continuem a cooperar em matéria de planeamento e na definição e implementação dos planos de contingência, minimizando o impacte nos clientes da ocorrência de fenómenos extremos.
5.3. Interações com outros setores

Para efeitos de adaptação do setor energético, torna-se assim determinante a ação das autoridades competentes, nomeadamente:

- Gestão e ordenamento do território, a nível dos seus instrumentos;
- Gestão de recursos hídricos, a nível da sua caracterização, disponibilidade e restrições ao uso;
- Gestão das vias de transporte e instalações portuárias, a nível do seu planeamento e respetiva adaptação;
- Gestão da Emergência, a nível dos planos de emergência e contingência.

Por outro lado, a interdependência entre entidades públicas e privadas também se coloca a nível do fornecimento de produtos e serviços. Por exemplo, no caso das infraestruturas em que a interrupção ou falha de determinados serviços (ex.: abastecimento de energia elétrica, de gás natural ou água bruta) pode afetar diretamente a sua operação e performance, assumindo este aspeto particular importância no setor da energia.

A definição de planos de contingência integrados, que permitam minimizar as falhas em cascata e consequentemente o número de consumidores afetados apresenta-se como essencial, especialmente, quando a dimensão do impacte exige a priorização do abastecimento de energia a determinado tipo de consumidores (ex.: hospitais, forças de segurança, bombeiros, ou outros centros nevrálginicos).

De facto, é chave a comunicação e a interação entre grupos de trabalho setoriais e entidades relevantes, procurando-se a convergência no planeamento, em especial de situações de contingência.

As infraestruturas lineares interagem com todos os setores da sociedade civil, uma vez que uma falha destas infraestruturas pode causar um impacte significativo em todos os setores.

Em termos de estruturas fixas de produção de energia, as interações com outras partes interessadas são várias. A mais importante consiste na segurança de abastecimento. Ou seja, aquando da ocorrência de fenómenos climatéricos extremos, poderão ocorrer falha nas centrais geradoras de energia, com consequentes quebras no fornecimento de energia elétrica. Esta situação é colmatada através da existência de capacidade suficiente no sistema e de uma adequada gestão da rede elétrica.

Outra das interdependências com outros setores será no acesso à água para turbinamento nas centrais hídricas. Em situação de seca ou escassez este acesso poderá ser fortemente condicionado, uma vez que será dada preferência ao abastecimento humano e ao abastecimento de sistemas agrícolas. Esta situação poderá limitar a produção de eletricidade.
Capítulo 6 – Conclusões e recomendações futuras

A implementação de uma estratégia nacional de adaptação às alterações climáticas potencia o conhecimento disponível, promove a interface entre setores de cooperação e permite uma melhor utilização dos recursos disponíveis.

O trabalho setorial desenvolvido pelo Subgrupo Energia alinha-se com os pressupostos do desenvolvimento sustentável e permite a partilha e o desenvolvimento do conhecimento entre setores. Com efeito, uma resposta planeada e preventiva permite uma avaliação e adaptação dos impactes das alterações climáticas nas infraestruturas do setor energético, promovendo a diminuição dos custos associados à concretização dos cenários de risco.

Da avaliação feita no âmbito do setor energético conclui-se que as maiores empresas já empreenderam um conjunto de medidas, algumas representando investimentos consideráveis, que visam diminuir o impacte das alterações climáticas. No entanto, foram identificadas ações, que se considera que deverão ser empreendidas num futuro próximo, de modo a permitir uma melhor adaptação às alterações climáticas por parte das empresas e da sociedade em geral. Do conjunto destas ações salientam-se as seguintes:

- Definição do modelo de governação para a adaptação às alterações climáticas, que inclua normativo adequado para o incentivo a medidas de adaptação e a articulação entre todas as partes interessadas;
- Integração nos instrumentos de gestão territorial das medidas identificadas nas contribuições setoriais para a ENAAC;
- Introdução da abordagem de adaptação às alterações climáticas nos planos de emergência internos;
- Sempre que a dimensão social ou económica o justifique, elaboração de planos de continuidade de negócio, que contemplem o efeito das alterações climáticas;
- Disponibilização de toda a informação sobre as alterações climáticas num sítio de internet de acesso público. Este deverá apresentar:
 - O histórico de eventos relacionados com as alterações climáticas. Cada evento deverá ser detalhadamente caracterizado, tanto na vertente climatérica, como económica e social;
 - Plano(s) que, à semelhança do que foi feito no Programa Nacional para as Alterações Climáticas, enquadre todas as medidas de adaptação relevantes, as entidades responsáveis pela sua execução, prazo/calendário de execução e os instrumentos de implementação. Este quadro permitirá acompanhar a execução da estratégia e verificar o estado de dada medida;
 - Dispor de um sistema de acompanhamento da execução das medidas relevantes, que seja divulgado publicamente.
Relativamente a lacunas de conhecimento, o aspeto considerado mais importante é a incerteza face aos cenários climáticos, em particular a uma escala mais fina. O Subgrupo de trabalho identificou assim um conjunto de linhas de investigação que considera importantes para a prossecução da tarefa de aumento da resiliência da sociedade às alterações climáticas:

- Desenvolvimento de cenários climáticos de curto e longo prazo com a escala adequada para fornecer informação útil aos interessados;
- Análise global do impacte das alterações climáticas nos mercados de energia;
- Estudo das taxas de retorno para investimentos em adaptação e elaboração e publicação de metodologia de análise de investimentos respeitantes a medidas de adaptação, para apoiar as entidades, em particular, as pequenas e médias empresas;
- Revisão, sempre que necessário, dos critérios de dimensionamento das infraestruturas do setor energético para aumentar a sua resiliência às alterações climáticas;
- Estudo aprofundado do impacte das alterações climáticas em termos do binómio água / energia;
- Desenvolvimento da caracterização das vulnerabilidades no sentido de determinar as frequências associadas aos impactes identificados.

No que concerne à metodologia aplicada pelo Subgrupo Energia, refere-se também que foram encontradas dificuldades em apurar, ainda que qualitativamente, a relevância do impacte associado às vulnerabilidades identificadas para cada setor. Embora tenham sido equacionados diferentes tipos de abordagens, não foi possível classificar linearmente o impacte, nem atribuir-lhe uma frequência. Esta barreira acarreta, consequentemente, dificuldades a nível da hierarquização dos riscos, assim como da identificação das ações prioritárias. Eventualmente, esta poderá ser uma limitação transversal a outros setores e que carecerá de uma maior maturação, em sequência de outras iniciativas atrás referidas.

Sugere-se ainda que após a receção de todas as contribuições setoriais para a ENAAC, a Agência Portuguesa do Ambiente proceda a uma análise de potenciais conflitos inter-setores, que não tenha sido possível identificar nas análises parciais.
Referências Bibliográficas:

- Agência Portuguesa do Ambiente (Apambiente) - http://www.apambiente.pt
- Autoridade Nacional de Proteção Civil: http://www.proteccaocivil.pt/
- Centro do Clima, Meteorologia e Mudanças Globais da Universidade dos Açores (CCMMG) - http://www.climaat.angra.uac.pt
- Climate Change in Portugal: Scenarios, Impacts, and Adaptation Measures (SIAM) - http://www.siam.fc.ul.pt
- Comité Executivo da Comissão para as Alterações Climáticas (CECAC) - http://adaptacao.clima.pt
- Galp Energia, Estratégia de Adaptação às Alterações Climáticas – vulnerabilidades das instalações da Galp Energia às alterações climáticas – Plano de Adaptação, Lisboa 2011
- Instituto de Meteorologia: http://www.meteo.pt/
- Resolução do Conselho de Ministros n.º 24/2010 de 1 de abril de 2010 que aprova a Estratégia Nacional de Adaptação às Alterações Climáticas
- ROMISH, R., Regional Challenges in the Perspective of 2020 – Regional disparities and future challenges, versão draft, Ismeri Europa, 2009
- SANTOS, F. D., Forbes, K., Moita, R. (editors), Climate Change in Portugal. Scenarios, Impacts and Adaptation Measures - SIAM Project, Gradiva, Lisbon, Portugal, 2002
- Sistema de Previsão do Cumprimento de Quioto - http://www.cumprirquioto.pt
Siglas

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>APREN</td>
<td>Associação de Energias Renováveis</td>
</tr>
<tr>
<td>CAC</td>
<td>Comissão para as Alterações Climáticas</td>
</tr>
<tr>
<td>CECAC</td>
<td>Comissão para as Alterações Climáticas</td>
</tr>
<tr>
<td>CELE</td>
<td>Comércio Europeu de Licenças de Emissão</td>
</tr>
<tr>
<td>CLIMAAT</td>
<td>Clima e Meteorologia dos Arquipélagos Atlânticos</td>
</tr>
<tr>
<td>CO₂</td>
<td>Dióxido de Carbono</td>
</tr>
<tr>
<td>CO₂e</td>
<td>Dióxido de Carbono equivalente</td>
</tr>
<tr>
<td>DGEG</td>
<td>Direção-Geral de Energia e Geologia</td>
</tr>
<tr>
<td>DGAE</td>
<td>Direção-Geral das Atividades Económicas</td>
</tr>
<tr>
<td>EDP</td>
<td>Eletricidade de Portugal</td>
</tr>
<tr>
<td>EDPP</td>
<td>Eletricidade de Portugal Produção</td>
</tr>
<tr>
<td>EDP D</td>
<td>Eletricidade de Portugal Distribuição</td>
</tr>
<tr>
<td>ENAAC</td>
<td>Estratégia Nacional de Adaptação às Alterações Climáticas</td>
</tr>
<tr>
<td>ERSE</td>
<td>Entidade Reguladora dos Serviços Energéticos</td>
</tr>
<tr>
<td>EU</td>
<td>União Europeia</td>
</tr>
<tr>
<td>GEE</td>
<td>Gases com Efeito de Estufa</td>
</tr>
<tr>
<td>GNL</td>
<td>Gás Natural Liquefeito</td>
</tr>
<tr>
<td>INE</td>
<td>Instituto Nacional de Estatística</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>MEE</td>
<td>Ministério da Economia e do Emprego</td>
</tr>
<tr>
<td>MT</td>
<td>Média Tensão</td>
</tr>
<tr>
<td>NIM's</td>
<td>National Implementation Measures</td>
</tr>
<tr>
<td>OCDE</td>
<td>Organização para a Cooperação e Desenvolvimento Económico</td>
</tr>
<tr>
<td>PIB</td>
<td>Produto Interno Bruto</td>
</tr>
<tr>
<td>Código</td>
<td>Abreviação</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>PNAEE</td>
<td>Plano Nacional de Acção para a Eficiência Energética</td>
</tr>
<tr>
<td>PNAER</td>
<td>Plano Nacional de Acção para as Energias Renováveis</td>
</tr>
<tr>
<td>PRE</td>
<td>Produção em Regime Especial</td>
</tr>
<tr>
<td>PRO</td>
<td>Produção em Regime Ordinário</td>
</tr>
<tr>
<td>QA</td>
<td>Quantidade Atribuída</td>
</tr>
<tr>
<td>REN</td>
<td>Rede Elétrica Nacional</td>
</tr>
<tr>
<td>RND</td>
<td>Rede Nacional de Distribuição</td>
</tr>
<tr>
<td>SIAM</td>
<td>Scenarios, Impacts and Adaptation Measures</td>
</tr>
<tr>
<td>tcma</td>
<td>taxa de crescimento média anual</td>
</tr>
</tbody>
</table>
Adicionalmente existem algumas definições que podem auxiliar o presente tema. As definições são mais gerais, mas foram adaptadas para o caso das alterações climáticas:

- **Adaptabilidade** – a capacidade, competência ou capacidade de um sistema para se adaptar a perturbações climáticas;
- **Capacidade adaptativa** – O potencial ou a capacidade de um sistema se adaptar a perturbações climáticas;
- **Capacidade de resposta** – O grau no qual o sistema reage a perturbações climáticas;
- **Exposição** – O grau no qual um sistema está desprotegido perante perturbações climáticas;
- **Plano de Continuidade de Operações** – Plano elaborado pela empresa que visa a manutenção da atividade com a menor perturbação possível em termos de qualidade e eficácia;
- **Planos de Emergência Externos** - Elaborados pelas autoridades em resposta às Diretivas 96/82/CE e 2003/105/CE;
- **Planos de Segurança Internos** – Elaborados pelas empresas em resposta às Diretivas 96/82/CE e 2003/105/CE;
- **Potencial impacte** – O grau no qual um sistema é suscetível a perturbações climáticas;
- **Resiliência** – O grau no qual um sistema recupera de perturbações climáticas;
- **Robustez** – A capacidade de um sistema funcionar corretamente mesmo quando sujeito a perturbações climáticas;
- **Sensibilidade** – o grau no qual um sistema é afetado por, ou responde a, perturbações climáticas;
- **Vulnerabilidade** – o grau no qual um sistema é suscetível de sofrer danos devidos a perturbações climáticas, ou a sua incapacidade de lidar com essas perturbações.
Anexo I

Cenários Energéticos e Climáticos
Anexo I – Cenários Energéticos e Climáticos

1.1. Cenários Energéticos

Contexto Internacional

A Comissão Europeia na sua Estratégia para uma energia competitiva, sustentável e segura – Energia 2020, aponta como prioritária a atuação nos seguintes vetores:

♦ Realização de uma Europa energeticamente eficiente;
♦ Construção de um mercado da energia verdadeiramente pan-europeu e integrado;
♦ Capacitação dos consumidores de energia e garantia do mais elevado nível de segurança intrínseca e extrínseca;
♦ Alargamento da liderança da Europa no domínio das tecnologias energéticas e da inovação;
♦ Reforço da dimensão externa do mercado da energia da UE.

Para além dos ambiciosos objetivos de eficiência energética, a segurança do abastecimento continua a ser uma prioridade para a União Europeia. E para tal, a garantia da competitividade do setor da energia assume um papel chave, sendo um dos principais drivers para uma economia mais competitiva e sustentável. Por outro lado, importa realçar que as políticas delineadas para este setor afetam e influenciam o desenvolvimento e sustentação de outros setores, que num quadro de objetivos mundiais de sustentabilidade energética e climática, serão alvo de fortes mudanças, como sejam, os setores de alta tecnologia, incluindo a indústria química, plásticos, automóvel, transportes, logística e também indústria de produtos de consumo, residencial, lazer e de turismo.

No percurso traçado, nenhuma política nacional de energia pode ser alcançada sem uma perspetiva europeia e ao mesmo tempo, a ação a nível da UE deverá ter em conta as ações a nível dos Estados Membros e, respetivas consequências. Por outro lado, a globalização dos mercados energéticos exige uma análise mundial e uma integração das políticas e objetivos.

Num contexto mundial, poucos sinais apontam para a efetiva mudança de rumo das tendências mundiais da energia, embora seja assumida a sua necessidade. Apesar da recuperação contrastada da economia mundial desde 2009 e das perspetivas económicas ainda incertas, a procura mundial de energia primária realizou um salto notável de 5% em 2010. Considerando

14 In World Energy Outlook 2011
as projeções incertas de crescimento económico a curto prazo, no Cenário Novas Políticas15, a procura de energia cresce fortemente, aumentando um terço entre 2010 e 2035.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Procura de Energia Primária – Cenário Novas Políticas16}
\end{figure}

O aumento da população e um crescimento médio anual da economia mundial de 3,5%, vão gerar, a nível mundial, uma procura sempre crescente no domínio dos serviços de energia e de mobilidade.

No cenário Novas Políticas, a procura de Energia nos países da OCDE aumenta 8% em 2035, em relação a 2009. Neste cenário, a procura de petróleo sofrerá uma redução de 0,6% ao ano, principalmente, em virtude das políticas de eficiência energética, à utilização de biocombustíveis e a uma saturação do mercado automóvel. A procura de carvão declinará significativamente e até 2035, nos países da OCDE, a redução será de 22% face a 2009. O gás natural assumirá em 2035 um papel preponderante na geração de energia, nos setores serviços, industrial e residencial.

15 Neste cenário assume-se que os recentes compromissos políticos serão implementados
16 Fonte: World Energy Outlook 2011
Na Europa para 2035, as projeções apontam para um crescimento da procura de energia primária inferior a 5%, face a 2009, em que o crescimento se verifica até 2020, estabilizando posteriormente. A procura de carvão declinará substancialmente, passando de uma quota de 16% no mix energético em 2009 para 8%, em 2035. Em contrapartida, o gás natural assume uma quota de 30% em 2035, em linha com as projeções a nível mundial. O consumo das energias renováveis aumentará a uma taxa de 3,5% ano, atingindo uma quota de 23% do mix energético na UE.

Fonte: World Energy Outlook 2011
Consequências a nível das infraestruturas do setor

Considerando os cenários apresentados, mantendo-se as necessidades crescentes de importação da UE, no que diz respeito ao petróleo e ao gás, e o aumento da procura nos países emergentes e em desenvolvimento, serão necessários mecanismos mais sólidos para assegurar novas vias de abastecimento, diversificadas e seguras. Tal como o acesso ao petróleo bruto, as infraestruturas de refinação são um elemento crucial da cadeia de apropriação.

Por outro lado, considerando os atuais planos dos Estados-Membros, a nível das energias renováveis, em que se pretende que estas assumam 37% da combinação energética europeia para a produção de eletricidade até 2020, será necessário acelerar a modernização da rede elétrica. A Comunicação da Comissão Europeia sobre a Infraestrutura da Energia sublinhou que são necessárias medidas urgentes para preparar a rede para a integração de volumes significativos de eletricidade produzida a partir de fontes de energia renováveis, facilitando o equilíbrio da rede, a flexibilidade e a produção distribuída. Os sistemas elétricos devem ser interligados e flexíveis pelo que será necessário desenvolver e reforçar novas infraestruturas, incluindo tecnologias de redes inteligentes.

A nível da segurança do abastecimento energético da UE e atendendo que o gás natural continuará a assumir uma quota-partes preponderante no mix energético europeu, será prioritária a garantia de um mercado energético integrado, sustentado logísticamente, através da flexibilização e integração das redes e de um aumento da capacidade de armazenagem.

Contexto Nacional

O contexto macroeconómico (em particular a redução do consumo, excesso de oferta e restrições de financiamento) veio criar a necessidade de revisitar os planos nacionais de eficiência energética e energias renováveis no horizonte de 2020. Considera-se crítico o cumprimento dos objetivos assumidos por Portugal em matéria de energia e clima, devendo-se procurar cumprí-los ao menor custo para a economia e para as famílias.

Neste sentido, os objetivos visam:

- Garantir o aumento da competitividade da economia por redução de custos de produção e assim assegurar a sustentabilidade do Sistema Eléctrico Nacional;
- Aumentar a eficiência energética da economia e em particular do setor Estado;
- Cumprir todos os compromissos assumidos por Portugal de forma economicamente mais racional.
Assim, o trabalho desenvolvido, teve por base um conjunto de pressupostos que serviram de suporte à construção de um cenário para a evolução do consumo de energia até 2020.

Pressupostos Macroeconómicos

Produto Interno Bruto (PIB) e População

O cenário da evolução do PIB para o período 2011-2020 serviu de base à revisão efetuada em 2011, do Plano Nacional de Ação para as Energias Renováveis (PNAER) e do Plano Nacional de Ação para a Eficiência Energética (PNAEE) e foi fornecido pelo Ministério das Finanças, assumindo uma taxa de crescimento média anual (tcma) de 1,7% para o período considerado.

<table>
<thead>
<tr>
<th>Variação do PIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1,7%</td>
</tr>
</tbody>
</table>

A nível da evolução da População consideram-se as projeções do Instituto Nacional de Estatística (INE), cuja previsão aponta para uma tcma de 0,2% no período 2010-2020.

<table>
<thead>
<tr>
<th>Evolução da População (milhões de habitantes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
</tr>
<tr>
<td>10,656</td>
</tr>
</tbody>
</table>
Preços dos principais produtos energéticos

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo 19</td>
<td>USD/bbl</td>
<td>112</td>
<td>107</td>
<td>101</td>
<td>99</td>
<td>98</td>
<td>100</td>
<td>103</td>
<td>106</td>
<td>109</td>
<td>112</td>
<td>0%</td>
</tr>
<tr>
<td>Gás Natural 20</td>
<td>USD/Mbtu</td>
<td>9,2</td>
<td>10,7</td>
<td>10,4</td>
<td>10,2</td>
<td>10,1</td>
<td>10,1</td>
<td>10,3</td>
<td>10,5</td>
<td>10,8</td>
<td>11,0</td>
<td>2,0%</td>
</tr>
<tr>
<td>Carvão 2</td>
<td>USD/ton</td>
<td>119</td>
<td>113</td>
<td>107</td>
<td>105</td>
<td>104</td>
<td>105</td>
<td>107</td>
<td>109</td>
<td>111</td>
<td>113</td>
<td>-0,6%</td>
</tr>
</tbody>
</table>

Preços indicativos das licenças de CO₂

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Licenças CO₂</td>
<td>€/ton</td>
<td>13</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>6,0%</td>
</tr>
</tbody>
</table>

Pressupostos de Política Energética

Evolução da Produção em Regime Ordinário (PRO)

Consideram-se as seguintes datas para o descomissionamento de centrais termoelétricas existentes:

<table>
<thead>
<tr>
<th>Central</th>
<th>Tipo</th>
<th>Descomissionamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sines</td>
<td>Carvão</td>
<td>2017</td>
</tr>
<tr>
<td>Setúbal</td>
<td>Fuel</td>
<td>2012</td>
</tr>
<tr>
<td>Tunes</td>
<td>Gasóleo</td>
<td>2012</td>
</tr>
</tbody>
</table>

20 Estimativa REN
Consideram-se as seguintes datas para a entrada de novas centrais CCGT:

<table>
<thead>
<tr>
<th>Central</th>
<th>Tipo</th>
<th>Entrada em serviço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sines</td>
<td>Gás Natural</td>
<td>2017</td>
</tr>
<tr>
<td>Lavos</td>
<td>Gás Natural</td>
<td>2017</td>
</tr>
</tbody>
</table>

Cenários para a calendárização da PRO Hídrica:

<table>
<thead>
<tr>
<th>Aproveitamentos Hidroelétricos * – com bombagem</th>
<th>Capacidade Instalada (MW)</th>
<th>Data de entrada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plano Nacional de Barragens de Elevado Potencial Hidroelétrico (PNBEPH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foz Tua*</td>
<td>251</td>
<td>2016</td>
</tr>
<tr>
<td>Girabolhos*</td>
<td>415</td>
<td>2017</td>
</tr>
<tr>
<td>Fridão</td>
<td>238</td>
<td>2017</td>
</tr>
<tr>
<td>Gouvães*</td>
<td>880</td>
<td>2017</td>
</tr>
<tr>
<td>Daivões</td>
<td>114</td>
<td>2017</td>
</tr>
<tr>
<td>Alto Tâmega</td>
<td>160</td>
<td>2017</td>
</tr>
<tr>
<td>Reforços de Potência</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alqueva II*</td>
<td>256</td>
<td>2012</td>
</tr>
<tr>
<td>Venda Nova III*</td>
<td>736</td>
<td>2015</td>
</tr>
<tr>
<td>Salamonde II*</td>
<td>207</td>
<td>2016</td>
</tr>
<tr>
<td>Novos Empreendimentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribeiradio</td>
<td>77</td>
<td>2013</td>
</tr>
<tr>
<td>Baixo Sabor*</td>
<td>171</td>
<td>2014</td>
</tr>
<tr>
<td>Bogueira</td>
<td>30</td>
<td>2017</td>
</tr>
</tbody>
</table>
Evolução da Produção em Regime Especial (PRE)

Metas indicativas para a potência a instalar até 2020 para a PRE

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>2020 (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cogeração não-FER</td>
<td>1.532</td>
</tr>
<tr>
<td>Cogeração FER</td>
<td>491</td>
</tr>
<tr>
<td>Eólica</td>
<td>5.300</td>
</tr>
<tr>
<td>PCH</td>
<td>500</td>
</tr>
<tr>
<td>RSU</td>
<td>110</td>
</tr>
<tr>
<td>Biomassa</td>
<td>200</td>
</tr>
<tr>
<td>Biogás</td>
<td>60</td>
</tr>
<tr>
<td>Solar Fotovoltaico</td>
<td>500</td>
</tr>
<tr>
<td>Solar Termoelétrico</td>
<td>50</td>
</tr>
<tr>
<td>Geotermia</td>
<td>30</td>
</tr>
<tr>
<td>Ondas</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>8.779</td>
</tr>
</tbody>
</table>

Cenário de evolução dos consumos de energia

A nível da energia primária e final, apresentam-se os resultados da projeção elaborada no âmbito da revisão do PNAER e do PNAEE. Estas projeções foram obtidas através do modelo MARKAL.

Energia Primária (ktep)

Consumo de energia primária por tipo de fonte energética
Energia Final (ktep)

Consumo de energia final por tipo de fonte energética e por setor de atividade económica.

<table>
<thead>
<tr>
<th>Tipo de Setor</th>
<th>2010</th>
<th>2015e</th>
<th>2020e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultura</td>
<td>463</td>
<td>458</td>
<td>508</td>
</tr>
<tr>
<td>Comércio e Serviços</td>
<td>2.018</td>
<td>1.904</td>
<td>2.146</td>
</tr>
<tr>
<td>Indústria</td>
<td>5.811</td>
<td>5.618</td>
<td>6.147</td>
</tr>
<tr>
<td>Residencial</td>
<td>2.936</td>
<td>2.897</td>
<td>3.295</td>
</tr>
<tr>
<td>Transportes</td>
<td>6.501</td>
<td>6.239</td>
<td>6.810</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17.729</td>
<td>17.083</td>
<td>18.903</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de Fonte</th>
<th>2010</th>
<th>2015e</th>
<th>2020e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carvão</td>
<td>1.657</td>
<td>1.802</td>
<td>600</td>
</tr>
<tr>
<td>Produtos Petrolíferos</td>
<td>9.444</td>
<td>9.044</td>
<td>10.086</td>
</tr>
<tr>
<td>Gás Natural</td>
<td>4.507</td>
<td>4.863</td>
<td>5.370</td>
</tr>
<tr>
<td>FER</td>
<td>5.229</td>
<td>6.813</td>
<td>7.520</td>
</tr>
<tr>
<td>Outros</td>
<td>264</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>TOTAL</td>
<td>21.101</td>
<td>22.541</td>
<td>23.595</td>
</tr>
</tbody>
</table>

(e) estimado

Considerações finais

Os cenários dos consumos de energia refletem o atual contexto macroeconómico e as opções de política energética adotadas. Prevê-se um abrandamento da procura de energia no período 2013/2015, podendo posteriormente verificar-se uma recuperação económica do país que terá impacte direto na procura de energia, sendo então expectável um aumento.

A energia primária, além da influência macroeconómica, depende da evolução do sistema eletroprodutor nacional, que influencia diretamente as importações de produtos energéticos.
Quanto à energia final não se perspetivam alterações significativas, a nível do consumo por setor de atividade, sendo expectável que se mantenha a atual estrutura de consumos. Perspetiva-se um aumento do consumo por tipo de fonte, a nível da eletricidade, como tem sido observado nos últimos anos, fruto da eletrificação crescente da sociedade, um abrandamento do consumo dos derivados de petróleo, por força da redução do consumo no transporte rodoviário individual e o aumento a nível das fontes renováveis (biomassa, solar e biocombustíveis). Para as restantes fontes não se perspetivam alterações significativas.

1.2. Cenários Climáticos

1.2.1. Variáveis climáticas críticas: climatologia para o período de referência e tendências climáticas para Portugal Continental

Os impactes das alterações climáticas a nível regional, territorial e setorial variam consideravelmente em toda a Europa.

A variabilidade natural do clima produz frequentemente situações climáticas extremas, onde se incluem as secas, as cheias, os ciclones e tornados, as ondas oceânicas e costeiras bem como as ondas de calor e de frio.

Face aos dois aspetos acima mencionados, torna-se pertinente efetuar uma análise climatológica no período 1961-1990, assim como uma avaliação das tendências climáticas predominantes existentes e disponíveis à data, para Portugal Continental.

1.2.1.1. Climatologia do período de referência 1961-1990

Portugal Continental situa-se na zona de transição entre o anticiclone subtropical (anticiclone dos Açores) e a zona das depressões subpolares, sendo o clima fortemente influenciado pelo Oceano Atlânptico.

A variação dos fatores climáticos - latitude, proximidade do oceano e orografia - embora pequena, é suficiente para induzir variações significativas na temperatura e principalmente na precipitação, observadas no território continental.

Temperatura

No período de referência (1961-1990), a temperatura média à superfície variou entre um mínimo de 7ºC nas zonas altas da Serra da Estrela, e um máximo de 18ºC na costa algarvia (Santos e Miranda, 2006). A distribuição espacial da temperatura depende da latitude, proximidade à costa e altitude, conforme referido e demonstrado na Figura 1.
A análise da temperatura com base nas estações do ano evidencia diferenças relevantes no que respeita à distribuição espacial da temperatura. Para o Inverno (Setembro, Janeiro e Fevereiro), a temperatura média mínima sofre uma redução de Sul para Norte, e especialmente de Este para Oeste, com valores da ordem de 0 a 2ºC, enquanto para o Verão (Junho, Julho e Agosto), a temperatura média máxima é superior no Sudoeste de Portugal Continental, com valores da ordem de 30-32ºC, como demonstra a Figura 2.
Precipitação

A variável climática aqui definida como precipitação, associa-se com alterações nos padrões geográficos e temporais de disponibilidade de recursos hídricos, nomeadamente na diminuição de nível freático e mudanças nos valores médios de escoamento de precipitação, incluindo a sobrelevação do mar.

A precipitação em Portugal Continental apresenta uma variação muito significativa em termos Norte/Sul e Oeste/Este, ou seja, a região mais chuvosa localiza-se no Norte Litoral. O contraste Norte/Sul é ainda reforçado pelo relevo e pela sua disposição. Os cumes das principais montanhas a Norte do Tejo constituem-se como as regiões mais chuvosas. No entanto, há elevações a Sul que registam também precipitações elevadas, como por exemplo, a Serra de Monchique, no Algarve. As regiões do interior são claramente menos chuvosas, quer a Norte, quer a Sul do País.

A precipitação anual média em Portugal Continental é cerca de 900 mm, sendo os valores mais elevados referentes ao Minho, com zonas em que a precipitação anual média excede 3000 mm. Os valores mais baixos, inferiores a 400 mm/ano, ocorrem numa região restrita da Beira Interior (a sul do Douro) e mais extensivamente no Alentejo, com valores inferiores a 600 mm/ano (Santos e Miranda, 2006). A distribuição espacial da precipitação anual média apresenta-se na Figura 3.
Por outro lado, a análise da distribuição da precipitação pelas estações do ano, permite concluir que aproximadamente 42% da precipitação anual ocorre no Inverno (Dezembro, Janeiro e Fevereiro), enquanto o Verão (Junho, Julho e Agosto) é a estação menos chuvosa, com cerca de 6% da precipitação anual. As estações de transição, Primavera (Março, Abril e Maio) e Outono (Setembro, Outubro e Novembro), colaboram para os remanescentes 52% de precipitação acumulada, com uma distribuição interanual muito variável (Santos e Miranda, 2006).

No que respeita à sobrelevação do mar, apresentam-se no Quadro 1 os valores máximos absolutos para os períodos disponíveis para cada marégrafo. Clarifica-se que, sobrelevação do mar representa, no âmbito deste relatório e à semelhança da definição disposta no Projeto SIAM II (Santos e Miranda, 2006), o resultado de um conjunto de processos físicos, de origem atmosférica, que podem provocar um nível do mar diferente do que ocorreria devido apenas à maré com forçamento atmosférico.
Máximos absolutos de sobrelevação do nível do mar no período de dados mareográficos

<table>
<thead>
<tr>
<th>Marégrafo</th>
<th>Máximo de sobrelevação (cm)</th>
<th>Data de ocorrência</th>
<th>Período de dados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viana do Castelo</td>
<td>107</td>
<td>17/02/86</td>
<td>1978-1996</td>
</tr>
<tr>
<td>Leixões</td>
<td>93</td>
<td>30/12/81</td>
<td>1956-1985</td>
</tr>
<tr>
<td>Cascais</td>
<td>46</td>
<td>02/02/98</td>
<td>1987-2000</td>
</tr>
<tr>
<td>Lagos</td>
<td>52</td>
<td>08/12/88</td>
<td>1986-2000</td>
</tr>
</tbody>
</table>

Vento

No que respeita ao vento, a ausência de dados climáticos e modelos disponíveis que descrevam as características de Portugal Continental, dificultam a descrição detalhada relativamente ao vento no período de referência. No entanto, para Portugal Continental pode afirmar-se que a distribuição do vento é fortemente influenciada pela ocorrência de brisas, principalmente na zona costeira.

Tempestade

Aqui a Tempestade representa as alterações na altura significativa média das ondas e/ou as situações de temporal (definidas como as ocorrências de altura significativa de percentil 95, isto é, estados do mar com altura significativa excedida, em média, em 5% do tempo).

Relativamente ao clima de ondas para o período de referência, verifica-se que o valor médio da altura significativa (m) das ondas, no período de referência, varia entre 2,6 e 2,8 m. Por outro lado, para a altura significativa com uma probabilidade de excedência de 5%, os valores variam entre 4,50-5,50 m, para a média anual.

1.2.1.2. Tendências climáticas predominantes

Os modelos e cenários climáticos apresentados e desenvolvidos no Terceiro Relatório de Avaliação do IPCC projetam para 2100 um aumento da temperatura global situado no intervalo de 1,4°C a 5,8°C relativamente à média de 1961 a 1990. As alterações climáticas a curto prazo são mais modestas, com um aumento projetado de 0,5°C até 2020.

Com base nos cenários climáticos europeus e portugueses, as projeções apontam para um aumento da frequência e intensificação dos eventos extremos a curto prazo. A longo prazo, os cenários apontam para alterações climáticas graduais, como a sobrelevação do mar ou aumento significativo da temperatura. De facto, as consequências associadas às alterações climáticas
decorrem numa 1ª fase associadas a fenómenos extremos de clima, enquanto a longo prazo decorrem de mudanças graduais de clima.

A compreensão dos impactes decorrentes das alterações climáticas contrasta com a carência de investigação multidisciplinar e objetiva sobre esta matéria para cenários regionais, especialmente nos horizontes temporais de curto médio prazo (2020 e 2030). Para os cenários de risco associados a horizontes temporais de curto médio prazo podem ser considerados dados e cenários climáticos a nível europeu, no que concerne às variáveis climáticas críticas. Com base nos cenários e dados prospectivos disponíveis, verificam-se as seguintes projeções gerais (Rômish, 2009):

- Intensificação qualitativa e quantitativa dos eventos climáticos extremos, como sejam a ocorrência de secas e cheias, especialmente nas zonas Centro e Sul;
- Aumento da temperatura até 0,5ºC.

A longo prazo, os diferentes cenários de mudança climática projetam modificações importantes e assinaláveis do clima em Portugal Continental. Com base nos cenários e modelos desenvolvidos à data, tendo por base os Projetos SIAM e SIAM II (Santos e Miranda, 2006), prevê-se, em traços gerais, para o período 2080-2100, o seguinte cenário climático, em Portugal Continental:

- Até ao final do século XXI, todos os modelos e cenários prevêem um aumento significativo da temperatura média em todas as regiões de Portugal;
- Incrementos na frequência e intensidade de ondas de calor, com elevação da temperatura máxima no Verão, entre 3ºC na zona costeira e 7ºC no interior;
- Incrementos na quantidade de dias quentes21 e de noites tropicais22 e redução em índices de clima frio (por exemplo, dias de geada ou dias com temperaturas mínimas inferiores a 0ºC);
- Em termos de precipitação, os diferentes cenários sugerem uma redução de cerca de 20 a 40% da precipitação anual face aos valores atuais de precipitação, devido à diminuição da estação chuvosa.

As projeções climáticas para Portugal Continental serão significativas fundamentalmente a longo prazo, com consequências na extensa e vulnerável faixa costeira portuguesa. A zona costeira de Portugal Continental estende-se por cerca de 950 km e apresenta marés semidiurnas, de amplitude elevada (média de águas vivas de 2,8-2,9 m – litoral mesotidal elevado) (Santos e Miranda, 2006).

21 Temperatura máxima superior a 35ºC.
22 Temperaturas mínimas superiores a 20ºC.
Temperatura

Os cenários de temperatura obtidos projetam para o final do século XXI, aumentos significativos em praticamente todos os cenários climáticos regionais, apresentados pelos Projetos SIAM I e II (Santos e Miranda, 2006; Santos et al., 2002). Assim, qualquer dos cenários projeta um aumento da temperatura mínima e máxima em todas as estações do ano e em qualquer ponto de Portugal Continental, sendo que os aumentos mais elevados ocorrem de forma consistente no Verão e no interior Norte e Centro. Estes aumentos irão muito provavelmente alterar as características climáticas associadas à temperatura provocando, por exemplo, um aumento dos dias de Verão (Tmax > 25ºC) e de “dias muito quentes” (Tmax > 35ºC) ou ainda uma diminuição dos dias com geada (Tmin <0ºC). A concordância inequívoca dos vários modelos projeta uma subida da temperatura média anual de 2 a 3ºC em 2050, e de 3,5 a 5ºC em 2100.

Os resultados para as regiões Centro e Sul são cerca de 0,5 ºC mais elevados que os da região Norte, como demonstrado na Figura 4.

23 HadCM3, HadCM2, HadRM2, ECHAM4.
Os cenários europeus a curto e médio prazo projetam um aumento de temperatura e cerca de 0,5°C, incremento que não será responsável por grandes impactes e vulnerabilidades em Portugal Continental, nomeadamente na faixa costeira. De facto, a expressão do aumento de temperatura a curto prazo poderá ser contornável pela aplicação efetiva e eficaz de medidas adaptativas.

Do ponto de vista de fenómenos climáticos extremos, merecem também destaque, os índices associados ao número anual de dias de Verão (Su), número anual de noites tropicais (Tr), o índice de duração de ondas de calor (HWDI\(^24\)) e o número anual de dias de geada (Fd).

\(^24\) O índice HWDI é definido como o número de dias, em intervalos de pelo menos 6 dias consecutivos, em que a temperatura máxima é superior em 5°C ao valor médio diário, no período climatológico 1961-1990.
Os valores observados, e apresentados na Figura 5, quanto ao número médio de “dias de Verão” por ano (com temperatura máxima superior a 25°C) registado na normal observada 1961-1990, variam entre 100 -140 dias de Verão por ano a Sul do Tejo e menos de 10 dias na Serra da Estrela.

Estas observações são aliás concordantes com a ocorrência observada, 1961-1990, apresentada na Figura 4 (primeiro mapa do canto superior esquerdo), quanto a “dias muito quentes” registados essencialmente no Sul de Portugal, e entre 10 e 30 dias:
O máximo absoluto ocorre na região de Mourão-Amareleja, com valores superiores a 30 dias. Nas zonas costeiras, e em praticamente toda a região Norte, o número de “dias muito quentes” foi inferior a 5 por ano.

Estas frequências estão associadas à ocorrência de ondas de calor, que se têm mostrado relativamente frequentes a partir da década de 90, sendo Junho o mês de Verão em que o fenómeno tem maior destaque.

A onda de calor de Julho-Agosto 2003, que nas regiões do interior do território (Norte, Centro e parte da região Sul) variou entre 16 e 17 dias, foi a onda de calor com maior duração alguma vez registada (desde 1941). No entanto, esta onda de calor teve uma extensão espacial inferior à de 1981 (não ocorreu onda de calor nas regiões do litoral e no sotavento algarvio).

Outros indicadores relevantes incluem o número anual de noites tropicais (dias com temperatura mínima superior a 20ºC) e de dias de geada (com temperatura mínima inferior a 0ºC).

Na normal observada, o número de noites tropicais por ano varia entre menos de 2 e cerca de 20, com uma parte significativa do território a apresentar menos de 2 noites tropicais por ano.

Os valores mais elevados observados situam-se no interior Centro e Sul e na costa algarvia.

Na normal observada 1961-1990, apresentado na Figura 7, ocorreram em média entre 0 e 90 dias de geada por ano, registrando-se os valores mais elevados nas zonas montanhosas do interior Norte e Centro.
Precipitação

Os cenários climáticos europeus apresentam projeções modestas a curto e médio prazo para Portugal Continental, especialmente quando se refere a mudanças climáticas graduais traduzidas pelo aumento da temperatura de 0,5°C, conforme já mencionado. No que respeita a valores médios anuais de precipitação, relativos ao cenário de referência, as projeções são menos concordantes, mas a tendência dominante é de uma redução anual até 10% na região Norte, que poderá atingir os 30% na região Sul. Para os cenários climáticos de longo prazo, verificam-se as projeções presentes no Quadro 2, com base nos resultados apresentados no Projeto SIAM II (Santos e Miranda, 2006).
Alterações dos valores médios anuais de precipitação, relativos a 1960-1994, para vários cenários (Santos e Miranda, 2006).

<table>
<thead>
<tr>
<th></th>
<th>Precipitação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2050</td>
</tr>
<tr>
<td>Região Norte</td>
<td></td>
</tr>
<tr>
<td>HadCM2</td>
<td>-4.2</td>
</tr>
<tr>
<td>HadCM3</td>
<td>-5.7</td>
</tr>
<tr>
<td>HadRM2</td>
<td></td>
</tr>
<tr>
<td>ECHAM4</td>
<td>-19.7</td>
</tr>
<tr>
<td>CGCM 1</td>
<td>-10.2</td>
</tr>
<tr>
<td>PROMES</td>
<td>+11.8</td>
</tr>
<tr>
<td>Região Centro</td>
<td></td>
</tr>
<tr>
<td>HadCM2</td>
<td>-1.4</td>
</tr>
<tr>
<td>HadCM3</td>
<td>-8.4</td>
</tr>
<tr>
<td>HadRM2</td>
<td></td>
</tr>
<tr>
<td>ECHAM4</td>
<td>-23.6</td>
</tr>
<tr>
<td>CGCM 1</td>
<td>-19.9</td>
</tr>
<tr>
<td>PROMES</td>
<td>+7.4</td>
</tr>
<tr>
<td>Região Sul</td>
<td></td>
</tr>
<tr>
<td>HadCM2</td>
<td>-3.4</td>
</tr>
<tr>
<td>HadCM3</td>
<td>-16.8</td>
</tr>
<tr>
<td>HadRM2</td>
<td></td>
</tr>
<tr>
<td>ECHAM4</td>
<td>-29.1</td>
</tr>
<tr>
<td>CGCM 1</td>
<td>-23.2</td>
</tr>
<tr>
<td>PROMES</td>
<td>+12.1</td>
</tr>
</tbody>
</table>

Os cenários climáticos estimados pelos modelos globais e regionais refletem uma tendência de decréscimo da precipitação média anual mais acentuado na região Sul, face à região Centro e Norte. No entanto, a variabilidade intra-anual é assinalável, ou seja, entre as diferenças

25 Cenários propostos pelo IPCC, com dados climáticos regionais.
projetadas de precipitação entre estações do ano, particularmente para a estação chuvosa. A maioria dos cenários climáticos aponta para uma tendência de redução do escoamento na Primavera, Verão e Outono. Por outro lado, as mudanças registam-se de forma diferente, dependendo da latitude. As projeções climáticas indicam uma clara tendência de concentração da precipitação nos meses de Inverno. O aumento de escoamento no Inverno poderá traduzir-se num aumento efetivo da precipitação média entre os meses de Dezembro e Fevereiro, contribuindo para o aumento de risco de cheia em Portugal Continental.

Por outro lado, relativamente a fenómenos climáticos e meteorológicos extremos a longo prazo, a tendência para o agravamento de precipitações extremas é observada em todo o país, sendo mais clara na região Norte. Nesta região, os resultados apontam para um aumento de precipitação da ordem dos 5 mm nos 30 dias mais húmidos do ano. Nas restantes regiões, o cenário de aumento da precipitação intensa é mais atenuado, admitindo-se um aumento da precipitação diária da ordem dos 5 mm nos 20 dias mais húmidos e nos 10 dias mais húmidos, respectivamente nas regiões Centro e Sul (Santos e Miranda, 2006).

No horizonte temporal de curto prazo, a vulnerabilidade das zonas de risco varia, fundamentalmente com a análise efetuada: alterações climáticas graduais ou ocorrência de eventos extremos. A zona Norte apresenta uma vulnerabilidade média à ocorrência de eventos extremos como cheias e secas. Por outro lado, as vulnerabilidades são assinaláveis para a região Centro e Sul, com incrementos na significância da ocorrência de eventos extremos. Por outro lado, quando se trata de alterações climáticas graduais, nomeadamente do aumento da temperatura de 0,5ºC, não são expectáveis vulnerabilidades significativas em Portugal Continental, na sobrelevação do mar (Römish, 2009). No entanto, os dados disponíveis não permitem o estabelecimento de tendências (crescentes ou decrescentes) a longo prazo, (2050 e 2080). No projeto SIAM II os valores obtidos, para períodos de retorno de 100 anos, nas estações de Viana do Castelo, Leixões, Cascais e Lagos, excedem apenas 30-40% os que caracterizam o intervalo de retorno de 5-10 anos (Santos e Miranda, 2006).

Situações de seca

A situação geográfica do território de Portugal Continental é favorável à ocorrência de episódios de seca, quase sempre associados a situações de bloqueio em que o anticyclone subtropical do Atlântico Norte se mantém numa posição que impede que as perturbações da frente polar atinjam a Península Ibérica. [1]

26 Resultado de um conjunto de processos físicos, de origem atmosférica, que podem provocar um nível do mar diferente do que ocorreria devido apenas à maré com forçamento astronómico (SIAM II, 2006).
Existem diversas metodologias de classificação da severidade de uma seca relativas à sua intensidade ou, alternativamente, à extensão da área abrangida.

Analisando as séries do índice de seca PDSI27 (*Palmer Drought Severity Index*), que combina os efeitos da temperatura e precipitação, para os últimos 25 anos do século XX, verifica-se que foi na década de 90 que as situações de seca foram mais frequentes, sendo a seca de 1991 - 1993 a mais longa tendo afetado todo o território continental. [2]

Situações de seca nas regiões do Norte/Centro e Sul desde 1980.

<table>
<thead>
<tr>
<th>Seca</th>
<th>Região Norte/Centro</th>
<th>Região Sul</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-81</td>
<td>fraca a severa</td>
<td>Dez 80 a Fev 81</td>
</tr>
<tr>
<td>1991/92/93</td>
<td>fraca a extrema</td>
<td>Nov 91 a Mar 93</td>
</tr>
<tr>
<td>1994/95</td>
<td>fraca a extrema</td>
<td>Mar 95 a Out 95</td>
</tr>
<tr>
<td>1998/99</td>
<td>moderada a extrema</td>
<td>Out 98 a Fev 99</td>
</tr>
<tr>
<td>1999/2000</td>
<td>fraca a severa</td>
<td>Jan 00 a Mar 00</td>
</tr>
</tbody>
</table>

Dos inúmeros acontecimentos históricos registados, organizados no esquema seguinte, destacam-se as secas de maior extensão espacial que se verificaram em Portugal continental desde 1940, caracterizadas por se terem registado valores de precipitação com probabilidade de ocorrência inferiores a 20%. [3]

27 Índice de Palmer ou PDSI (*Palmer Drought Severity Index*) representa uma medida da intensidade da seca/chuva e responde a condições do tempo que estiveram anormalmente secas ou anormalmente chuvosas. Detecta períodos de seca/chuva e classifica-os em termos da sua intensidade. O seu cálculo baseia-se nos elementos do balanço hídrico, utilizing dados de temperatura média mensal, precipitação total mensal e conteúdo de água no solo.
No último de ano de seca que ocorreu em Portugal Continental (2005) uma grande parte das regiões interiores tiveram problemas graves de fornecimento de água, tendo havido a necessidade de se recorrer a meios alternativos para garantir o abastecimento das populações.

As condições climáticas e os regimes pluviométricos que se verificam em Portugal, proporcionados pelos núcleos de baixa pressão, que se formam no Oceano Atlântico, associados a sucessivas frentes húmidas que percorrem o País para leste, provocam períodos alongados de intensas precipitações em vastas áreas de Portugal.[2]

As situações de chuva intensa, que originam as cheias, ocorrem geralmente do Outono à Primavera. As inundações têm ocorrido um pouco por todo o país mas as bacias hidrográficas dos médios e grandes rios são as mais afectadas. Os rios Tejo, o Douro e o Sado têm um longo histórico de cheias. [3]

Dos inúmeros acontecimentos históricos registados, destacam-se as cheias que maior impacte tiveram em Portugal Continental [3]:

- 1909, Dezembro/ Rio Douro. Atingiu na Régua o caudal máximo de 16 700 m3/s;
- 1948, Janeiro/ Verificadas em quase todos os rios do Continente;
- 1962, Janeiro/Norte e Centro do País, com principal incidência nos rios Mondego e Douro, onde se cotou como a 2ª maior cheia do século XX;
- 1967, Novembro/Rio Tejo;
- 1978, Fevereiro/Rios Tejo e Sado;
- 1979, Fevereiro/Rio Tejo. Considerada como a maior cheia do século XX;
- 1983, Novembro/Rio Tejo;
- 1989, Dezembro/Rios Tejo e Douro;
- 2000/01, Inverno/Rios Douro e Tejo;
Tempestade

Conforme atrás referido, a variável climática aqui definida como tempestade, associa-se com alterações do clima de ondas e agitação marítima, nomeadamente a altura significativa média das ondas e situações de temporal. No que respeita às situações de temporal, tenderão a aumentar ligeiramente ao longo da fachada ocidental do território continental nacional de um factor de 1,01 mantendo-se praticamente invariante ao largo do litoral Sul do Algarve. A título de exemplo, para a região Norte da costa Oidental de Portugal Continental, a altura significativa das ondas excedida no período de Inverno em 5% do tempo, ou seja, cerca de 4,5 dias, terá um incremento de 0,3 m no seu valor à data de 2006 (Santos e Miranda, 2006).

Para os horizontes temporais de curto prazo poderá projetar-se uma intensificação de eventos climáticos extremos, bem como um aumento do número de ocorrências, embora à luz dos dados disponíveis atuais, não seja inequívoca a ocorrência de situações de temporal.

O estudo da evolução futura do regime de agitação marítima indica que pode existir tendência para agravamento da intensidade dos temporais no horizonte temporal de finais de século XXI, com especial incidência no Verão e Inverno. As ondas do mar e as situações de temporal são os principais impulsionadores de curto prazo para a ocorrência de processos de erosão costeira em muitas costas europeias, em particular a portuguesa. Entre os impactes mais relevantes, ressalta a rotação em sentido horário do clima de agitação marítima. Considerando uma rotação ao largo de 5º a 15º, é razoável prever um agravamento da intensidade dos processos erosivos desencadeada pela alteração futura do clima de agitação marítima que poderá exceder o ritmo actual em cerca de 15 a 25% (Santos e Miranda, 2006).

Os estudos que revelam tendências /projeções climáticas estão, por natureza, caracterizados por um certo grau de incerteza face à limitação dos modelos utilizados, assim como à dificuldade de conhecer, entender e prever perfeitamente os fenómenos dinâmicos naturais e climatológicos. Por outro lado, verifica-se a carência de dados e modelos climáticos à escala regional.

Porém, verifica-se uma tendência partilhada independentemente dos modelos e dos incentivos dos estudos, uma vez que de uma maneira geral todos indicam aumentos de temperatura e alterações significativas da precipitação, sendo estas projeções também aplicáveis à região portuguesa.

28 Ocorrências de altura significativa de percentil 95, isto é, estados do mar com altura significativa excedida, em média, em 5% do tempo, a média anual da altura significativa de percentil 95.
Anexo II

Fichas tipo B – Caraterização das áreas de Risco e vulnerabilidades
Anexo II – Fichas B – Caraterização das Áreas de Risco e Vulnerabilidade

B1

Caracterização das Áreas de Risco e Vulnerabilidade do Parque Electroprodutor

Centro de Produção Hidroeléctrica do Douro

<table>
<thead>
<tr>
<th>DESCRIÇÃO GERAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duração da ocorrência</td>
<td>Entre 2 a 23 dias</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
<td>Chuvas intensas e prolongadas que deram origem à ocorrência de cheias fluviais</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>Sim</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUÊNCIAS DO FENÓMENO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências nas infra-estruturas de transporte e distribuição de energia</td>
<td>Não</td>
</tr>
<tr>
<td>Consequências nas infra-estruturas de armazenamento de energia</td>
<td>Não</td>
</tr>
<tr>
<td>Consequências nas infra-estruturas de produção de energia</td>
<td>Paragem de centrais hidroeléctricas que integram a cascata do Douro nomeadamente, no conjunto dos anos anos acima referidos, Miranda, Picote, Bemposta, Pocinho, Valeira, Régua, Carrapatelo, Fratel e Crestuma, por razões de:</td>
</tr>
<tr>
<td></td>
<td>• Afluências elevadas devido à incapacidade de retenção, em cada caso, pelos pelos aproveitamentos a montante e em consequência, os caudais descarregados provocaram a redução do valor da queda útil (diferença de nível de montante e jusante)</td>
</tr>
<tr>
<td></td>
<td>• “Queda útil” em valor inferior ao tecnicamente permitido com garantia de bom funcionamento dos descarregadores de superfície</td>
</tr>
</tbody>
</table>
Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.) | No que se refere ao efeito concreto em análise, não houve nenhuma consequência a assinalar

<table>
<thead>
<tr>
<th>AVALIAÇÃO DO RISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACÇÕES DE RESPOSTA À EMERGÊNCIA DESENVOLVIDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição</td>
</tr>
<tr>
<td>Tempo de reparação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
</tr>
<tr>
<td>Custos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACÇÕES CORRECTIVAS DESENVOLVIDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição</td>
</tr>
<tr>
<td>Tempo de reparação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
</tr>
<tr>
<td>Custo com as acções imediatas de reposição do serviço</td>
</tr>
<tr>
<td>Custo/investimento com as acções de reparação</td>
</tr>
<tr>
<td>definitiva das infra-estruturas afectadas</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Envolvimento autoridades nacionais/locais</td>
</tr>
<tr>
<td>Envolvimento instituições científicas</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
</tr>
<tr>
<td>CONCLUSÕES/EFEITOS/ENSINAMENTOS</td>
</tr>
<tr>
<td>Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:</td>
</tr>
</tbody>
</table>
| - Práticas de projeto (ex: normas de dimensionamento das infraestruturas)
 - Articulação interna dos diversos intervenientes
 - Plano de emergência interno
 - Avaliação de risco
 - Coordenação com as entidades oficiais | |
<p>| ACÇÕES PREVENTIVAS DESENVOLVIDAS (ACÇÕES DE ADAPTAÇÃO IMPLEMENTADAS) | |
| Descrição | Não foram aplicadas medidas preventivas |
| Duração da fase de implementação | --- |
| Recursos humanos | --- |
| Custos | --- |</p>
<table>
<thead>
<tr>
<th>DESCRIÇÃO GERAL</th>
</tr>
</thead>
</table>
| Data de início da ocorrência | Tipo 1) Ano 1983
Tipo 2) Anos 1967 e 1979 |
| Duração da ocorrência | Tipo 1) 2 dias
Tipo 2) Não disponível |
| Tipificação do fenômeno | Tipo 1) Chuva intensa
Tipo 2) Chuva intensa e prolongada/cheia fluvial no rio Tejo |
| Alerta prévio das autoridades oficiais | Informação não disponível |

<table>
<thead>
<tr>
<th>CONSEQUÊNCIAS DO FENÔMENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências nas infra-estruturas de transporte e distribuição de energia</td>
</tr>
<tr>
<td>Consequências nas infra-estruturas de armazenamento de energia</td>
</tr>
</tbody>
</table>
| Consequências nas infra-estruturas de produção de energia | Tipo 1) Inundação da sala das máquinas
Tipo 2) Inundação da Central e inundação da casa das bombas elevatórias |
| Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.) | No que se refere ao efeito em análise, não houve nenhuma consequência a assinalar |

<table>
<thead>
<tr>
<th>AVALIAÇÃO DO RISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
</tr>
</tbody>
</table>

ACÇÕES DE RESPOSTA À EMERGÊNCIA DESENVOLVIDAS

| **Descrição** | **Tipo 1)** Saída de serviço de 4 Grupos geradores (1, 3, 4 e 5) devido à inundação da cota -2,5m da sala de máquinas, com danificação de vários equipamentos.
{| Tipo 2)
| Ocorrência na fase final de construção da central, com danos nas instalações e equipamentos instalados nas cotas inundadas
| Paragem das bombas elevatórias e consequente saída dos Grupos do paralelo |
Tempo de reparação	**Informação não disponível**
Recursos humanos envolvidos	**Meios internos**
Custos	**Informação não disponível**

ACÇÕES CORRECTIVAS DESENVOLVIDAS

| **Descrição** | **Tipo 1)** Colocados sacos de areia e controlada a subida do nível na zona de acesso à central; limpeza dos locais afectados pela inundação e recuperação dos equipamentos.
<p>| Tipo 2) Limpeza e reparação de equipamentos afectados. |</p>
<table>
<thead>
<tr>
<th>Tempo de reparação</th>
<th>Informação não disponível</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Meios internos</td>
</tr>
<tr>
<td>Custo com as acções imediatas de reposição do serviço</td>
<td>Informação não disponível</td>
</tr>
</tbody>
</table>
| Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas | Tipo 1) 5 k €
| | Tipo 2) Informação não disponível |
| Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários | Não aplicável |
| Envolvimento autoridades nacionais/locais | Não |
| Envolvimento instituições científicas | Não |
| Acções de benchmarking | Não |

CONCLUSÕES/EFEITOS/ENSINAMENTOS

Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:
- Práticas de projeto (ex: normas de dimensionamento das infraestruturas)
- Articulação interna dos diversos intervenientes
- Plano de emergência interno
- Avaliação de risco
- Coordenação com as entidades oficiais

As situações induziram à revisão dos procedimentos operacionais aplicáveis.

ACÇÕES PREVENTIVAS DESENVOLVIDAS (ACÇÕES DE ADAPTAÇÃO IMPLEMENTADAS)

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Não foram aplicadas medidas preventivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duração da fase de implementação</td>
<td>---</td>
</tr>
<tr>
<td>Recursos humanos</td>
<td>---</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>Custos</td>
<td>---</td>
</tr>
</tbody>
</table>
DESCRIÇÃO GERAL

<table>
<thead>
<tr>
<th>Data de início da ocorrência</th>
<th>Tipo 1) Ano 1998; Ano 1999; Anos 1999 a 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tipo 2) Ano 1994 e 1995</td>
</tr>
<tr>
<td>Duração da ocorrência</td>
<td>Tipo 1) 1 dia; não disponível; entre 1 hora e 5 dias</td>
</tr>
<tr>
<td></td>
<td>Tipo 2) Não disponível</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
<td>Tipo 1) Vento forte (e ondulação marítima acentuada)</td>
</tr>
<tr>
<td></td>
<td>Tipo 2) Seca</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>Informação não disponível</td>
</tr>
</tbody>
</table>

CONSEQUÊNCIAS DO FENÔMENO

Consequências nas infra-estruturas de transporte e distribuição de energia	Não
Consequências nas infra-estruturas de armazenamento de energia	Não
Consequências nas infra-estruturas de produção de energia	Tipo 1)
Ano 1998 – danos em infraestruturas da central:	
• Danos nas coberturas das linhas de transporte de carvão e escória;	
• Danos no revestimento das estruturas de vários edifícios.	
Ano 1999 – afluência anormal de algas à bacia de adução e aos mecanismos de filtragem do CAR:	
•Destruição dos fusíveis mecânicos dos tambores filtrantes, com saída dos Grupos do paralelo;	
- Entrada de algas na aspiração das bombas, com afetação dos condensadores principais e auxiliares;
- Na zona do canal de rejeição, houve inundação da sal das máquinas das turbinas de recuperação de energia.

Anos 1999 a 2008 — afluência anormal de algas à bacia de adução e aos mecanismos de filtragem do CAR:
- Danos (colmatação) nos sistemas de filtragem;
- Disparo das bombas de circulação;
- Indisponibilidade total dos Grupos.

Tipo 2)

Ano 1994 e 1995 — indisponibilidade de águas desmineralizadas:
- Indisponibilidade de água na Albufeira de Morgavel que assegura fornecimento de água bruta à Central;
- Mau funcionamento da ETA (INAG) com contaminação das cadeias de água desmineralizada e degradação da qualidade de água desmineralizada;
- Volume insuficiente de água tratada.

<table>
<thead>
<tr>
<th>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</th>
<th>No que se refere ao efeito em análise, não houve nenhuma consequência a assinalar</th>
</tr>
</thead>
</table>

AVALIAÇÃO DO RISCO

<table>
<thead>
<tr>
<th>Foi accionado algum plano de emergência interno?</th>
<th>Sim</th>
</tr>
</thead>
<tbody>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td>Sim</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td>Sim</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td>Não, porque a franquia estabelecida na apólice encaixou o tempo de indisponibilidade e os custos</td>
</tr>
<tr>
<td>ACÇÕES DE RESPOSTA À EMERGÊNCIA DESENVOLVIDAS</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Descrição</td>
<td>Recurso a meios humanos para complementar a eficiência dos equipamentos de limpeza instalados.</td>
</tr>
<tr>
<td>Tempo de reparação</td>
<td>Informação não disponível</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos</td>
</tr>
<tr>
<td>Custos</td>
<td>Informação não disponível</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACÇÕES CORRECTIVAS DESENVOLVIDAS</th>
<th></th>
</tr>
</thead>
</table>
| **Descrição** | Tipo 1) Ano 1998 – reparação dos estragos.
Anos 1999; Ano 1999 a 2008 – Limpeza dos condensadores principais e auxiliares, refrigeradores e filtros.
| **Tempo de reparação** | Informação não disponível |
| **Recursos humanos envolvidos** | Internos e externos |
| **Custo com as acções imediatas de reposição do serviço** | Tipo 1) Da ordem dos 300k€
Tipo 2) Da ordem dos 300k€ |
| **Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas** | Tipo 1) Da ordem dos 85k€
Tipo 2) Da ordem dos 150k€ |
<table>
<thead>
<tr>
<th>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</th>
<th>Não aplicável</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envolvimento autoridades nacionais/locais</td>
<td>Tipo 1) Administração do Porto de Sines</td>
</tr>
<tr>
<td>Envolvimento instituições científicas</td>
<td>Tipo 2) Realização de estudos sobre o ciclo de produção de algas e de análise da afluência de algas pelo Laboratório LABELEC</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Tipo 1 e 2) Junto de congéneres pela via das associações europeias de empresas do sector eléctrico, as EURELECTRIC e VGB</td>
</tr>
</tbody>
</table>

CONCLUSÕES/EFEITOS/ENSINAMENTOS

Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:

- Práticas de projeto (ex: normas de dimensionamento das infraestruturas)
- Articulação interna dos diversos intervenientes
- Plano de emergência interno
- Avaliação de risco
- Coordenação com as entidades oficiais

As situações induziram à instalação de equipamentos específicos bem como a revisão dos procedimentos operacionais aplicáveis.

ACÇÕES PREVENTIVAS DESENVOLVIDAS (ACÇÕES DE ADAPTAÇÃO IMPLEMENTADAS)

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Tipo 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Instalação de bomba de aspiração de algas na zona do tambor filtrante; - Instalação de um sistema hidráulico de acionamento do limpa gralhas da grelha fina e de um sistema complementar de bicos de limpeza dos tambores filtrantes; - Instalação de um sistema de redes de retenção de algas na zona da bacia de adução com limpezas periódicas por recurso a mergulhadores; - Apanha manual de algas na zona adjacente à tomada de água; - Realização de um estudo sobre análise da afluência de algas à tomada de água bem como de um estudo sobre o ciclo de produção da alga Sphaerococcus coronopifolius em função da variação de parâmetros ambientais; - Análise em Modelo Físico do Comportamento das Redes; - Aplicação de modelo de previsão da arribada de algas, com elaboração e envio de</td>
<td></td>
</tr>
</tbody>
</table>
relatórios para a Central.

Tipo 2)
- Melhoria da informação disponível sobre a exploração da ITA (da Central);
- Alteração de calibrações de equipamento de exploração da ITA (da Central);
- Implementação de rotina no computador de processo, baseado na tabela de avaliação de contaminação química, de modo a ter presente informação sobre valores acumulados das contaminações;
- Implementação de um sistema de cloragem na conduta de água industrial;
- Montagem de filtros de carvão ativado no circuito de água industrial;
- Prospeção de água subterrânea no recinto da central, tendo em vista a análise da viabilidade de recurso ao seu consumo em situações críticas.

<table>
<thead>
<tr>
<th>Duração da fase de implementação</th>
<th>Informação não disponível</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos humanos</td>
<td>Internos e externos</td>
</tr>
<tr>
<td>Custos</td>
<td>Tipo 1) Da ordem dos 1500 k€</td>
</tr>
<tr>
<td></td>
<td>Tipo 2) Da ordem dos 350 k€</td>
</tr>
</tbody>
</table>
DESCRIÇÃO GERAL

<table>
<thead>
<tr>
<th></th>
<th>Data de início da ocorrência</th>
<th>27 de Janeiro de 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duração da ocorrência</td>
<td>Chuvas intensas e prolongadas durante os 2 meses antecedentes, com especial incidência nos dias 26 e 27 de Janeiro de 2001</td>
</tr>
<tr>
<td></td>
<td>Tipificação do fenómeno</td>
<td>Chuvas intensas e prolongadas que originaram ocorrência de cheias do rio Mondego e fractura de diques deste rio</td>
</tr>
<tr>
<td></td>
<td>Alerta prévio das autoridades oficiais</td>
<td>Serviço Nacional de Protecção Civil/Riscos Tecnológicos, Bombeiros de Montemor o Velho, INAG e o Regimento de Engenharia de Espinho (Exército)</td>
</tr>
</tbody>
</table>

CONSEQUÊNCIAS DO FENÓMENO

<table>
<thead>
<tr>
<th></th>
<th>Transporte e distribuição de energia</th>
<th>Limitação de operação da RNTGN a norte da JCT 03000/Ameal e interrupção de comunicações FO (fibra óptica)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armazenamento de energia</td>
<td>Nada a assinalar</td>
<td></td>
</tr>
<tr>
<td>Produção de energia</td>
<td>Nada a assinalar</td>
<td></td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
<td>Interrupção do fornecimento de gás natural (por solicitação da Transgás que alegou motivos de força maior) à Turbogás/Portugen (Central de Ciclo Combinado da Tapada do Outeiro) de 30/01/2001 a 02/02/2001</td>
<td></td>
</tr>
<tr>
<td>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</td>
<td>Emissão de ruído durante as acções de despressurização para redução de pressão entre a JCT 03000/Ameal e a JCT 03060/Souselas (antiga JCT 03100), mitigado por distribuição de supressores de ruído à população confinante</td>
<td></td>
</tr>
</tbody>
</table>

AVALIAÇÃO DO RISCO

Foi accionado algum plano de emergência interno?	Sim, o PSE (Plano de Segurança e Emergência)
A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?	Sim, HAZOP - 80. Inundações provocam o arrastamento do gasoduto
Os riscos estavam cobertos por seguro?	Sim
Se sim, o seguro foi accionado?	Sim

ACÇÕES IMEDIATAS DE RESPOSTA À EMERGÊNCIA

Descrição	Limitação da pressão de operação da RNTGN, reposição provisória dos taludes dos diques do rio Mondego, reparação provisória da fibra óptica para reposição de comunicações, estabilização dos terrenos e do gasoduto e avaliação da integridade do gasoduto
Tempo de reparação	8 dias
Recursos humanos envolvidos	Internos - Equipas de estudos, análise e decisão, de coordenação e de supervisão. Externos – Equipas de avaliação da integridade, de intervenção nas especialidades de mecânica, fibra óptica e de civil, de isolamento e segurança do local (GNR e empresa de segurança) e Bombeiros

ACÇÕES CORRECTIVAS DESENVOLVIDAS

<p>| Descrição | Reposição definitiva dos taludes dos diques do rio Mondego e dos terrenos envolventes, reparação por substituição de 200 de tubagem implicando seccionamento, despressurização e inertização do gasoduto entre a JCT 03000 e a JCT 3060, garantindo a continuidade do abastecimento à Lusitâniagas/Coimbra com recurso a Unidade de GNL, reparação definitiva da fibra óptica por substituição de cabo, avaliação da integridade do gasoduto. Acordos pelo período de 3 dias com: |
| Tempo de reparação | 6 dias |
| Recursos humanos envolvidos | Internos - Equipas de estudos, análise e decisão, coordenação e de supervisão. |</p>
<table>
<thead>
<tr>
<th>Externos – Equipas de ensaios não destrutivos, de intervenção nas especialidades de mecânica, fibra óptica e de civil, de isolamento e segurança do local (GNR)</th>
</tr>
</thead>
</table>

CUSTOS

<table>
<thead>
<tr>
<th>Custo com as acções imediatas de reposição do serviço</th>
<th>615.885,43€</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
<td>715.459,74€</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
<td>Nada a assinalar</td>
</tr>
</tbody>
</table>

INFORMAÇÃO / DIVULGAÇÃO

<table>
<thead>
<tr>
<th>Envolvimento autoridades nacionais/locais</th>
<th>Sim – nacionais e locais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envolvimento instituições científicas</td>
<td>Nada a assinalar</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Nada a assinalar</td>
</tr>
</tbody>
</table>

CONCLUSÕES/EFEITOS/ENSINAMENTOS

Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:

- Práticas de projecto (ex: normas de dimensionamento das infra-estruturas)
- Articulação interna dos diversos intervenientes
- Plano de emergência interno
- Avaliação de risco
- Coordenação com as entidades oficiais

Constatou-se a eficiência e a capacidade de intervenção das equipas internas e externas envolvidas em actividades de emergência.

ACÇÕES DE ADAPTAÇÃO PREVISTAS

<p>| Descrição geral | Não foram identificadas medidas de adaptação |</p>
<table>
<thead>
<tr>
<th>Duração da fase de implementação</th>
<th>Não foram identificadas medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
<tr>
<td>Custos/investimentos</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
<tr>
<td>DESCRIÇÃO GERAL</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Data de início da ocorrência</td>
<td>23, de Dezembro de 2009 – Temporal do Algarve</td>
</tr>
<tr>
<td>Duração da ocorrência</td>
<td>1 dia</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
<td>Fenómenos ciclónicos extremos – vento de intensidade excepcional</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUÊNCIAS DO FENÓMENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências nas infraestruturas</td>
</tr>
<tr>
<td>Transporte e distribuição de energia</td>
</tr>
<tr>
<td>Armazenamento de energia</td>
</tr>
<tr>
<td>Produção de energia</td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
</tr>
<tr>
<td>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVALIAÇÃO DO RISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
</tbody>
</table>

| **ACÇÕES IMEDIATAS DE RESPOSTA À EMERGÊNCIA** |
Descrição	Estabilização dos troços adjacentes à zona afectada tendo-se procedido ao estropamento de cabos ao solo junto dos apoios P21/21 e P31/31, ao espiamento dos braços dos apoios P20/20 e P30/30, à montagem de proteções numa estrada municipal existente no vão P29/29 – P30/30 para suportar os cabos repondo as condições de segurança para a circulação de viaturas.
Tempo de reparação	2 dias
Recursos humanos envolvidos	Cerca de 20 trabalhadores

| **ACÇÕES CORRECTIVAS DESENVOLVIDAS** |
Descrição	Desmontagem dos postes, cabos e acessórios danificados, sua remoção e posterior reconstrução total do troço afectado com recurso a novos postes, cabos e acessórios
Tempo de reparação	21 semanas
Recursos humanos envolvidos	Cerca de 30 trabalhadores em média

| **CUSTOS** |
Custo com as acções imediatas de reposição do serviço	Integrados nos custos de reparação/reposição
Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas	982.004.88 €
Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários	2.295.00 €

| **INFORMAÇÃO / DIVULGAÇÃO** |
Envolvimento autoridades nacionais/locais	Contactos directos com autoridades municipais locais
Envolvimento instituições científicas	Não
Acções de benchmarking	Não
Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:

- Práticas de projecto (ex: normas de dimensionamento das infra-estruturas)
- Articulação interna dos diversos intervenientes
- Plano de emergência interno
- Avaliação de risco
- Coordenação com as entidades oficiais

Tratou-se de fenómeno muito localizado em que a velocidade do vento atingiu valores excepcionais (mais de 200 km/h), ultrapassando os valores utilizados no cálculo das estruturas metálicas utilizadas. Identificadas algumas oportunidades de melhoria, nomeadamente ao nível das caixas de charneira a utilizar, não havendo razões técnicas que levem à alteração do dimensionamento daquelas estruturas.

ACÇÕES DE ADAPTAÇÃO PREVISTAS

<table>
<thead>
<tr>
<th>Descrição geral</th>
<th>Não foram identificadas medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duração da fase de implementação</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
<tr>
<td>Custos/Investimentos</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
</tbody>
</table>

Efeitos de Fenômenos Climáticos Extremos em Infraestruturas Lineares

DESCRIÇÃO GERAL

<table>
<thead>
<tr>
<th>Data de início da ocorrência</th>
<th>23. de Dezembro de 2009 – Temporal do Oeste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duração da ocorrência</td>
<td>1 dia</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
<td>Fenómenos ciclónicos extremos – vento de intensidade excepcional</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td></td>
</tr>
</tbody>
</table>

CONSEQUÊNCIAS DO FENÔMENO

<table>
<thead>
<tr>
<th>Consequências nas infraestruturas</th>
<th>Transporte e distribuição de energia</th>
<th>Afectou os concelhos de Torres Vedras, Mafra, Alenquer, Lourinhã e Cadaval.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Afectadas as linhas:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Batalha-Ribatejo a 400kV (3km de linha destruídos com queda de 6 postes; indisponibilidade: 34 dias):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Carregado-Rio Maior 2/3 a 220kV (3km de linha destruídos com queda de 6 postes; indisponibilidade: 3 meses):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Carregado-Rio Maior 1 a 220kV (2km de linha destruídos com queda de 2 postes; indisponibilidade: 6 meses).</td>
</tr>
<tr>
<td>Armazenamento de energia</td>
<td>Não aplicável</td>
<td></td>
</tr>
<tr>
<td>Produção de energia</td>
<td>Não aplicável</td>
<td></td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
<td>Sem consequências</td>
<td></td>
</tr>
</tbody>
</table>

AVALIAÇÃO DO RISCO

Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)

Interrupção temporária de estradas e pequenos danos provocados pela queda de cabos.
Foi accionado algum plano de emergência interno?

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Desmantelamento das linhas nas zonas afectadas com retirada de cabos e postes danificados.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td>1 semana</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Equipas de 3 prestadores de serviços num total de cerca de 90 trabalhadores</td>
</tr>
</tbody>
</table>

ACÇÕES CORRECTIVAS DESENVOLVIDAS

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Substituição total dos equipamentos destruídos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td>Linha Batalha-Ribatejo : 34 dias</td>
</tr>
<tr>
<td></td>
<td>Linha Carregado-Rio Maior 2/3 : 3 meses</td>
</tr>
<tr>
<td></td>
<td>Linha Carregado-Rio Maior 1 : 6 meses</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Equipas de 3 prestadores de serviços num total de cerca de 90 trabalhadores</td>
</tr>
</tbody>
</table>

CUSTOS

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Integrados nos custos de reparação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custo com as acções imediatas de reposição do serviço</td>
<td></td>
</tr>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
<td>1.694.251,48 €</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
<td>73.076,00 €</td>
</tr>
</tbody>
</table>
INFORMAÇÃO / DIVULGAÇÃO

<table>
<thead>
<tr>
<th>Envolvimento autoridades nacionais/locais</th>
<th>Contactos directos com autoridades locais (municipais, forças de segurança)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envolvimento instituições científicas</td>
<td>Não</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Não</td>
</tr>
</tbody>
</table>

CONCLUSÕES/EFEITOS/ENSINAMENTOS

Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:

- Práticas de projecto (ex: normas de dimensionamento das infra-estruturas)
- Articulação interna dos diversos intervenientes
- Plano de emergência interno
- Avaliação de risco
- Coordenação com as entidades oficiais

As infra-estruturas afectadas já não são regularmente utilizadas em novos projetos. Identificou-se a necessidade de estabelecer metodologia que garanta disponibilidade de intervenção imediata de prestadores de serviço externos nestas situações.

ACÇÕES DE ADAPTAÇÃO PREVISTAS

<table>
<thead>
<tr>
<th>Descrição geral</th>
<th>Não foram identificadas medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duração da fase de implementação</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
<tr>
<td>Custos/investimentos</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
</tbody>
</table>
Efeitos de Fenómenos Climáticos Extremos em Infraestruturas Lineares

DESCRIÇÃO GERAL

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data de início da ocorrência</td>
<td>07. de Dezembro de 2010 – Temporal em Tomar</td>
</tr>
<tr>
<td>Duração da ocorrência</td>
<td>1 dia</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
<td>Fenómenos ciclónicos extremos – vento de intensidade excepcional</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td></td>
</tr>
</tbody>
</table>

CONSEQUÊNCIAS DO FENÓMENO

<table>
<thead>
<tr>
<th>Consequências nas infraestruturas</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte e distribuição de energia</td>
<td>Afectou os concelhos de Tomar, Ferreira do Zêzere e Sertã.</td>
</tr>
<tr>
<td></td>
<td>Afectadas as linhas:</td>
</tr>
<tr>
<td></td>
<td>- Penela-Zêzere a 220kV e Zêzere-Pereiros 1 a 150kV (2km de linhas destruídos com queda de 3 postes; indisponibilidade: 12 semanas);</td>
</tr>
<tr>
<td>Armazenamento de energia</td>
<td>Não aplicável</td>
</tr>
<tr>
<td>Produção de energia</td>
<td>Não aplicável</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequências para a segurança de abastecimento</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sem consequências</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interrupção temporária de estradas e pequenos danos provocados pela queda de cabos.</td>
</tr>
</tbody>
</table>

AVALIAÇÃO DO RISCO

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
<td>Sim.</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td></td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td>Sim.</td>
</tr>
</tbody>
</table>
Se sim, o seguro foi accionado? | Sim.
---|---
ACÇÕES IMEDIATAS DE RESPOSTA À EMERGÊNCIA
Descrição | Desmantelamento das linhas nas zonas afectadas com retirada de cabos e postes danificados.
Tempo de reparação | 3 dias
Recursos humanos envolvidos | Cerca de 20 trabalhadores

ACÇÕES CORRECTIVAS DESENVOLVIDAS
Descrição | Substituição total dos equipamentos destruídos
Tempo de reparação | 12 semanas
Recursos humanos envolvidos | Cerca de 20 trabalhadores

CUSTOS
Custo com as acções imediatas de reposição do serviço | Integrados nos custos de reparação
Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas | 239.700,70 €
Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários | 85.070,88€

INFORMAÇÃO / DIVULGAÇÃO
Envolvimento autoridades nacionais/locais | Contactos directos com autoridades locais (município, forças de segurança)
Envolvimento instituições científicas | Não
Acções de benchmarking | Não

CONCLUSÕES/EFEITOS/ENSINAMENTOS
Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:

- Práticas de projecto (ex: normas de dimensionamento das infra-estruturas)
- Articulação interna dos diversos intervenientes
- Plano de emergência interno
- Avaliação de risco
- Coordenação com as entidades oficiais

Identificou-se a necessidade de estabelecer metodologia que garanta disponibilidade de intervenção imediata de prestadores de serviço externos nestas situações.

ACÇÕES DE ADAPTAÇÃO PREVISTAS

<table>
<thead>
<tr>
<th>Descrição geral</th>
<th>Não foram identificadas medidas de adaptação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duração da fase de implementação</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
<tr>
<td>Custos/investimentos</td>
<td>Não foram identificadas medidas de adaptação</td>
</tr>
</tbody>
</table>
DESCRIÇÃO GERAL

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data de início da ocorrência</td>
<td>2010</td>
</tr>
<tr>
<td>Duração da ocorrência</td>
<td></td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
<td>Ocorrência de ondas de calor</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td></td>
</tr>
</tbody>
</table>

CONSEQUÊNCIAS DO FENÔMENO

<table>
<thead>
<tr>
<th>Consequências nas infraestruturas</th>
<th>Transporte e distribuição de energia</th>
<th>Armazenamento de energia</th>
<th>Produção de energia</th>
<th>Produção de produtos mais pesados e menos produtos nobres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências para a segurança de abastecimento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVALIAÇÃO DO RISCO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
<td></td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td></td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td></td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>ACÇÕES IMEDIATAS DE RESPOSTA À EMERGÊNCIA</td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td></td>
</tr>
<tr>
<td>Tempo de reparação</td>
<td></td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td></td>
</tr>
<tr>
<td>ACÇÕES CORRECTIVAS DESENVOLVIDAS</td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td></td>
</tr>
<tr>
<td>Tempo de reparação</td>
<td></td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos</td>
</tr>
</tbody>
</table>
Efeitos de Fenómenos Climáticos Extremos em Infraestruturas Lineares

<table>
<thead>
<tr>
<th>DESCRIÇÃO GERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data de início da ocorrência</td>
</tr>
<tr>
<td>Duração da ocorrência</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUÊNCIAS DO FENÓMENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências nas infraestruturas</td>
</tr>
<tr>
<td>Transporte e distribuição de energia</td>
</tr>
<tr>
<td>Armazenamento de energia</td>
</tr>
<tr>
<td>Produção de energia</td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
</tr>
<tr>
<td>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVALIAÇÃO DO RISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
</tbody>
</table>

ACÇÕES IMEDIATAS DE RESPOSTA À EMERGÊNCIA

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Substituição total e/ou reparação de equipamentos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td>Total de 72 horas, com reposição do serviço gradual</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos</td>
</tr>
</tbody>
</table>

ACÇÕES CORRECTIVAS DESENVOLVIDAS

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Substituição total e/ou reparação de equipamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td>Foram necessários, mais tarde, pequenos trabalhos para repor situação normal</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos (PSE).</td>
</tr>
</tbody>
</table>

CUSTOS

<table>
<thead>
<tr>
<th>Custo com as acções imediatas de reposição do serviço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
</tr>
</tbody>
</table>

INFORMAÇÃO / DIVULGAÇÃO

<table>
<thead>
<tr>
<th>Envolvimento autoridades nacionais/locais</th>
<th>Sim – regionais e locais.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envolvimento instituições científicas</td>
<td></td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Fazem-se sempre para situações semelhantes – ex. da EDF/França</td>
</tr>
</tbody>
</table>

CONCLUSÕES/EFEITOS/ENSINAMENTOS
Em consequência da ocorrência verificada e das medidas de reparação accionadas, foram reavaliadas e revistas:

- Práticas de conceção das infraestruturas, ao nível da sua configuração e projeto;
- Articulação interna dos intervenientes, clarificando quem faz o quê;
- Plano de Emergência Interno (POAC – Plano de Atuação em Ambiente de Crise);
- Avaliação do Risco;
- Coordenação com as entidades oficiais, nomeadamente com a ANPC, Autarquias, Forças de Segurança, etc.
- Interação com o IPMA (ex – IM) no sentido do fornecimento de informação relevante sobre previsões de condições atmosféricas adversas.

Foram ainda implementadas acções conducentes a um melhor desempenho em situação de crise:

- Reforço de equipamentos de alimentações de recurso;
- Aquisição de dispositivos para substituição provisória de elementos e troços de rede avariados;
- Reforço da capacidade de resposta ao nível de sistemas de comunicação;
- Serviu para aferir o grau de prontidão das equipas e medidas previstas no POAC (revisto no final de 2010)

<table>
<thead>
<tr>
<th>ACÇÕES DE ADAPTAÇÃO PREVISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição geral</td>
</tr>
<tr>
<td>Duração da fase de implementação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
</tr>
<tr>
<td>Custos/Investimentos</td>
</tr>
</tbody>
</table>
Efeitos de Fenómenos Climáticos Extremos em Infraestruturas Lineares

<table>
<thead>
<tr>
<th>DESCRICÃO GERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data de início da ocorrência</td>
</tr>
<tr>
<td>Duração da ocorrência</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUÊNCIAS DO FENÔMENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conseqüências nas infraestruturas</td>
</tr>
<tr>
<td>Transporte e distribuição de energia</td>
</tr>
<tr>
<td>Armazenamento de energia</td>
</tr>
<tr>
<td>Produção de energia</td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
</tr>
<tr>
<td>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVALIAÇÃO DO RISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
</tbody>
</table>

ACÇÕES IMEDIATAS DE RESPOSTA À EMERGÊNCIA

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Substituição total e/ou reparação de equipamentos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td>Mais de 72 horas (em alguns casos de BT)</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos (com envolvimento das entidades oficiais). 750 pessoas envolvidas, 360 viaturas, mais de 50 geradores.</td>
</tr>
</tbody>
</table>

ACÇÕES CORRECTIVAS DESENVOLVIDAS

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Substituição total e/ou reparação de equipamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td>Foram necessários, mais tarde, pequenos trabalhos para repor situação normal</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos (PSE).</td>
</tr>
</tbody>
</table>

CUSTOS

Custo com as acções imediatas de reposição do serviço	
Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas	3.430.662.92 €
Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários	

INFORMAÇÃO / DIVULGAÇÃO

Envolvimento autoridades nacionais/locais	Sim – regionais e locais.
Envolvimento instituições científicas	
Acções de benchmarking	Faz-se sempre por comparação, por exemplo, com a EDF/França

CONCLUSÕES/EFETOS/ENSINAMENTOS
Em consequência da ocorrência verificada e das medidas de reparação accionadas, foram reavaliadas e revistas:

- Práticas de conceção das infraestruturas, ao nível da sua configuração e projeto;
- Articulação interna dos intervenientes, clarificando quem faz o quê;
- Plano de Emergência Interno (POAC – Plano de Actuação em Ambiente de Crise);
- Avaliação do Risco;
- Coordenação com as entidades oficiais, nomeadamente com a ANPC, Autarquias, Forças de Segurança, etc.
- Interacção com o IPMA (ex – IM) no sentido do fornecimento de informação relevante sobre previsões de condições atmosféricas adversas.

Foram ainda implementadas acções conducentes a um melhor desempenho em situação de crise:

- Reforço de equipamentos de alimentações de recurso;
- Aquisição de dispositivos para substituição provisória de elementos e troços de rede avariados;
- Reforço da capacidade de resposta ao nível de sistemas de comunicação;

Serviu para aferir o grau de prontidão das equipas e das medidas previstas no POAC (revisto no final de 2010)

<table>
<thead>
<tr>
<th>ACÇÕES DE ADAPTAÇÃO PREVISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição geral</td>
</tr>
<tr>
<td>Duração da fase de implementação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
</tr>
<tr>
<td>Custos/investimentos</td>
</tr>
</tbody>
</table>
Efeitos de Fenômenos Climáticos Extremos em Infraestruturas Lineares

<table>
<thead>
<tr>
<th>DESCRICÃO GERAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data de início da ocorrência</td>
<td>27 de Fevereiro de 2010 – Temporal Xynthia</td>
</tr>
<tr>
<td>Duração da ocorrência</td>
<td>1 dia</td>
</tr>
<tr>
<td>Tipificação do fenômeno</td>
<td>Fenômenos ciclónicos extremos – vento de intensidade excepcional</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>Activado o POAC – Plano Operacional de Actuação em Crise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUÊNCIAS DO FENÔMENO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências nas infraestruturas</td>
<td></td>
</tr>
<tr>
<td>Transporte e distribuição de energia</td>
<td>Afectou basicamente os concelhos da zona Centro do país- distritos de Guarda, Viseu e Castelo Branco. Muitas destruições em linhas de MT e BT, e mais de 12000 incidentes na rede. A reposição durou cerca de 20 horas.</td>
</tr>
<tr>
<td>Armazenamento de energia</td>
<td></td>
</tr>
<tr>
<td>Produção de energia</td>
<td></td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
<td>Milhares de clientes afectados, com o TIE de MT de 29,82 minutos. Reposição gradual.</td>
</tr>
<tr>
<td>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVALIAÇÃO DO RISCO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
<td>Sim, o POAC</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td>Sim, em geral admitem-se ocorrências similares, mas menos graves, em todo o território</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td>Sim, acima da franquia.</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td>Sim</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>ACÇÕES IMEDIATAS DE RESPOSTA À EMERGÊNCIA</td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td>Substituição total e/ou reparação de equipamentos.</td>
</tr>
<tr>
<td>Tempo de reparação</td>
<td>Mais de 20 horas.</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos (com envolvimento das entidades oficiais). 2200 pessoas envolvidas.</td>
</tr>
<tr>
<td>ACÇÕES CORRECTIVAS DESENVOLVIDAS</td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td>Substituição total e/ou reparação de equipamentos</td>
</tr>
<tr>
<td>Tempo de reparação</td>
<td></td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos (PSE).</td>
</tr>
<tr>
<td>CUSTOS</td>
<td></td>
</tr>
<tr>
<td>Custo com as acções imediatas de reposição do serviço</td>
<td></td>
</tr>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
<td>4.887.594,50 €</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
<td></td>
</tr>
<tr>
<td>INFORMAÇÃO / DIVULGAÇÃO</td>
<td></td>
</tr>
<tr>
<td>Envolvimento autoridades nacionais/locais</td>
<td>Sim – regionais e locais.</td>
</tr>
<tr>
<td>Envolvimento instituições científicas</td>
<td></td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Tem vindo a ser feito com situações ocorridas por exemplo em França – EDF.</td>
</tr>
<tr>
<td>CONCLUSÕES/EFEITOS/ENSINAMENTOS</td>
<td></td>
</tr>
</tbody>
</table>
Em consequência da ocorrência verificada e das medidas de reparação accionadas, foram reavaliadas e revistas:

- Práticas de conceção das infraestruturas, ao nível da sua configuração e projeto;
- Articulação interna dos intervenientes, clarificando quem faz o quê;
- Plano de Emergência Interno (POAC – Plano de Atuação em Ambiente de Crise);
- Avaliação do Risco;
- Coordenação com as entidades oficiais, nomeadamente com a ANPC, Autarquias, Forças de Segurança, etc.
- Interação com o IPMA (ex – IM) no sentido do fornecimento de informação relevante sobre previsões de condições atmosféricas adversas.

Foram ainda implementadas acções conducentes a um melhor desempenho em situação de crise:

- Reforço de equipamentos de alimentações de recurso;
- Aquisição de dispositivos para substituição provisória de elementos e troços de rede avariados;
- Reforço da capacidade de resposta ao nível de sistemas de comunicação;

Serviu para aferir o grau de prontidão das equipas e das medidas previstas no POAC (revisto no final de 2010).

Serviu para desenvolver um processo de melhoria em situações de crise, com aquisição de equipamentos especiais, e com negociações com o operador de rede de comunicações para melhorar a cobertura da rede, etc.

<table>
<thead>
<tr>
<th>ACÇÕES DE ADAPTAÇÃO PREVISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição geral</td>
</tr>
<tr>
<td>Duração da fase de implementação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
</tr>
<tr>
<td>Custos/Investimentos</td>
</tr>
</tbody>
</table>
EFETOS DE FENÔMENOS CLIMÁTICOS EXTREMOS EM INFRAESTRUTURAS LINEARES

<table>
<thead>
<tr>
<th>DESCRIÇÃO GERAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data de início da ocorrência</td>
<td>3 de Outubro de 2010</td>
</tr>
<tr>
<td>Duração da ocorrência</td>
<td>1 dia</td>
</tr>
<tr>
<td>Tipificação do fenômeno</td>
<td>Fenómenos ciclônicos extremos – vento de intensidade excepcional</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>Activado o POAC – Plano Operacional de Actuação em Crise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUÊNCIAS DO FENÔMENO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte e distribuição de energia</td>
<td>Afectou basicamente alguns concelhos da zona Norte do país, com muitas quedas de árvores. Muitas destruições em linhas de MT e BT. A reposição durou cerca de 14 horas.</td>
</tr>
<tr>
<td>Armazenamento de energia</td>
<td></td>
</tr>
<tr>
<td>Produção de energia</td>
<td></td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
<td>Milhares de clientes afectados, com o TIE de MT foi de 5,43 minutos. Reposição gradual.</td>
</tr>
<tr>
<td>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVALIAÇÃO DO RISCO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
<td>Sim, o POAC</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td>Sim, em geral admitem-se ocorrências similares em todo o território</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td>Sim, acima da franquia.</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td>Sim</td>
</tr>
</tbody>
</table>
ACÇÕES IMEDIATAS DE RESPOSTA À EMERGÊNCIA

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Substituição total e/ou reparação de equipamentos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td>Mais de 14 horas.</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos (com envolvimento das entidades oficiais). 1 200 pessoas envolvidas.</td>
</tr>
</tbody>
</table>

ACÇÕES CORRECTIVAS DESENVOLVIDAS

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Substituição total e/ou reparação de equipamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td></td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos (PSE).</td>
</tr>
</tbody>
</table>

CUSTOS

<table>
<thead>
<tr>
<th>Custo com as acções imediatas de reposição do serviço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
</tr>
</tbody>
</table>

INFORMAÇÃO / DIVULGAÇÃO

<table>
<thead>
<tr>
<th>Envolvimento autoridades nacionais/locais</th>
<th>Sim – regionais e locais.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envolvimento instituições científicas</td>
<td></td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Tem vindo a ser feito com situações ocorridas por exemplo em França – EDF.</td>
</tr>
</tbody>
</table>

CONCLUSÕES/EFEITOS/ENSINAMENTOS
Em consequência da ocorrência verificada e das medidas de reparação accionadas, foram reavaliadas e revistas:

- Práticas de conceção das infraestruturas, ao nível da sua configuração e projeto;
- Articulação interna dos intervenientes, clarificando quem faz o quê;
- Plano de Emergência Interno (POAC – Plano de Atuação em Ambiente de Crise);
- Avaliação do Risco;
- Coordenação com as entidades oficiais, nomeadamente com a ANPC, Autarquias, Forças de Segurança, etc.
- Interação com o IPMA (ex – IM) no sentido do fornecimento de informação relevante sobre previsões de condições atmosféricas adversas.

Foram ainda implementadas acções conducentes a um melhor desempenho em situação de crise:

- Reforço de equipamentos de alimentações de recurso;
- Aquisição de dispositivos para substituição provisória de elementos e troços de rede avariados;
- Reforço da capacidade de resposta ao nível de sistemas de comunicação;

<table>
<thead>
<tr>
<th>ACÇÕES DE ADAPTAÇÃO PREVISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição geral</td>
</tr>
<tr>
<td>Duração da fase de implementação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
</tr>
<tr>
<td>Custos/Investimentos</td>
</tr>
</tbody>
</table>
Efeitos de Fenómenos Climáticos Extremos em Infraestruturas Lineares

DESCRIÇÃO GERAL

<table>
<thead>
<tr>
<th>Data de início da ocorrência</th>
<th>7 de Dezembro de 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duração da ocorrência</td>
<td>1 dia</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
<td>Fenómenos ciclónicos extremos – tornado</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>Activado o POAC – Plano Operacional de Actuação em Crise</td>
</tr>
</tbody>
</table>

CONSEQUÊNCIAS DO FENÔMENO

<table>
<thead>
<tr>
<th>Consequências nas infraestruturas</th>
<th>Transporte e distribuição de energia</th>
<th>Afectou basicamente alguns concelhos como Torres Novas, Tomar, Ferreira do Zêzere e Sertã. Muitas destruições em linhas de AT, MT e BT. A reposição durou cerca de 10 horas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armazenamento de energia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produção de energia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
<td>Milhares de clientes afectados, com um TIE de MT del.01 minutos. Reposição gradual.</td>
<td></td>
</tr>
<tr>
<td>Consequências para a envolvente (proprietários vizinhos das instalações, comunidades locais, ambiente, etc.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVALIAÇÃO DO RISCO

<table>
<thead>
<tr>
<th>Foi accionado algum plano de emergência interno?</th>
<th>Sim, o POAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td>Sim, em geral admitem-se ocorrências similares, mas menos graves, em todo o território</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td>Sim, acima da franquia.</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td>Sim</td>
</tr>
</tbody>
</table>
ACÇÕES IMEDIATAS DE RESPOSTA À EMERGÊNCIA

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Substituição total e/ou reparação de equipamentos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td>Mais de 10 horas.</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos (com envolvimento das entidades oficiais). 130 pessoas envolvidas, 60 viaturas e 15 geradores.</td>
</tr>
</tbody>
</table>

ACÇÕES CORRECTIVAS DESENVOLVIDAS

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Substituição total e/ou reparações de equipamentos, ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td></td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
<td>Internos e externos (PSE).</td>
</tr>
</tbody>
</table>

CUSTOS

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Custo com as acções imediatas de reposição do serviço</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Custo/investimento com as acções de reparações definitivas das infra-estruturas afectadas 973.488,94 € (apuramento final ainda não concluído)</td>
</tr>
<tr>
<td></td>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
</tr>
</tbody>
</table>

INFORMAÇÃO / DIVULGAÇÃO

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Envolvimento autoridades nacionais/locais</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Envolvimento instituições científicas</td>
</tr>
<tr>
<td></td>
<td>Acções de benchmarking</td>
</tr>
</tbody>
</table>

| | Sim – regionais e locais. |
| | Tem vindo a ser feito com situações ocorridas por exemplo em França – EDF. |

CONCLUSÕES/EFEITOS/ENSINAMENTOS
Em consequência da ocorrência verificada e das medidas de reparaçao accionadas, foram reavaliadas e revistas:

- Práticas de conceção das infraestruturas, ao nível da sua configuração e projeto;
- Articulação interna dos intervenientes, clarificando quem faz o quê;
- Plano de Emergência Interno (POAC – Plano de Atuação em Ambiente de Crise);
- Avaliação do Risco;
- Coordenacão com as entidades oficiais, nomeadamente com a ANPC, Autarquias, Forças de Segurança, etc.
- Interação com o IPMA (ex – IM) no sentido do fornecimento de informação relevante sobre previsões de condições atmosféricas adversas.

Foram ainda implementadas acções conducentes a um melhor desempenho em situação de crise:

- Reforço de equipamentos de alimentações de recurso;
- Aquisição de dispositivos para substituição provisória de elementos e troços de rede avariados;
- Reforço da capacidade de resposta ao nível de sistemas de comunicação;

Serviu para aferir o grau de prontidão das equipas e das medidas previstas no POAC (revisto no final de 2010)

<table>
<thead>
<tr>
<th>ACÇÕES DE ADAPTAÇÃO PREVISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição geral</td>
</tr>
<tr>
<td>Duração da fase de implementação</td>
</tr>
<tr>
<td>Recursos humanos envolvidos</td>
</tr>
<tr>
<td>Custos/investimentos</td>
</tr>
</tbody>
</table>
Caracterização da Área de Risco e Vulnerabilidade do Centro Eletroprodutor da Tapada do Outeiro

<table>
<thead>
<tr>
<th>DESCRIÇÃO GERAL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data da ocorrência</td>
</tr>
<tr>
<td>Tipificação do fenômeno</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUÊNCIAS DO FENÔMENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências nas infra-estruturas de transporte e armazenamento de energia</td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
</tr>
<tr>
<td>Consequências para os proprietários vizinhos das instalações</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACÇÕES DESENVOLVIDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição</td>
</tr>
<tr>
<td>Tempo de reparação</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECURSOS ENVOLVIDOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de trabalhadores directos envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas</td>
</tr>
<tr>
<td>Número de trabalhadores de prestadores de serviço e empreiteiros envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas</td>
</tr>
<tr>
<td>Entidades oficiais envolvidas na reposição do serviço</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>CUSTOS</td>
</tr>
<tr>
<td>Custo com as acções imediatas de reposição do serviço</td>
</tr>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
</tr>
<tr>
<td>AVALIAÇÃO DO RISCO</td>
</tr>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
</tr>
<tr>
<td>INFORMAÇÃO/DIVULGAÇÃO</td>
</tr>
<tr>
<td>Envolvimento autoridades nacionais/locais</td>
</tr>
<tr>
<td>Envolvimento instituições científicas</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
</tr>
<tr>
<td>CONCLUSÕES/EFEITOS/ENSINAMENTOS</td>
</tr>
<tr>
<td>Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:</td>
</tr>
<tr>
<td>• Práticas de projeto (ex: normas de dimensionamento das infraestruturas)</td>
</tr>
<tr>
<td>• Articulação interna dos diversos intervenientes</td>
</tr>
<tr>
<td>• Plano de emergência interno</td>
</tr>
</tbody>
</table>
- Avaliação de risco
- Coordenação com as entidades oficiais
DESCRIPÇÃO GERAL (2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data da ocorrência</td>
<td>6 a 11 de Janeiro de 2001</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
<td>Cheias no Rio Mondego, gasoduto ficou suspenso devido arrastamento de terras no leito do rio</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>Transgás alertou para o suprimento no fornecimento de gás natural</td>
</tr>
</tbody>
</table>

CONSEQUÊNCIAS DO FENÓMENO

Consequências nas infra-estruturas de transporte e armazenamento de energia	Devido a condições de segurança parte do gasoduto junto ao Rio Mondego foi colocado fora de serviço
Consequências para a segurança de abastecimento	Sem o abastecimento de gás natural a Central não produziu energia
Consequências para os proprietários vizinhos das instalações	Nenhuma

ACÇÕES DESENVOLVIDAS

| Descrição | Nenhuma |
| Tempo de reparação | Aproximadamente 5 dias |

RECURSOS ENVOLVIDOS

<p>| Número de trabalhadores directos envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas | Desconhecido |
| Número de trabalhadores de prestadores de serviço e empreiteiros envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas | Desconhecido |</p>
<table>
<thead>
<tr>
<th>Entidades oficiais envolvidas na reposição do serviço</th>
<th>Desconhecido</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTOS</td>
<td></td>
</tr>
<tr>
<td>Custo com as acções imediatas de reposição do serviço</td>
<td>Desconhecido</td>
</tr>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
<td>Desconhecido</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
<td>Desconhecido</td>
</tr>
<tr>
<td>AVALIAÇÃO DO RISCO</td>
<td></td>
</tr>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
<td>Não</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td>Não</td>
</tr>
<tr>
<td>Ós riscos estavam cobertos por seguro?</td>
<td>Não</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td>Não</td>
</tr>
<tr>
<td>INFORMAÇÃO/DIVULGAÇÃO</td>
<td></td>
</tr>
<tr>
<td>Envolvimento autoridades nacionais/locais</td>
<td>Não</td>
</tr>
<tr>
<td>Envolvimento instituições científicas</td>
<td>Não</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Não</td>
</tr>
<tr>
<td>CONCLUSÕES/EFEITOS/ENSINAMENTOS</td>
<td></td>
</tr>
<tr>
<td>Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>• Práticas de projeto (ex: normas de dimensionamento das infraestruturas)</td>
<td></td>
</tr>
<tr>
<td>• Articulação interna dos diversos intervenientes</td>
<td></td>
</tr>
<tr>
<td>• Plano de emergência interno</td>
<td></td>
</tr>
</tbody>
</table>
- Avaliação de risco
- Coordenação com as entidades oficiais
Caracterização da Área de Risco e Vulnerabilidade do Centro Eletroprodutor da Tapada do Outeiro

<table>
<thead>
<tr>
<th>DESCRIÇÃO GERAL (3)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data da ocorrência</td>
<td>Agosto de 2005</td>
</tr>
<tr>
<td>Tipificação do fenómeno</td>
<td>Baixo caudal no Rio Douro - Aumento da temperatura no rio</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>(existiram conversações sobre o caudais mínimos nos rios entre Espanha e Portugal)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUÊNCIAS DO FENÔMENO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências nas infra-estruturas de transporte e armazenamento de energia</td>
<td>Não existiram consequências porque o limite ambiental não foi ultrapassado</td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
<td>Não existiram consequências porque o limite ambiental não foi ultrapassado</td>
</tr>
<tr>
<td>Consequências para os proprietários vizinhos das instalações</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACÇÕES DESENVOLVIDAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>Tempo de reparação</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECURSOS ENVOLVIDOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de trabalhadores directos envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>Número de trabalhadores de prestadores de serviço e empreiteiros envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>Entidades oficiais envolvidas na reposição do serviço</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

<p>| CUSTOS | |</p>
<table>
<thead>
<tr>
<th>Custo com as acções imediatas de reposição do serviço</th>
<th>Nenhum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
<td>Nenhum</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
<td>Nenhum</td>
</tr>
</tbody>
</table>

AVALIAÇÃO DO RISCO

<table>
<thead>
<tr>
<th>Foi accionado algum plano de emergência interno?</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td>Não</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td>Não</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td>Não</td>
</tr>
</tbody>
</table>

INFORMAÇÃO/DIVULGAÇÃO

<table>
<thead>
<tr>
<th>Envolvimento autoridades nacionais/locais</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envolvimento instituições científicas</td>
<td>Não</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Não</td>
</tr>
</tbody>
</table>

CONCLUSÕES/EFEITOS/ENSINAMENTOS

Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:

- Práticas de projeto (ex: normas de dimensionamento das infraestruturas)
- Articulação interna dos diversos intervenientes
- Plano de emergência interno
- Avaliação de risco
- Coordenação com as entidades oficiais

Melhorias com a articulação da informação sobre a gestão de caudais mínimos no Rio Douro, naquela altura com Despacho da REN
Caracterização da Área de Risco e Vulnerabilidade do Centro Eletroprodutor da Tapada do Outeiro

DESCRIÇÃO GERAL (4)

<table>
<thead>
<tr>
<th>Data da ocorrência</th>
<th>Dezembro 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipificação do fenómeno</td>
<td>Temperaturas muito baixas (-2 a -4 ºC)</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>Vaga de frio em Portugal</td>
</tr>
</tbody>
</table>

CONSEQUÊNCIAS DO FENÔMENO

Consequências nas infra-estruturas de transporte e armazenamento de energia	Congelamento das linhas de instrumentos
Conseqüências para a segurança de abastecimento	Interrupção no fornecimento de energia (1 dia)
Conseqüências para os proprietários vizinhos das instalações	Nenhuma

ACÇÕES DESENVOLVIDAS

| Descrição | Instalação de traçagem eléctricas nas tomas dos instrumentos |
| Tempo de reparação | 1 dia |

RECURSOS ENVOLVIDOS

<p>| Número de trabalhadores directos envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas | 2 pessoas |
| Número de trabalhadores de prestadores de serviço e empreiteiros envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas | Nenhuma |</p>
<table>
<thead>
<tr>
<th>Entidades oficiais envolvidas na reposição do serviço</th>
<th>Nenhuma</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTOS</td>
<td></td>
</tr>
<tr>
<td>Custo com as acções imediatas de reposição do serviço</td>
<td>Nenhum</td>
</tr>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
<td>Baixo custo</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
<td>Nenhum</td>
</tr>
<tr>
<td>AVALIAÇÃO DO RISCO</td>
<td></td>
</tr>
<tr>
<td>Foi accionado algum plano de emergência interno?</td>
<td>Não</td>
</tr>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td>Não</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td>Não</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td>Não</td>
</tr>
<tr>
<td>INFORMAÇÃO/DIVULGAÇÃO</td>
<td></td>
</tr>
<tr>
<td>Envolvimento autoridades nacionais/locais</td>
<td>Não</td>
</tr>
<tr>
<td>Envolvimento instituições científicas</td>
<td>Não</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Não</td>
</tr>
<tr>
<td>CONCLUSÕES/EFEITOS/ENSINAMENTOS</td>
<td></td>
</tr>
<tr>
<td>Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>• Práticas de projeto (ex: normas de dimensionamento das infraestruturas)</td>
<td></td>
</tr>
<tr>
<td>• Articulação interna dos diversos intervenientes</td>
<td></td>
</tr>
<tr>
<td>• Plano de emergência interno</td>
<td></td>
</tr>
</tbody>
</table>
- Avaliação de risco
- Coordenação com as entidades oficiais
<table>
<thead>
<tr>
<th>DEScrição Geral (5)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipificação do fenómeno</td>
<td>Variações na qualidade da água Rio Douro, que dificultou manter a produção de água desmineralizada</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequências do fenómeno</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências nas infra-estruturas de transporte e armazenamento de energia</td>
<td>A capacidade de água desmineralizada armazenada permitiu manter a Central em serviço.</td>
</tr>
<tr>
<td>Consequências para a segurança de abastecimento</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>Consequências para os proprietários vizinhos das instalações</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACções desenvolvidas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição</td>
<td>Modificação da instalação para a tornar mais robusta a alterações da qualidade da água do rio, nomeadamente oscilações de PH e matéria orgânica</td>
</tr>
<tr>
<td>Tempo de reparação</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recursos envolvidos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de trabalhadores directos envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas</td>
<td>15 pessoas</td>
</tr>
<tr>
<td>Número de trabalhadores de prestadores de serviço e empreiteiros envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>Entidades oficiais envolvidas na reposição do serviço</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
</tbody>
</table>

CUSTOS

<table>
<thead>
<tr>
<th>Custo com as acções imediatas de reposição do serviço</th>
<th>Nenhum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custo/investimento com as acções de reparação definitiva das infra-estruturas afectadas</td>
<td>750 k€</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
<td>Nenhum</td>
</tr>
</tbody>
</table>

AVALIAÇÃO DO RISCO

<table>
<thead>
<tr>
<th>Foi accionado algum plano de emergência interno?</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td>Não</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td>Não</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td>Não</td>
</tr>
</tbody>
</table>

INFORMAÇÃO/DIVULGAÇÃO

<table>
<thead>
<tr>
<th>Envolvimento autoridades nacionais/locais</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envolvimento instituições científicas</td>
<td>Não</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Não</td>
</tr>
</tbody>
</table>

CONCLUSÕES/EFEITOS/ENSINAMENTOS

<table>
<thead>
<tr>
<th>Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Práticas de projeto (ex: normas de dimensionamento das infraestruturas)</td>
<td></td>
</tr>
<tr>
<td>• Articulação interna dos diversos intervenientes</td>
<td></td>
</tr>
<tr>
<td>• Plano de emergência interno</td>
<td></td>
</tr>
</tbody>
</table>
- Avaliação de risco
- Coordenação com as entidades oficiais
Caracterização da Área de Risco e Vulnerabilidade do Centro Eletroprodutor da Tapada do Outeiro

DESCRIÇÃO GERAL (6)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipificação do fenómeno</td>
<td>Trovada sobre a infra-estrutura de transporte de energia eléctricas (linhas de transporte 220 kV)</td>
</tr>
<tr>
<td>Alerta prévio das autoridades oficiais</td>
<td>Sem alerta possível</td>
</tr>
</tbody>
</table>

CONSEQUÊNCIAS DO FENÔMENO

<table>
<thead>
<tr>
<th>Consequências nas infra-estruturas de transporte e armazenamento de energia</th>
<th>Interrupção no transporte de energia eléctrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequências para a segurança de abastecimento</td>
<td>A Central fica fora de serviço, devido cava de tensão na rede e rejeição de carga</td>
</tr>
<tr>
<td>Consequências para os proprietários vizinhos das instalações</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

ACÇÕES DESENVOLVIDAS

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Estudo de coordenação entre as protecções das linhas e da Central</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de reparação</td>
<td>Difícil de estimar</td>
</tr>
</tbody>
</table>

RECURSOS ENVOLVIDOS

<table>
<thead>
<tr>
<th>Número de trabalhadores directos envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas</th>
<th>2 pessoas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de trabalhadores de prestadores de serviço e empreiteiros envolvidos nas acções de reposição do serviço e reparação definitivas das infra-estruturas</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>Entidades oficiais envolvidas na reposição do serviço</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

CUSTOS
<table>
<thead>
<tr>
<th>Custo com as ações imediatas de reposição do serviço</th>
<th>Nenhum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custo/investimento com as ações de reparação definitiva das infra-estruturas afectadas</td>
<td>Baixo custo</td>
</tr>
<tr>
<td>Custos com os processos indemnizatórios por danos a clientes, fornecedores e proprietários</td>
<td>Nenhum</td>
</tr>
</tbody>
</table>

AVALIAÇÃO DO RISCO

<table>
<thead>
<tr>
<th>Foi accionado algum plano de emergência interno?</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>A avaliação de risco das actividades/instalações previa a ocorrência da situação verificada?</td>
<td>Não</td>
</tr>
<tr>
<td>Os riscos estavam cobertos por seguro?</td>
<td>Não</td>
</tr>
<tr>
<td>Se sim, o seguro foi accionado?</td>
<td>Não</td>
</tr>
</tbody>
</table>

INFORMAÇÃO/DIVULGAÇÃO

<table>
<thead>
<tr>
<th>Envolvimento autoridades nacionais/locais</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envolvimento instituições científicas</td>
<td>Não</td>
</tr>
<tr>
<td>Acções de benchmarking</td>
<td>Não</td>
</tr>
</tbody>
</table>

CONCLUSÕES/EFEITOS/ENSEINAMENTOS

<table>
<thead>
<tr>
<th>Em consequência da ocorrência verificada e das medidas de reparação accionadas foram alteradas:</th>
<th>Melhoria na selectividade das protecções eléctricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Práticas de projeto (ex: normas de dimensionamento das infraestruturas)</td>
<td></td>
</tr>
<tr>
<td>• Articulação interna dos diversos intervenientes</td>
<td></td>
</tr>
<tr>
<td>• Plano de emergência interno</td>
<td></td>
</tr>
<tr>
<td>• Avaliação de risco</td>
<td></td>
</tr>
<tr>
<td>• Coordenação com as entidades oficiais</td>
<td></td>
</tr>
</tbody>
</table>
Anexo III

Fichas tipo C – Fichas de Risco Climático
Anexo III – Fichas C – Ficha de Risco Climático

C1

<table>
<thead>
<tr>
<th>Parque de armazenagem da Mitrena</th>
<th>Ficha de risco climático</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dados do operador:</td>
<td></td>
</tr>
<tr>
<td>Tanquisado – Terminais Marítimos S.A.</td>
<td></td>
</tr>
<tr>
<td>2900 - Setúbal</td>
<td></td>
</tr>
<tr>
<td>Telefone: 265 535174</td>
<td></td>
</tr>
<tr>
<td>Fax: 265 535285</td>
<td></td>
</tr>
<tr>
<td>CAE: 52220 Actividades Auxiliares dos Transportes por Água</td>
<td></td>
</tr>
<tr>
<td>Data de constituição: 1972</td>
<td></td>
</tr>
<tr>
<td>Sede social: Estrada da Mitrena Km19. 2900 Setúbal</td>
<td></td>
</tr>
<tr>
<td>Telefone: 265 535714</td>
<td></td>
</tr>
<tr>
<td>Fax: 265 525929</td>
<td></td>
</tr>
</tbody>
</table>

Descrição da instalação

Localização: O Parque de Armazenagem situa-se em Setúbal, na margem Norte do Rio Sado, constituindo-se este limite a frente marítima para acesso dos navios à unidade. O terreno tem uma área total de 404 983 m². A recepção de produtos realiza-se por via marítima, e o abastecimento da ponte cais para o parque é efectuado através de oleodutos. A expedição do combustível é efectuada por via terrestre através de veículos-cisterna, cada um contendo aproximadamente 30 m³.

Envolvente e interfaces críticas:

- **Complexo Industrial da Portucel em Setúbal** – Constituído pelas fábricas de produção de pasta e papel. Este Complexo localiza-se a cerca de 1400 metros a Norte;
- **CITRI (Centro Industrial de Tratamento de Resíduos Industriais)** – Aterro de residuos industriais banais (RIB’s), sedeado no parque industrial da SAPEC, a cerca de 1800 m a Noroeste do Parque;
- **Air Liquide** – Instalações de produção de acetileno e acondicionamento de gases do ar. Esta instalação situa-se a cerca de 1900 metros a Nordeste do Parque;
- **Alstom** – Antiga Sorefame. Indústria de construção metalomecânica, situada junto ao estuário do Sado, com cais próprio utilizado para recepção e envio de materiais, localizada a 1600 metros a Noroeste;
- **Lisnave** – Estaleiros Navais, a cerca de 1200 metros a Este. Este estaleiro é constituído por um conjunto de docas instaladas na margem do rio Sado e por docas secas. Nestas instalações efectuam-se trabalhos de limpeza, manutenção e reparação de navios, incluindo trabalhos metalomecânicos;
- **SAPEC** – Fábrica de adubos e rações para animais, a cerca de 3 km a Noroeste. Em frente desta fábrica, junto do rio, encontra-se um Cais pertencente a esta unidade fabril. O Parque Industrial da SAPEC possui ainda um aeródromo, explorado por uma empresa de ultraleves;
- **Central Termoeléctrica de Setúbal (EDP)**, a cerca de 4.5 km a Noroeste.
Outras instalações relevantes são:

- **Linha do Sado** – Linha dos caminhos-de-ferro a cerca de 5 km a Norte;
- **Facime** – Fábrica de electrodomésticos a cerca de 5 km a Noroeste;
- **Instalações Navais de Tróia**. na península de Tróia, virado para o Rio Sado, a 6 km a Oeste do Parque da Mitrena;
- **Cais do Porto de Setúbal**. a cerca de 10 km a Noroeste.

Núcleos urbanos:

- Tróia (a cerca de 8 km), na margem Sul do rio Sado, a Oeste
- Bairro SAPEC (a cerca de 3 km), a Noroeste
- Quinta do Melo (a cerca de 4.5 km), a Noroeste
- Praias do Sado (a cerca de 5 km), a Noroeste
- Alto da Guerra (a cerca de 7.5 km), a Noroeste
- Poço de Mouro (a cerca de 8 km), a Noroeste
- Setúbal (a cerca de 10 km), a Noroeste
- Faralhão (a cerca de 5 km), a Norte
- Santo Oviedo (a cerca de 5.5 km), a Norte
- Mourisca (a cerca de 7 km), a Norte
- Cotovia (a cerca de 8.5 km), a Norte
- Pinheiro (a cerca de 8 km), a Este
- Urbanização Sol Tróia (a cerca de 8 km), a Sudoeste

Capacidade: A capacidade de armazenagem de produtos petrolíferos é de cerca de 90 670 m³.

<table>
<thead>
<tr>
<th>Produto</th>
<th>Capacidade útil (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasóleo</td>
<td>42100</td>
</tr>
<tr>
<td>Gasolina</td>
<td>14700</td>
</tr>
<tr>
<td>Fuel Óleo</td>
<td>32100</td>
</tr>
<tr>
<td>Avgás</td>
<td>1700</td>
</tr>
<tr>
<td>Jet A1</td>
<td>70</td>
</tr>
</tbody>
</table>

Principais matérias-primas: Gasóleos, Gasolina, Fuel, Avgás e Jet A1

Descrição processual:

Cartografia relevante

de acordo com área envolvente da unidade industrial, para a implementação e monitorização de medidas de adaptação de aplicação territorial

Áreas protegidas

- Zona de Protecção Especial (ZPE) do Estuário do Sado (classificada ao abrigo da Rede Natura 2000 – Directiva Aves);
- Reserva Natural do Sado a cerca de 2,5 km a Este;
- Sítio de Interesse Comunitário do Estuário do Sado (classificado ao abrigo da Rede Natura 2000 – Directiva Habitats) a cerca de 2,5 km a Este.

Instrumentos de ordenamento do território

- Plano Regional de Ordenamento do Território da Área Metropolitana de Lisboa (PROT-AML)
- Plano de Bacia Hidrográfica (PBH) do Sado
- Plano Regional de Ordenamento Florestal da Área Metropolitana de Lisboa (PROF AML)
- Plano Director Municipal (PDM) de Setúbal

Limites de operação

Face a fenómenos climáticos e meteorológicos extremos é essencial a averiguação e identificação de limites operacionais para análise de vulnerabilidades relevantes identificadas.
<table>
<thead>
<tr>
<th>Variável(eis) climática(s)</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>A longo prazo, as vulnerabilidades poderão verificar-se a nível das fundações, devido à intensificação do processo erosivo na zona costeira, associado a alterações do clima de ondas e diminuição do nível freático.</td>
<td></td>
<td>2050</td>
</tr>
<tr>
<td>Precipitação, tempestade e vento</td>
<td>A intensificação e aumento da frequência de fenómenos climáticos extremos, especialmente a curto prazo, como cheias e situações de temporal podem afectar a estabilidade e as condições de segurança nas operações de carga e descarga de navios (dependente do tipo de navio e tipo de cais). A vulnerabilidade é fortemente influenciada pela agitação marítima (variáveis: altura da ondulação; período e direcção das ondas).</td>
<td>A ocorrência de situações de operação anormal e de actuação extraordinárias de emergência pode vir a exigir a revisão de procedimentos e normas, com a consequente capacitação adicional de recursos humanos.</td>
<td>2020³⁴</td>
</tr>
</tbody>
</table>

²⁹ Inclui mudanças na altura das ondas, susceptíveis de atingir as proteções de cheia.

³⁰ Inclui a ocorrência de cheias, secas, sobrelevedação do mar.

³¹ Grau com que as infraestruturas são susceptíveis de suportar ou não os efeitos adversos das alterações climáticas do ponto de vista da segurança e afetação da produção, considerando o seu nível de exposição às alterações climáticas, a sua sensibilidade e a sua exposição de adaptação.

³² Pode ser necessário a análise de uma conjugação de variáveis climáticas de risco.

³³ Horizonte temporal a partir do qual as vulnerabilidades identificadas poderão ser relevantes do ponto de vista da segurança das infraestruturas e garantia da produção.

³⁴ Refere-se a aumento da frequência e intensificação de eventos climáticos extremos.
MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL

<table>
<thead>
<tr>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curto prazo</td>
</tr>
</tbody>
</table>

- Melhoria de previsões de clima – em colaboração com Entidades Competentes – para melhor prever a ocorrência de eventos climáticos extremos;
- Consciencializar a população para a utilização mais eficiente de produtos petrolíferos;
- Consciencializar a população da possibilidade de aumento de custos inerente a falhas ou interrupções de abastecimento;
- Coordenação com entidades portuárias para recepção de matérias-primas na definição de cenários climáticos críticos e medidas de adaptação passíveis de implementação;
- Coordenação com Entidades Competentes, no que respeita a definição de cenários climáticos críticos e articulação e integração de acções e medidas de adaptação de planeamento territorial a implementar, de acordo com as vulnerabilidades identificadas no campo anterior;
- Melhorias no Planeamento e Gestão de stock de produtos petrolíferos, prevendo falhas ou interrupções do serviço prestado e promovendo a existência de planos de contingência;
- Formação de colaboradores e parceiros da Galp Energia para a ocorrência de situações de operação anormal e de actuação extraordinárias de emergência;

MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS

<table>
<thead>
<tr>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curto prazo</td>
</tr>
</tbody>
</table>

Precipitação e tempestade
- Verificação hidráulica e critérios de dimensionamento de sistemas de drenagem de efluentes líquidos (água pluvial e residuais) e bacias de contenção de matérias-primas e produtos petrolíferos acabados;
- Verificação dos critérios estruturais da zona portuária do Parque de Armazenagem.

Variável(s) climática(s)
- Precipitação, tempestade e vento
- Verificação de janelas de operação de carga e descarga dos navios, para as variáveis climáticas críticas identificadas, sob a forma de valores de referência que possam condicionar as operações efectuadas – condições marítimas (altura, período e direcção de ondas) ou outras que se considerem relevantes.

Lacunas de conhecimento

A presente ficha de risco climático carece de dados e modelos climáticos à escala regional, especialmente a curto prazo (2020), para o qual se consideraram dados climáticos disponíveis à escala europeia. Por outro lado, afigura-se como essencial a realização de estudos complementares para corroborar a significância dos impactes de erosão costeira nas fundações estruturais do Parque de Armazenagem da Mitrena, especialmente a longo prazo (2050).

Face ao aumento de dados e cenários climáticos disponíveis, a presente ficha está sujeita
a alterações.

Fronteiras de responsabilidade

Entidades competentes de ordenamento do território, recursos hídricos e transporte rodoviário.

<table>
<thead>
<tr>
<th>Responsável do projeto</th>
<th></th>
</tr>
</thead>
</table>

150
Oleoduto CLC Sines – Aveiras de cima

Dados do operador:
- Sede social: Rua Tomás da Fonseca. Torre C – 1600-206 Lisboa
- Telefone: 21 7242500
- Fax: 21 7240573

Ficha de risco climático
- Pág. 151 de 21111

Descrição da instalação

Localização: Entre a Refinaria de Sines, que está localizada aproximadamente a 130 km a Sul de Lisboa, e o Parque de Armazenagem, que se localiza aproximadamente a 50 km a Noroeste de Lisboa, nas vizinhanças de Aveiras de Cima. Apresenta uma capacidade de transporte de 4 000 000 t/ano, tendo um comprimento aproximado de 147 km.

Envolvente e interfaces críticas:

- **Núcleos urbanos:**
 - Sines
 - Santiago do Cacém
 - Grândola
 - Álcaldo Sal
 - Vendas Novas
 - Palmela
 - Montijo
 - Benavente
 - Azambuja

- **Atravessamentos de rios:**
 - Rio Tejo
 - Rio Sado

Principais matérias-primas: Os produtos transportados são gases de petróleo liquefeitos (propano e butano) e derivados brancos (gasolina sem chumbo, gasóleo e jet-A1).

Descrição processual:

- **Cartografia relevante** de acordo com área envolvente da unidade industrial, para a implementação e monitorização de medidas de adaptação de aplicação territorial

- **Instrumentos de ordenamento do território**
 - REN – Montijo, Vendas Novas
 - RAN - Montijo

- **Corine Land Cover**
 - Biótopo Corine #C22100044 (Costa da Galé)
 - Biótopo Corine #C22100046 (Lagoa de Santo André)
 - Biótopo Corine #C22100045 (Lagoa de Melides)
 - Biótopo Corine #C22100013 (Estuário do Sado)
 - Biótopo Corine #C21500090 (Paúl Do Trejoiito)

Limites de operação

Face a fenómenos climáticos e meteorológicos extremos é essencial a averiguação e identificação de limites operacionais para análise das vulnerabilidades relevantes identificadas.

Variáveis climáticas críticas

- **Temperatura**
- **Precipitação**

35 Ocorrência de fenómenos climáticos extremos, como por exemplo agitação marítima intensa.

36 Ocorrência de fenómenos climáticos extremos como cheias, secas ou fenómenos climáticos graduais, como a erosão costeira (associada a um clima de ondas significativo)
<table>
<thead>
<tr>
<th>Variável(ei) climática(s)</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>Possível afectação estrutural do oleoduto, decorrentes da ocorrência de secas e diminuição/contracção do solo, no horizonte temporal. Possível afectação estrutural do oleoduto, decorrentes da ocorrência de precipitação e na eventualidade de deslocação/deslizamento de terrenos.</td>
<td>No horizonte temporal do longo prazo, impõe-se a necessidade de monitorização e manutenção mais cuidada, para fazer face à intensificação das assimetrias geográficas e sazonais das disponibilidades hídricas.</td>
<td>2020</td>
</tr>
</tbody>
</table>

37 Grau com que as infraestruturas são susceptíveis de suportar ou não os efeitos adversos das alterações climáticas do ponto de vista da segurança e afetação da produção, considerando o seu nível de exposição às alterações climáticas, a sua sensibilidade e a sua exposição de adaptação.

38 Pode ser necessário a análise de uma conjugação de variáveis climáticas de risco.

39 Horizonte temporal a partir do qual as vulnerabilidades identificadas poderão ser relevantes do ponto de vista da segurança das infraestruturas e garantia da produção.
Plano de ações e medidas de adaptação

MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL

<table>
<thead>
<tr>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curto prazo</td>
</tr>
</tbody>
</table>

- Melhoria de previsões de clima – em colaboração com Entidades Competentes – para melhor prever a ocorrência de eventos climáticos extremos;
- Consciencializar a população para a utilização mais eficiente de produtos petrolíferos;
- Consciencializar a população da possibilidade de aumento de custos inerente a falhas ou interrupções do serviço prestado;
- Coordenação com entidades portuárias para recepção de matérias-primas na definição de cenários climáticos críticos e medidas de adaptação passíveis de implementação;
- Coordenação com Entidades Competentes, no que respeita a definição de cenários climáticos críticos e articulação e integração de ações e medidas de adaptação de planeamento territorial a implementar, de acordo com as vulnerabilidades identificadas no campo anterior;
- Melhorias no Planeamento e Gestão de stock de produtos petrolíferos, prevendo falhas ou interrupções do serviço prestado e promovendo a existência de planos de contingência;
- Formação de colaboradores e parceiros da Galp Energia para a ocorrência de situações de operação anormal e de actuação extraordinárias de emergência;

MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS

<table>
<thead>
<tr>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curto prazo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variável(s) climática(s)</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>Armazenagem temporária ou reencaminhamento de matéria-primas e produtos petrolíferos noutras instalações, para fazer face a possíveis falhas/interrupções no serviço prestado.</td>
</tr>
</tbody>
</table>

Lacunas de conhecimento

A presente ficha de risco climático carece de dados e modelos climáticos à escala regional, especialmente a curto prazo (2020), para o qual se consideraram dados climáticos disponíveis à escala europeia.

É essencial a realização de estudos complementares para corroborar a possível significância de impactes associados à contração do solo, decorrentes de fenómenos climáticos extremos a curto médio prazo (cheias e secas), e consequentes assimetrias geográficas e sazonais das disponibilidades hídricas a longo prazo.

Face ao aumento de dados e cenários climáticos disponíveis, a presente ficha está sujeita a alterações.

Fronteiras de responsabilidade

Entidades Competentes de ordenamento do território e recursos hídricos.

Responsável do projeto

Entidades Competentes de ordenamento do território e recursos hídricos.
Localização: A Refinaria de Matosinhos está situada junto ao litoral, entre os lugares Boa-Nova e o Cabo do Mundo, nas freguesias de Leça da Palmeira e de Perafita, no concelho de Matosinhos, ocupando uma área de 290 hectares, a Noroeste da cidade do Porto e a cerca de 2 Km a Norte do Porto de Leixões.

Envolvente e interfaces críticas:

Unidades industriais:

- Parque de gás de Perafita, com armazenagem de GPL (Gás de Petróleo Liquefeito) e enchimento de veículos cisterna, situado a Nordeste da Refinaria;
- Fábrica de conservas, oficinas de reparação de veículos e garagens, a cerca de 150 m da vedação da Refinaria;

Espaços urbanos:

- Leça da Palmeira e Matosinhos a Sul;
- A Aldeia Nova, Poupas e Telheira a Norte;
- A Almeiriga, Amorosa, Conclava e Avessada a Este.

Espaços florestais, agrícolas e matos:

Espaços dunares, com vegetação típica

Capacidade: Apresenta uma capacidade instalada de refinação de 4,5 milhões de petróleo bruto por ano, produzindo uma gama diversificada de produtos comerciais refinados, nomeadamente GPL (3 %), gasolinas (19 %), jet/petróleo (5 %), fúeis (19 %), óleos base (4 %), parafinas (0 %), solventes alifáticos e aromáticos (8 %), e betumes (5 %) (2010).

A capacidade de armazenagem da refinaria é de 567 086 m³ de petróleo bruto, perfazendo-se um total de 1 803 978 m³ de capacidade de armazenagem.

Principais matérias-primas: Crude do tipo SOUR e SWEET, conforme a diversos factores comerciais, técnicos e ambientais, como sejam: qualidade, disponibilidade no mercado, cotação internacional, planos de produção da refinaria, capacidade de armazenamento, entre outros.

Descrição processual: A refinaria de Matosinhos compreende as seguintes unidades processuais:

- Fábrica de Combustíveis;
- Fábrica de Aromáticos;
- Fábrica de Óleos Base;
- Fábrica de Lubrificantes;
- Utilidades;
- Movimentação de produtos;
- Expedição de produtos (Parque de Boa Nova);
- Tratamento de efluentes;
- Outras instalações.

Cartografia relevante

- de acordo com área envolvente da unidade industrial, para a implementação e monitorização de medidas de adaptação de aplicação territorial

Instrumentos de ordenamento do território

- Plano de Bacia Hidrográfica do rio Leça;
- Plano de Ordenamento da Orla Costeira Caminha – Espinho;
- Plano Regional de Ordenamento Florestal da Área Metropolitana do Porto e Entre Douro e Vouga;
- Plano Regional de Ordenamento do Território para a Região Norte;
- Plano Director Municipal de Matosinhos;
- Plano de Urbanização entre a Rua de Belchior Robles e a Avenida dos Combatentes da Grande Guerra em Leça da Palmeira.

Limites de operação

É essencial a verificação hidráulica e critérios de dimensionamento de sistemas de drenagem, incluindo a verificação de janelas de operação de equipamentos de contenção primária, no que respeita às vulnerabilidades identificadas. Impõe-se igualmente a verificação de condições de segurança para a operação de carga e descarga na monobóia.

Variáveis climáticas críticas

- Tempestade, Precipitação, Vento e Temperatura

<table>
<thead>
<tr>
<th>Matriz de vulnerabilidades relevantes</th>
<th>Variável(eis) climática(s)</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>Ocorrência de fenómenos extremos poderão potenciar a ocorrência de situações de incapacidade de escoamento e tratamento dos efluentes</td>
<td>A ocorrência de situações de operação anormal e de actuação extraordinárias de emergência pode vir</td>
<td>2020</td>
<td></td>
</tr>
</tbody>
</table>

40 Inclui mudanças na altura das ondas, susceptíveis de atingir as proteções de cheia.

41 Inclui a ocorrência de cheias, secas, sobrelevação do mar.

42 Grau com que as infraestruturas são susceptíveis de suportar ou não os efeitos adversos das alterações climáticas do ponto de vista da segurança e afetação da produção, considerando o seu nível de exposição às alterações climáticas, a sua sensibilidade e a sua exposição de adaptação.

43 Pode ser necessário a análise de uma conjugação de variáveis climáticas de risco.

44 Horizonte temporal a partir do qual as vulnerabilidades identificadas poderão ser relevantes do ponto de vista da segurança das infraestruturas e garantia da produção.

45 Refere-se a aumento da frequência e intensificação de eventos climáticos extremos.
<table>
<thead>
<tr>
<th>Plano de ações e medidas de adaptação</th>
<th>MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>Afectação da estabilidade e das condições de segurança nas operações de carga e descarga de navios/monobôia<sup>46</sup> (dependente do tipo de navio e tipo de cais). A vulnerabilidade é fortemente influenciada pela agitação marítima (altura; período e direcção das ondas). A ocorrência de situações de operação anormal e de actuação extraordinárias de emergência pode vir a exigir a revisão de procedimentos e normas, com a consequente capacitação adicional de recursos humanos.</td>
<td>2020<sup>6</sup></td>
</tr>
<tr>
<td>Temperatura</td>
<td>Afectação de equipamentos de contenção primária (linhas de transporte e equipamentos de armazenagem, entre outros), devido à intensificação e aumento da frequência de fenómenos extremos (“ondas de calor”, “dias muito quentes” - Tmáxima > 35°C, entre outros).</td>
<td></td>
</tr>
</tbody>
</table>

⁴⁶ Sistema flutuante, ancorado em mar aberto (off-shore), ligado ao terminal de Leixões/Refinaria do Porto por meio de tubulação submarina.
Melhoria de previsões de clima – em colaboração com Entidades Competentes – para melhor prever a ocorrência de eventos climáticos extremos;
- Consciencializar a população para a utilização mais eficiente de produtos petrolíferos;
- Consciencializar a população da possibilidade de aumento de custos inerente a falhas ou interrupções do serviço prestado;
- Coordenação com entidades portuárias para recepção de matérias-primas na definição de cenários climáticos críticos e medidas de adaptação passíveis de implementação;
- Coordenação com Entidades Competentes, no que respeita a definição de cenários climáticos críticos e articulação e integração de acções e medidas de adaptação de planeamento territorial a implementar, de acordo com as vulnerabilidades identificadas no campo anterior;
- Melhorias no Planeamento e Gestão de stock de produtos petrolíferos, prevendo falhas ou interrupções do serviço prestado e promovendo a existência de planos de contingência;
- Formação de colaboradores e parceiros da Galp Energia para a ocorrência de situações de operação anormal e de actuação extraordinárias de emergência;

MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS

<table>
<thead>
<tr>
<th>Variável(s) climática(s)</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>Verificação hidráulica e critérios de dimensionamento de sistemas de drenagem de efluentes líquidos e bacias de contenção de matérias-primas e produtos petrolíferos acabados.</td>
</tr>
<tr>
<td>Precipitação e tempestade</td>
<td>Verificação de janelas de operação de carga e descarga dos navios/monobóia, para as variáveis climáticas críticas identificadas, sob a forma de valores de referência que possam conditioning as operações efectuadas – condições marítimas (altura, período e direcção de ondas) ou outras que se considerem relevantes.</td>
</tr>
<tr>
<td>Temperatura</td>
<td>Verificação de critérios de dimensionamento de unidades processuais com maior sensibilidade à temperatura (ex.: Torres de Refrigeração, entre outras) Elaboração de estudos e trabalhos complementares relativos à influência de “dias muito quentes e “ondas de calor” na eficiência de processos.</td>
</tr>
<tr>
<td>Lacunas de conhecimento/fronteiras de responsabilidade</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
| **Lacunar de conhecimento**
A presente ficha de risco climático carece de dados e modelos climáticos à escala regional, especialmente a curto prazo (2020), para o qual se consideraram dados climáticos disponíveis à escala europeia. Face ao aumento de dados e cenários climáticos disponíveis, a presente ficha está sujeita a alterações. |
| **Fronteiras de responsabilidade**
Entidades Competentes de ordenamento do território, recursos hídricos e transporte rodoviário. |

<table>
<thead>
<tr>
<th>Responsável do projeto</th>
<th></th>
</tr>
</thead>
</table>
Descrição da instalação

Localização: A Refinaria de Sines é parte integrante do Complexo Industrial de Sines com uma área de aproximadamente 320 ha, localizada no concelho de Sines. A propriedade onde está instalada a Refinaria de Sines situa-se a cerca de 3 quilómetros a Este da vila de Sines, encontrando-se enquadrada a Oeste e a Norte, pelas vias rápidas de acesso a Sines, passando também a Norte da zona da Refinaria a linha de Caminho de Ferro.

Envolvente e interfaces críticas:

Unidades industriais:
- Central Termoelectrica da EDP;
- Complexo Petroquímico com exploração da Repsol;
- Fábrica de Negro de fumo da Carbogal;
- Unidade Metalomecânica da Metalsines;
- Terminal Petrolífero e terminal de carvão;
- Estação de Tratamento de Águas Residuais da Ribeira de Moinhos, entre outras infra-estruturas de apoio ao desenvolvimento industrial.

Capacidade: A capacidade de armazenagem da refinaria é de cerca de 3 milhões de toneladas, das quais 1,5 milhões são de petróleo bruto correspondendo a restante capacidade a produtos intermediários e produtos finais. Apresenta uma capacidade instalada de refinação de 10 milhões toneladas de petróleo bruto por ano, produzindo uma gama diversificada de produtos comerciais refinados, nomeadamente Gás de Petróleo Liquefeito (7,3%), Gasolinas (29%), Jet/Petróleo (8,6%), Gasóleos (30%), Fuéis (19%), Enxofre (0,2%) e Betumes (2,5%).

Principais matérias-primas: Crude do tipo SOUR e SWEET, conforme a diversos factores comerciais, técnicos e ambientais, como sejam: qualidade, disponibilidade no mercado, cotação internacional, planos de produção da refinaria, capacidade de armazenamento, etc.

Descrição processual: Compreende actualmente 27 unidades processuais, entre as quais a destilação atmosférica e as destilações de vácuo, onde se faz a separação inicial das fracções de gases, nafta, petróleo, gasóleo, fuelóleo, gasóleo de vácuo e resíduo de vácuo, contidas no petróleo bruto, e as unidades de tratamento para remoção de enxofre. Nas restantes unidades (de conversão molecular) produzem-se produtos mais leves e “limpos”: unidades de cracking catalítico de gasóleo de vácuo (FCC), cracking térmico de resíduo de vácuo (visbreaker) e hydrocracking de nafta (isomax). Nas unidades de conversão molecular de reformação catalítica (platforming), melhora-se o índice de octano da gasolina, com produção simultânea de hidrogênio; na alquilação produz-se uma gasolina sem aromáticos e olefinas a partir de correntes gasosas, e, na reformação por vapor produz-se...
hidrogénio a partir de gás natural.
Actualmente a Refinaria de Sines integra várias unidades, as quais se encontram distribuídas por duas áreas processuais principais designadas por Fabricação I e Fabricação II. O projeto de expansão e reconversão contempla a implantação de novas unidades num nova zona: Fábrica III. Adicionalmente, é constituída por Utilidades, Armazenagem de Produtos e Enchimento de Veículos Cisterna, Enchimento de Garrafas de GPL, Pré-tratamento de Efluentes e Zona Administrativa.

<table>
<thead>
<tr>
<th>Cartografia relevante</th>
<th>Áreas protegidas (ICNB – Instituto de Conservação da Natureza e Biodiversidade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>de acordo com área envolvente da unidade industrial, para a implementação e monitorização de medidas de adaptação de aplicação territorial</td>
<td>Parque Natural de Sudoeste Alentejano e Costa Vicentina</td>
</tr>
<tr>
<td></td>
<td>Zona de Protecção Especial da Lagoa de Santo André</td>
</tr>
<tr>
<td></td>
<td>Zona de Protecção Especial da Lagoa de Sancha</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rede Natura 2000</th>
<th>Sítio Costa Sudoeste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sítio Comporta Galé</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrumentos de ordenamento do território</th>
<th>Plano de Bacia Hidrográfica do Sado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plano de Ordenamento da Orla Costeira do Sado</td>
</tr>
<tr>
<td></td>
<td>Plano de Ordenamento da Orla Costeira de Sines</td>
</tr>
<tr>
<td></td>
<td>Plano Regional de Ordenamento Florestal do Alentejo Litoral</td>
</tr>
<tr>
<td></td>
<td>Plano de Ordenamento de Áreas Protegidas do Parque Natural do Sudoeste Alentejano e Costa Vicentina</td>
</tr>
<tr>
<td></td>
<td>Plano Municipal de Ordenamento do Território (inclui Plano Director Municipal, Planos de Urbanização e Planos de Pormenor)</td>
</tr>
</tbody>
</table>

| Limites de operação | É essencial a verificação hidráulica e critérios de dimensionamento de sistemas de drenagem, incluindo a verificação de janelas de operação de equipamentos de contenção primária, para as vulnerabilidades identificadas. A ocorrência de “ondas de calor” em 2010 (ΔT=8.67 ºC) provocou uma maior produção de produtos mais pesados (menor valor económico) e menos produtos nobres, resultantes da afectação do desempenho das Torres de Refrigeração (vide Relatório de Alterações Climáticas – Refinaria de Sines, Maio 2010). |

<table>
<thead>
<tr>
<th>Variáveis climáticas críticas</th>
<th>Variáveis climáticas críticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempestade48, Precipitação49 e Temperatura</td>
<td></td>
</tr>
</tbody>
</table>

47 Considera-se que ocorre uma onda de calor quando num intervalo de pelo menos 6 dias consecutivos, a temperatura máxima diária é superior em 5 ºC ao valor médio diário no período de referência.

48 Inclui mudanças na altura das ondas, susceptíveis de atingir as proteções de cheia.

49 Inclui a ocorrência de cheias, secas, sobreleitura do mar.
Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável(eis) climática(s)</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infraestrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>Ocorrência de fenómenos extremos poderão potenciar a ocorrência de situações de incapacidade de escoamento e tratamento dos efluentes líquidos gerados e o sobrenchimento de bacias de contenção presentes.</td>
<td>A ocorrência de situações de operação anormal e de actuação extraordinárias de emergência pode vir a exigir a revisão de procedimentos e normas, com a consequente capacitação adicional de recursos humanos.</td>
<td>2020</td>
</tr>
<tr>
<td>Temperatura</td>
<td>Afectedação de equipamentos de contenção primária (linhas de transporte e equipamentos de armazenagem, entre outros), devido à intensificação e aumento da frequência de fenómenos extremos (“ondas de calor” e “dias muito quentes” - (T_{maxima} > 35)ºC, entre outros).</td>
<td>A ocorrência de fenómenos extremos pode afectar a qualidade dos produtos petrolíferos refinados e exigir a capacitação adicional das unidades processuais.</td>
<td>2020</td>
</tr>
</tbody>
</table>

50 Grau com que as infraestruturas são susceptíveis de suportar ou não os efeitos adversos das alterações climáticas do ponto de vista da segurança e afetação da produção, considerando o seu nível de exposição às alterações climáticas, a sua sensibilidade e a sua exposição de adaptação.

51 Pode ser necessário a análise de uma conjugação de variáveis climáticas de risco.

52 Horizonte temporal a partir do qual as vulnerabilidades identificadas poderão ser relevantes do ponto de vista da segurança das infraestruturas e garantia da produção.

53 Refere-se a aumento da frequência e intensificação de eventos climáticos extremos.
Plano de ações e medidas de adaptação

MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL

<table>
<thead>
<tr>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curto prazo</td>
</tr>
</tbody>
</table>

- Melhoria de previsões de clima – em colaboração com Entidades Competentes – para melhor prever a ocorrência de eventos climáticos extremos;
- Consciencializar a população para a utilização mais eficiente de produtos petrolíferos;
- Consciencializar a população da possibilidade de aumento de custos inerente a falhas ou interrupções do serviço prestado;
- Coordenação com entidades portuárias para recepção de matérias-primas na definição de cenários climáticos críticos e medidas de adaptação passíveis de implementação;
- Coordenação com Entidades Competentes, no que respeita a definição de cenários climáticos críticos e articulação e integração de ações e medidas de adaptação de planeamento territorial a implementar, de acordo com as vulnerabilidades identificadas no campo anterior;
- Melhorias no Planeamento e Gestão de stock de produtos petrolíferos, prevendo falhas ou interrupções do serviço prestado e promovendo a existência de planos de contingência;
- Formação de colaboradores e parceiros da Galp Energia para a ocorrência de situações de operação anormal e de actuação extraordinárias de emergência;

MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS

<table>
<thead>
<tr>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curto prazo</td>
</tr>
</tbody>
</table>

Precipitação e tempestade
- Verificação hidráulica e critérios de dimensionamento de sistemas de drenagem de efluentes líquidos (água pluviais e residuais) e bacias de contenção de matérias-primas e produtos petrolíferos acabados.

Temperatura
- Verificação de critérios de dimensionamento de unidades processuais com maior sensibilidade à temperatura (ex.: Torres de Refrigeração, entre outras);
- Elaboração de estudos e trabalhos complementares relativos à influência de “dias muito quentes” e “ondas de calor” na eficiência de processos.

Lacunas de conhecimento/fronteras de responsabilidade

Lacunas de conhecimento
A presente ficha de risco climático carece de dados e modelos climáticos à escala regional, especialmente a curto prazo (2020), para o qual se consideraram dados climáticos disponíveis à escala europeia. Face ao aumento de dados e cenários climáticos disponíveis, a presente ficha está sujeita a alterações.

Fronteiras de responsabilidade
Entidades competentes de ordenamento do território, recursos hídricos e transporte rodoviário.
| Responsável do projeto | |
Terminal de Granéis Líquidos de Sines

Dados do operador:

CLT – Companhia Logística de Terminais Marítimos, S.A.
Apartado 233
7520-901 Sines
Telefone do responsável: António Teixeira 269 860 860
Fax do responsável: António Teixeira 269 860 850
Sede social: Rua Tomás da Fonseca, Torre C – 1600-209 Lisboa
Telefone: 21 7242500
Fax: 21 7240573

Ficha de risco climático
Pág. 164 de 211

Localização: O Terminal de Granéis Líquidos de Sines localiza-se a oeste do núcleo urbano de Sines, que compreende uma extensão aproximada de 214 000 m², e está assente num terreno conquistado em parte ao mar através de enrocamentos e diversos materiais. As zonas urbanas existentes nas proximidades, correspondem à estrutura urbana de Sines que se localiza a menos de um quilómetro do terminal na direcção este, embora existam edifícios anexos à vedação do perímetro das instalações, a escassos 200 m. Os acessos fazem-se por via rodoviária ou ferroviária.

Envolvente e interfaces críticas:

Unidades industriais:

- Terminal Petroquímico – TPQ, concessionado à Repsol Polímeros;
- Armazenagem, anexa ao TPQ, da Repsol Polímeros;
- Armazenagem da Nafta Química – 1 tanque, da Repsol;
- Parque de Bancas – 2 tanques de fuelóleo, 1 tanque de Marine Diesel e 1 tanque de Gasóleo – licenciamento da Petrogal;
- Armazenagem de Carbogal – 1 tanque de fuel de pirólise;
- Armazenagem da Euroresínicas- 1 tanque de Metanol;
- Armazenagem da Artlan – 2 tanques de p-xileno e 1 tanque de ácido acético;
- Estação ATEC da Sigás;
- Esteira de Oleodutos, no interior do TGLS, à qual têm acesso as entidades detentoras das tubagens aí instaladas, como a CLT, a Repsol e outras.

Fora da área de influência do TGLS, mas na área de influência da APS localizam-se as seguintes instalações:

- TGN – Terminal de Gás Natural, e a respectiva armazenagem de GNL (2 tanques + 1 em construção, 120 000m³ cada), concessionado à REN Atlântico;
- Terminal XXI, concessionado à PSA, destinado à movimentação de contentores;
- TMS – Terminal Multipurpose de Sines, concessionado à Portsines, vocacionado para granéis sólidos, carga geral e ro-ro.

Num raio de cerca de 8 km regista-se ainda presença das seguintes indústrias relevantes:

- Refinaria de Sines;
- Pólo Petroquímico da Repsol Polímeros;
- Fábrica do Carbogal;
- Fábrica de Euroresínulas;
- Fábrica de Artlan;
- Central Térmica da EDP (a carvão);
- Metalsines;
- Recipneu.
Núcleos urbanos:

- **Nordeste** – Daida, Pardieiros, Barbuda, Chaparral, Borbugão, Cadaveira e pequenos aglomerados entre 3 e 5 km; São André a 12 km, Santiago do Cacém, Aldeia dos Chão e Santa Cruz, todas entre 10 e 15 km;
- **A Sul** – Provença e Palmeiras a 4 km; Sonega, Morgavel e Porto Covo a 12 km;
- **A Este** – Afeiteira (1 km) e Vila de Sines a 1,5 km; Cerca Velha, Casoto, Bragada, Casinha e outros pequenos núcleos até 2 km; Relvas Verdes e Paio à 6 km; Santiago do Cacém, Aldeia dos Chão e Santa Cruz, todas a cerca de 12 km.

Operações efectuadas:

A sua actividade está intimamente associada às:

- Importações de crude, produtos petrolíferos e produtos químicos;
- Exportações de Refinados;
- Transferências de combustíveis para outros portos nacionais, nomeadamente Leixões, Aveiro, Lisboa, Setúbal e para as Ilhas;
- Recepção de refinados e produtos químicos provenientes do Porto de Leixões.

Os granéis líquidos movimentados são predominantemente:

- Crude;
- Produtos finais: GPL, Propileno, Gasolinas, Naftas, Jets, Gasóleos e Fuelóleos;
- Componentes e Produtos Intermédios;
- Metanol e outros produtos químicos.

Todas as cargas ou descargas por navio, realizadas no TGLS, são feitas por oleoduto. As actividades do TGLS resumem-se às seguintes operações:

- Carga ou descarga de navios de produtos petrolíferos ou de produtos químicos, a granel;
- Armazenagem temporária e encaminhamento de resíduos;
- Serviços de apoio a navios (fornecimento de utilidades);
- Outros serviços de apoio.

Substâncias perigosas transaccionadas: - Fuelóleos; Gasóleo; Gasolinas (de mercado e componentes); Jet A1; Nafta química; Naftas; Metanol; Petróleo; Petróleo Bruto; Propano; Propileno; Propano; Reformado.

Áreas protegidas

Sítio de Interesse Comunitário da Comporta / Galé (classificado ao abrigo da Rede Natura 2000 – Directiva Habitats) a cerca de 4 km a Nordeste;

- Zona de Protecção Especial da Lagoa de Sancha (classificada ao abrigo da Rede Natura 2000 – Directiva Aves) a cerca de 8 km a Norte-Nordeste;
- Zona de Protecção Especial da Lagoa de Santo André (classificada ao abrigo da Rede Natura 2000 – Directiva Aves) a cerca de 13 km a Norte-Nordeste;
- Reserva Natural das Lagoas de Santo André e da Sancha a cerca de 5 km a Nordeste;
- Sítio de Interesse Comunitário da Costa Sudoeste (classificado ao abrigo da Rede Natura 2000 – Directiva Habitats) a cerca de 7 km a Sudeste;
- Zona de Protecção Especial da Costa Sudoeste (classificada ao abrigo da Rede Natura 2000 – Directiva Aves) a cerca de 14 km a Sudeste;
- Parque Natural do Sudoeste Alentejano e Costa Vicentina a cerca de 6 km a Sudeste.
Instrumentos de ordenamento do território
- Plano Regional de Ordenamento do Território (PROT) do Alentejo;
- Plano de Bacia Hidrográfica do Sado
- Plano Regional de Ordenamento Florestal (PROF) do Alentejo Litoral
- Plano Diretor Municipal (PDM) de Sines

Limites de operação
Face a ocorrência de fenómenos climáticos e meteorológicos extremos é essencial a averiguação e identificação de limites operacionais para avaliação de cenários de risco.

Variáveis climáticas críticas
Tempestade\(^{54}\), Precipitação\(^{55}\) e Vento

Matriz de vulnerabilidades relevantes\(^{56}\)

<table>
<thead>
<tr>
<th>Variável(eis) climática(s)(^{57})</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infraestrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise(^{58})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>A longo prazo, as vulnerabilidades poderão verificar-se a nível das fundações, devido à intensificação do processo erosivo na zona costeira, associado a alterações do clima de ondas.</td>
<td>Molhe e aterros APS</td>
<td>2050</td>
</tr>
<tr>
<td>Precipitação, tempestade e vento</td>
<td>A intensificação e aumento da frequência de fenómenos climáticos extremos, especialmente a curto prazo, como cheias e situações de temporal podem afectar a estabilidade e as condições de segurança nas operações de carga e descarga de navios (dependente do tipo de navio e tipo de cais). A vulnerabilidade é fortemente influenciada pela agitação</td>
<td>A ocorrência de situações de operação anormal e de actuação extraordinárias de emergência pode vir a exigir a revisão de procedimentos e normas, com a consequente capacitação adicional de</td>
<td>2020(^{59})</td>
</tr>
</tbody>
</table>

\(^{54}\) Inclui mudanças na altura das ondas, susceptíveis de atingir as proteções de cheia.

\(^{55}\) Inclui a ocorrência de cheias, secas, sobrelevação do mar.

\(^{56}\) Grau com que as infraestruturas são susceptíveis de suportar ou não os efeitos adversos das alterações climáticas do ponto de vista da segurança e efetivação da produção, considerando o seu nível de exposição às alterações climáticas, a sua sensibilidade e a sua exposição de adaptação.

\(^{57}\) Horizonte temporal a partir do qual as vulnerabilidades identificadas poderão ser relevantes do ponto de vista da segurança das infraestruturas e garantia da produção.

\(^{58}\) Refere-se a aumento da frequência e intensificação de eventos climáticos extremos.
<table>
<thead>
<tr>
<th>MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Melhoria de previsões de clima – em colaboração com Entidades Competentes – para melhor prever a ocorrência de eventos climáticos extremos;</td>
<td>Curto prazo</td>
</tr>
<tr>
<td>▪ Consciencializar a população para a utilização mais eficiente de produtos petrolíferos;</td>
<td></td>
</tr>
<tr>
<td>▪ Consciencializar a população da possibilidade de aumento de custos inerente a falhas ou interrupções de abastecimento;</td>
<td></td>
</tr>
<tr>
<td>▪ Coordenação com entidades portuárias para recepção de matérias-primas na definição de cenários climáticos críticos e medidas de adaptação passíveis de implementação;</td>
<td></td>
</tr>
<tr>
<td>▪ Coordenação com Entidades Competentes, no que respeita a definição de cenários climáticos críticos e articulação e integração de acções e medidas de adaptação de planeamento territorial a implementar, de acordo com as vulnerabilidades identificadas no campo anterior;</td>
<td></td>
</tr>
<tr>
<td>▪ Melhorias no Planeamento e Gestão de stock de produtos petrolíferos, prevendo falhas ou interrupções do serviço prestado e promovendo a existência de planos de contingência;</td>
<td></td>
</tr>
<tr>
<td>▪ Formação de colaboradores e parceiros da Galp Energia para a ocorrência de situações de operação anormal e de actuação extraordinárias de emergência;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variável climática(s)</td>
<td>Verificação dos critérios estruturais da zona portuária do terminal.</td>
</tr>
<tr>
<td>Precipitação e tempestade</td>
<td>Verificação de janelas de operação de carga e descarga dos navios, para as variáveis climáticas críticas identificadas, sob a forma de valores de referência que possam condicionar as operações efectuadas – condições marítimas (altura, período e direcção de ondas) ou outras que se considerem relevantes.</td>
</tr>
<tr>
<td>Lacunas de conhecimento/fronteras de responsabilidade</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Lacunas de conhecimento</td>
<td></td>
</tr>
<tr>
<td>A presente ficha de risco climático carece de dados e modelos climáticos à escala regional, especialmente a curto prazo (2020), para o qual se consideraram dados climáticos disponíveis à escala europeia. Por outro lado, afigura-se como essencial a realização de estudos complementares para corroborar a significância dos impactes de erosão costeira nas fundações estruturais do Terminal de Granéis Líquidos de Sines, especialmente a longo prazo (2050). Face ao aumento de dados e cenários climáticos disponíveis, a presente ficha está sujeita a alterações.</td>
<td></td>
</tr>
<tr>
<td>Fronteiras de responsabilidade</td>
<td></td>
</tr>
<tr>
<td>Entidades competentes de ordenamento do território, recursos hídricos e transporte rodoviário; Administração do Port de Sines</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsável do projeto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administração do Port de Sines</td>
</tr>
</tbody>
</table>
Terminal Petroleiro de Leixões

Dados do operador:

Petrogal, S.A.

TPL – Terminal Petroleiro de Leixões

Apartado 3015

4451-718 Leça da Palmeira

Telefone: 22 9982100

Fax: 22 9982190

Sede social: Rua Tomás da Fonseca. Torre C – 1600-209 Lisboa

Telefone: 21 7242500

Fax: 21 7240573

Este Terminal dispõe dos seguintes postos de atração:

Posto A - para navios até 113.000 tdw e 13,50 metros de calado máximo.

Posto B - para navios até 27.000 tdw e 8,70 metros de calado máximo.

Posto C - para navios até 5.000 tdw e 5,90 metros de calado máximo.

Envolvente e interfaces críticas:

Unidades industriais:

- Área portuária de Leixões;
- Refinaria de Matosinhos a aproximadamente 2 km;
- Instalações de Armazenagem de Combustíveis da Repsol e B.P. em Matosinhos;
- Parque de Armazenagem de Combustíveis do Real, da Petrogal, em Matosinhos;
- Parque de Armazenagem e enchimento de garrafas de GPL de Perafita, a cerca de 2,5 km.

Núcleos urbanos:

- Leça da Palmeira (1 km) a Norte;
- Perafita (4 km) a Norte;
- Amorosa (2 km) a Norte;
Boa Nova (a cerca de 2 km) a Norte;
Guilhões (3 km) a Norte;
Leça do Bailio (6 km) a Norte;
Pedras Rubras (7 km) a Norte;
Matosinhos e Leixões (contíguas) a Este;
Boucas de Baixo (2 km) a Este;
Cruz de Pau (2 km) a Este;
Carcavelos (2 km) a Este;
Azenha de Cima (2 km) a Este;
Real (2 km) a Este;
Vila Nova de Aldoar (3 km) a Este;
Sendim (3 km) a Este;
Sra. da Hora (4 km) a Este;
S. Mamede de Infesta (7 km) a Este;
Castelo do Queijo (1 km) a Sul;
Nevogilde (2 km) a Sul;
Ramalde (3 km) a Sul;
Foz do Douro (3 km) a Sul;
Lordelo (4 km) a Sul;
Porto – centro (8 km) a Sul;
Vila Nova de Gaia (7 km) a Sul.

Operações efectuadas:

No Terminal Petroleiro de Leixões são efectuadas transferências para a Cepsa e para o Parque do Real (Galp Energia) e Instalações da Repsol/BP em Matosinhos, cabendo ao Terminal a gestão das operações por forma a impedir a simultaneidade com as operações dos Navios ou com a preparação de linhas e, servir de elo de ligação entre a Refinaria e as companhias durante todo o processo de transferência.

Os produtos transferidos são Gasóleo e Gasolinas. A Cepsa é servida por duas linhas por terra uma para gasóleo e a outra para gasolinas, sendo o Parque de Real (Galp Energia) abastecido com gasóleo.

Os caudais práticos de transferência são:
- **BP** – 400 Mtons/h gasolinas / 500 gasóleo Mtons/h
- **Repsol** – 400 Mtons/h gasolinas / 550 gasóleo Mtons/h
- **Cepsa** – 400 Mtons/h gasolinas / 700 gasóleo Mtons/h

No Terminal de Leixões são efectuadas operações de carga e descarga de petróleos e seus derivados, através dos Postos A, B e C.

Substâncias perigosas transaccionadas: Aromáticos pesados; Benzeno; butano; C 9; Fuelóleos; Gasóleo; Gasolinas (de mercado e componentes); Hexano; Jet A1; Nafta química; Naftas; Óleos; Orto-xileno; Para-xileno; Petróleo; Petróleo Bruto; Propano; Tolueno; White Spirit; Xileno; LPG.

Cartografia relevante de acordo com área envolvente da unidade industrial, para a implementação e monitorização de medidas de adaptação de aplicação territorial:

- Plano Regional de Ordenamento do Território (PROT) do Norte;
- Plano de Bacia Hidrográfica (PBH) do Leça;
- Plano Regional de Ordenamento Florestal (PROF) da Área Metropolitana do Porto e Entre Douro e Vouga;
- Plano Director Municipal (PDM) de Matosinhos.
<table>
<thead>
<tr>
<th>Limites de operação</th>
<th>Limites de operação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face a fenómenos climáticos e meteorológicos extremos é essencial a averiguação e identificação de limites operacionais para avaliação de cenários de risco.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variáveis climáticas críticas</th>
<th>Variáveis climáticas críticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempestade, Precipitação e Vento</td>
<td></td>
</tr>
</tbody>
</table>

Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável(eis) climática(s)</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infraestrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>A longo prazo, as vulnerabilidades podem verificar-se a nível das fundações, devido à intensificação do processo erosivo na zona costeira, associado a alterações do clima de ondas.</td>
<td>Molhe e aterros APDL</td>
<td>2050</td>
</tr>
<tr>
<td>Precipitação, tempestade e vento</td>
<td>A intensificação e aumento da frequência de fenómenos climáticos extremos, especialmente a curto prazo, situações de temporal podem afectar a estabilidade e as condições de segurança nas operações de carga e descarga de navios (dependente do tipo de navio e tipo de cais). A vulnerabilidade é fortemente influenciada pela agitação marítima (variáveis: altura da ondulação; período e direcção das ondas).</td>
<td>A ocorrência de situações de operação anormal e de actuação extraordinárias de emergência pode vir a exigir a revisão de procedimentos e normas, com a consequente capacitação adicional de recursos humanos.</td>
<td>2020</td>
</tr>
</tbody>
</table>

60 Inclui mudanças na altura das ondas, susceptíveis de atingir as proteções de cheia.

61 Inclui a ocorrência de cheias, secas, sobrelevaração do mar.

62 Grau com que as infraestruturas são susceptíveis de suportar ou não os efeitos adversos das alterações climáticas do ponto de vista da segurança e afetação da produção, considerando o seu nível de exposição às alterações climáticas, a sua sensibilidade e a sua exposição de adaptação.

63 Pode ser necessário a análise de uma conjugação de variáveis climáticas de risco.

64 Horizonte temporal a partir do qual as vulnerabilidades identificadas poderão ser relevantes do ponto de vista da segurança das infraestruturas e garantia da produção.

65 Refere-se a aumento da frequência e intensificação de eventos climáticos extremos.
Plano de ações e medidas de adaptação

MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL

<table>
<thead>
<tr>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curto prazo</td>
</tr>
</tbody>
</table>

- Melhoria de previsões de clima – em colaboração com Entidades Competentes – para melhor prever a ocorrência de eventos climáticos extremos;
- Consciencializar a população para a utilização mais eficiente de produtos petrolíferos;
- Consciencializar a população da possibilidade de aumento de custos inerente a falhas ou interrupções de abastecimento;
- Coordenação com entidades portuárias para recepção de matérias-primas na definição de cenários climáticos críticos e medidas de adaptação passíveis de implementação;
- Coordenação com Entidades Competentes, no que respeita a definição de cenários climáticos críticos e articulação e integração de ações e medidas de adaptação de planeamento territorial a implementar, de acordo com as vulnerabilidades identificadas no campo anterior;
- Melhorias no Planeamento e Gestão de stock de produtos petrolíferos, prevendo falhas ou interrupções do serviço prestado e promovendo a existência de planos de contingência;
- Formação de colaboradores e parceiros da Galp Energia para a ocorrência de situações de operação anormal e de actuação extraordinárias de emergência;

MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS

<table>
<thead>
<tr>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curto prazo</td>
</tr>
</tbody>
</table>

- **Varível(ões) climática(s): Precipitação e tempestade**
 - Verificação dos critérios estruturais da zona portuária do terminal.

- **Varível(ões) climática(s): Precipitação, tempestade e evento**
 - Verificação de janelas de operação de carga e descarga dos navios, para as variáveis climáticas críticas identificadas, sob a forma de valores de referência que possam condicionar as operações efectuadas – condições marítimas (altura, período e direcção de ondas) ou outras que se considerem relevantes.

Lacunas de conhecimento

A presente ficha de risco climático carece de dados e modelos climáticos à escala regional, especialmente a curto prazo (2020), para o qual se consideraram dados climáticos disponíveis à escala europeia. Por outro lado, afigura-se como essencial a realização de estudos complementares para corroborar a significância dos impactes de erosão costeira nas fundações estruturais do Terminal Petroleiro de Leixões, especialmente a longo prazo (2050).

Face ao aumento de dados e cenários climáticos disponíveis, a presente ficha está sujeita a alterações.

Fronteiras de responsabilidade

Entidades Competentes de ordenamento do território, recursos hídricos e transporte rodoviário e ferroviário;
Administração dos Portos do Douro e de Leixões

Responsável do projeto
Localização
a EDP Distribuição tem cerca de 500 SE e PC, dispersas pelo território nacional continental

Envolvente e interfaces críticas
existe uma grande dispersão e pode haver impactes significativos – Campos electromagnéticos, ruído, etc.

Descrição da actividade
as SE e PC são instalações que elevam ou transformam o nível de tensão e asseguram a regulação e repartição das cargas na rede

Variáveis climáticas críticas
- Aumento temperatura
- Inundações
- Aumento do nível do mar
- Descargas atmosféricas

Limites de operação: São os limites de operação de transformadores de potência (TP) e da própria rede de AT e MT, e outros

Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável(veis) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>É muito relevante para TP e SPCC</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Aumento de Pluviosidade</td>
<td>Só se originar inundações ou infiltrações</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Aumento nível médio do mar</td>
<td>Só se originar inundações ou infiltrações</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Descargas atmosféricas</td>
<td>Pode ocasionar avarias e actuar protecções</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
</tbody>
</table>

Medidas de adaptação de carácter transversal
As instalações principais estão bem protegidas, havendo maior preocupação com os Sistemas de Protecção, Comando e Controlo - SPCC

Benchmark com congéneres, formação de projectistas, etc.

Plano de acções e medidas de adaptação

<table>
<thead>
<tr>
<th>Medidas de adaptação de carácter transversal</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>As instalações principais estão bem protegidas, havendo maior preocupação com os Sistemas de Protecção, Comando e Controlo - SPCC</td>
<td>Imediato</td>
</tr>
<tr>
<td>Benchmark com congéneres, formação de projectistas, etc.</td>
<td>Em curso</td>
</tr>
</tbody>
</table>

173
Medidas de adaptação específicas	**Horizonte temporal de implementação**
A EDP Distribuição tem Unidades Móveis (SE e GGE) para situações de socorro de instalações que saiam de serviço | Imediato
No caso dos SPCC, é necessário equipar as salas de comando de SE com aparelhos de Ar Condicionado | Imediato

Outras
Fronteiras de responsabilidade: as que derivam de ser Operador da Rede, e em alguns casos da saída de serviço de importantes Linhas de Transporte da REN
Localização
A EDP Distribuição tem cerca de 82.500 km de Linhas Aéreas e Subterrâneas de AT e MT, dispersas pelo território nacional continental.

Envolvente e Interfaces críticas
Existe uma grande dispersão e pode haver impactes significativos.

Descrição da actividade
As linhas asseguram a distribuição de energia eléctrica entre SE, PC, e também os Postos de Transformação.

Cartografia relevante
Pode ser relevante, porque uma linha construída em montanha pode ser muito diferente de uma zona costeira, etc.

Variáveis climáticas críticas
- Aumento temperatura
- Inundações
- Aumento do nível do mar
- Descargas atmosféricas
- Ventos fortes

Limites de operação e variáveis climáticas críticas
Limites de operação: associados por efeitos de temperatura à flecha máxima dos condutores, com aproximação a árvores ou edifícios, que pode originar incêndios; ventos fortes com quedas de árvores e outras, etc.

Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável(eis) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>Influência na flecha de condutores p.e.</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Aumento de Pluviosidade - Inundações</td>
<td>Prejudicam exploração de linhas subterrâneas</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Aumento nível médio do mar - Inundações</td>
<td>Prejudicam exploração de linhas subterrâneas</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Descargas atmosféricas</td>
<td>Pode dar disparos de protecções e saídas de serviço</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Ventos fortes</td>
<td>Pode originar quedas de postes e outros incidentes</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
</tbody>
</table>

Plano de acções e medidas de adaptação

<table>
<thead>
<tr>
<th>Medidas de adaptação de carácter transversal</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na construção, são aplicadas soluções mais robustas que as exigidas nos Regulamentos de Segurança</td>
<td>Em curso</td>
</tr>
<tr>
<td>Uso de tecnologias e materiais com IP de classe mais elevada</td>
<td>Em curso</td>
</tr>
<tr>
<td>Medidas de adaptação específicas</td>
<td>Horizonte temporal de implementação</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>A EDP Distribuição tem em curso vários projetos-piloto para linhas aéreas</td>
<td>Em curso</td>
</tr>
<tr>
<td>Idem para subterrâneas</td>
<td>Em curso</td>
</tr>
</tbody>
</table>

Outras

Fronteiras de responsabilidade: as que derivam de ser Operador da Rede
Descrição da Instalação

Localização: EN 118, km 142,1 entre Pego (Abrantes) e Concavada

Envolvente e interfaces críticas: Os terrenos da Central são marginados a Norte pelo rio Tejo e a Este e Oeste por alguns dos seus afluentes. A Sul passa a EN 118 (a cerca de 1 km).

As povoações mais próximas são: Concavada (3 km a Sudeste), Mouriscas (4 km a Nordeste) Alvega (5 km a Este) e Pego (3 km a Oeste). A cidade de Abrantes localiza-se a cerca de 7,5 km, na direcção Oeste.

O acesso rodoviário faz-se pela EN 118. Existe um ramal ferroviário, de utilização exclusiva, através do qual se faz o abastecimento do combustível carvão.

Descrição da actividade: Central termoeléctrica que utiliza carvão como combustível principal.

Cartografia relevante

Do ponto de vista morfológico, a zona do Pego situa-se nas latitudes médias do país e caracteriza-se pela sua localização num planalto orograficamente pouco acidentado, limitado a Norte pelo vale do Tejo.

Na margem direita do Tejo, quadrante Nordeste, é possível encontrar elevações próximas com altitudes que atingem os 280 m. Contudo para distâncias superiores a 10 km, para Nordeste, as elevações podem atingir altitudes da ordem dos 600 metros. Para Sul desenvolve-se um extenso planalto, com cotas variando entre os 100 e os 200 m, entrecortadas por pequenas elevações que não ultrapassam os 300 metros. O rio Tejo, no troço adjacente à zona em causa, corre à cota de 20 m, aproximadamente.

Limites de operação e variáveis climáticas críticas

Variáveis climáticas críticas: Temperatura ambiente e pluviosidade.

Limites de operação: Consideram os valores mais elevados destes parâmetros.

Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variáveis climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infraestrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura do ar</td>
<td>A temperatura elevada provoca secura do terreno e da vegetação, criando condições propícias para a ocorrência de incêndios.</td>
<td>Os incêndios poderão provocar a indisponibilidade das linhas de alta tensão, o que poderá obrigar à interrupção do funcionamento da Central. Poderão também provocar a interrupção da via férrea, impossibilitando o abastecimento de carvão. Essa interrupção, se prolongada, poderá obrigar à interrupção do funcionamento da Central.</td>
<td>Longo prazo.</td>
</tr>
<tr>
<td>Plano de acções e medidas de adaptação</td>
<td>Medidas de adaptação de carácter transversal</td>
<td>Horizonte temporal de implementação</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medidas de adaptação específicas</td>
<td>Horizonte temporal de implementação</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meios adicionais de combate a incêndios, que ocorram dentro do recinto da Central e áreas envolventes.</td>
<td>Implementado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disponibilidade de meios para transporte rodoviário de carvão.</td>
<td>Disponíveis, se necessário</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptação das características da instalação de tratamento de água.</td>
<td>2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lacunas de conhecimento / fronteiras de responsabilidade

- **Lacunas de conhecimento**: Cenário efetivo a considerar.
- **Fronteiras de responsabilidade**: Interfaces críticas com:
 - Autoridade portuária de Sines
 - CP
 - REFER
 - REN

Responsável do projeto
Descrição da Instalação

Localização: Na margem direita do Rio Douro, no Concelho de Gondomar, Freguesia de Medas a cerca de 18 Km para nascente da cidade do Porto.

Envolvente e interfaces críticas: Os terrenos da Central são delimitados a Sul e Poente pelo rio Douro, a Norte pela EN 108 e a povoação de Broalhos e o limite nascente é definido pelo parque de cinzas da central da Tapada do Outeiro a carvão e pela A41.

Descrição da actividade: Central termoeléctrica que utiliza gás natural como combustível principal, mas que tem a possibilidade de funcionamento a gasóleo com combustível alternativo.

Cartografia relevante

A Tapada do Outeiro desenvolve-se numa encosta da margem do rio Douro, em declive acidentado, com cotas que variam entre os 13m do nível médio das águas na albufeira de Crestuma-Lever até à cota mais elevada de 90m a Norte do parque de cinzas da central a carvão já desactivada. Para Norte da EN 108 continua a verificar-se um desenvolvimento da paisagem em altitude, registando-se um aumento progressivo de cotas até se atingirem os 300m na Serra das Flores a uma distância de cerca de 3 Km para NW.

Limites de operação e variáveis climáticas críticas

Variáveis climáticas críticas: Temperatura ambiente e pluviometria.

Limites de operação:

<table>
<thead>
<tr>
<th>Variável(eis) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura ambiente</td>
<td>Elevada – poderá provocar:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Incêndios que caso sejam junto à central poderão impedir o seu normal funcionamento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poderão ainda provocar a interrupção de fornecimento de gás natural à central e provocar a deterioração da qualidade da água do rio com a possível colmatação de filtros de entrada da água e dificuldade de produção de água desmineralizada.</td>
<td></td>
</tr>
<tr>
<td>Pluviosidade</td>
<td>Elevada – poderá provocar cheias, inundações e derrocadas que poderão danificar o pipeline de fornecimento de gás. As cheias também como efeito negativo o arrastamento de lixo das margens do rio provocando uma deterioração da qualidade da água do rio Douro com os efeitos já mencionados anteriormente. Baixa – Poderá levar a períodos de seca que levarão a um baixo caudal do rio Douro. Este baixo caudal do rio poderá levar a uma aumento da temperatura da água do rio para além dos limites permitidos e obrigando à paragem da central.</td>
<td></td>
</tr>
<tr>
<td>Plano de acções e medidas</td>
<td>Medidas de adaptação de caráter transversal</td>
<td>Horizonte temporal de implementação</td>
</tr>
<tr>
<td>- Temperatura da água do rio elevada – a temperatura elevada da água do rio poderá inviabilizar a produção de electricidade por falta de condições da água de arrefecimento. Baixa – uma vaga de frio poderá provocar o congelamento das linhas de instrumentos levando a uma paragem da central.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medidas de adaptação específicas</td>
<td>Horizonte temporal de implementação</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Meios adicionais de combate a incêndios, dentro do recinto da Central e áreas envolventes, bem como adequada preparação dos colaboradores e das forças de intervenção locais</td>
<td>Implementados os meios, continuada preparação dos recursos internos e bom interface com os meios de intervenção locais</td>
<td></td>
</tr>
<tr>
<td>Reforço da instalação de desmineralização de água</td>
<td>Implementado</td>
<td></td>
</tr>
</tbody>
</table>

Lacunas de conhecimento / fronteiras de responsabilidade

- GALP, Autoridade Portuária de Sines, EDP e REN

Responsável do projeto
Descrição da Instalação

Localização: a GENERG detém 2 centrais solares FV, uma de 12 MW em Ferreira do Alentejo e outra de 6 MW em Almodôvar.

Envolvente e interfaces críticas: podem ocorrer impactes significativos decorrentes de condições climatéricas adversas.

Descrição da actividade: as centrais solares são centros electroprodutores de energia renovável que convertem a energia do espectro solar em energia eléctrica.

Cartografia relevante
-

Limites de operação e variáveis climáticas críticas

- **Variáveis climáticas críticas:**
 - Aumento temperatura
 - Inundações
 - Granizo
 - Ventos fortes
 - Descargas atmosféricas

- **Limites de operação:** São os limites de operação de inversores, transformadores de potência (TP) e da própria rede de MT e, outros.

Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável(eis) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>É muito relevante para inversores, TP, e SPCC</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Aumento de Pluviosidade</td>
<td>Só se originar inundações ou infiltrações</td>
<td>Pode levar à saída de serviço, embora pouco provável</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Ventos fortes</td>
<td>Em casos extremos pode ocasionar a quebra dos painéis FV</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Granizo</td>
<td>Em casos extremos pode ocasionar a quebra do vidro dos painéis FV</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Descargas atmosféricas</td>
<td>Pode ocasionar avarias e actuar protecções</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
</tbody>
</table>

Plano de ações e medidas de adaptação de carácter transversal

<table>
<thead>
<tr>
<th>Medidas de adaptação de caráter transversal</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>adaptação</td>
<td>Centrais Solares</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>A totalidade da área das centrais solares está protegida por sistemas de proteção contra descargas atmosféricas.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Outras</td>
<td>Fronteiras de responsabilidade: as que derivam de fornecer energia ao operador da rede eléctrica.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medidas de adaptação específicas</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Generg tem implementado nas centrais solares um Plano de Emergência para fazer face às variáveis climáticas críticas atrás referidas.</td>
<td>Imediato</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Descrição da Instalação

Localização: Zonas montanhosas do território nacional
Envolvente e interfaces críticas: Habitualmente localizados em zonas ambientalmente sensíveis
Descrição da actividade: Os aerogeradores são centros electroprodutores que transformam a energia cinética, gerada pelo vento, em energia eléctrica. As linhas fazem o transporte da energia produzida.

Cartografia relevante

Pode ser relevante, porque uma linha construída em montanha pode ser muito diferente de uma zona costeira, etc.

Limites de operação e variáveis climáticas críticas

Variáveis climáticas críticas:
- Temperaturas elevadas
- Baixas temperaturas com formação de gelo e/ou neve
- Descargas atmosféricas
- Ventos fortes

Limites de operação: Linhas eléctricas: associados por efeitos de temperatura à flecha máxima dos condutores, com aproximação a árvores ou edifícios, que pode originar incêndios; A temperatura elevada também pode condicionar a capacidade de transporte da linha eléctrica, limitando a sua operação e aumentando as perdas elétricas.

Descargas atmosféricas: As descargas atmosféricas podem condicionar o bom funcionamento e exploração quer dos aerogeradores, quer das linhas eléctricas.

O funcionamento dos aerogeradores pode ser limitado por ventos de velocidade superior a 25 m/s, devido às protecções de segurança dos mesmos, limitando a produção de energia. Ventos extremos podem condicionar o bem funcionamento das linhas eléctricas, caso a faixa de protecção não tenha uma manutenção correcta.

Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável (eis) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura elevada</td>
<td>Influência na flecha de condutores.</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Baixas temperaturas com formação de gelo e/ou neve</td>
<td>Nas linhas elétricas podem condicionar a boa exploração de linhas elétricas, devido a curto-circuitos provocados pela acumulação de gelo e/ou neve nos isoladores. Nos aerogeradores podem condicionar a boa exploração dos mesmos, devido à acumulação de gelo/neve nas pás.</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Infra-estruturas lineares eléctricas: Aerogeradores e Linhas de Transporte</td>
<td>Ficha de Risco Climático n.º 01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descargas atmosféricas</td>
<td>Pode levar à saída de serviço</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No caso das linhas eléctricas pode originar disparos de protecções e saídas de serviço. No caso dos aerogeradores pode provocar danos nas pás.</td>
<td>Longo prazo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventos fortes</td>
<td>Pode levar à saída de serviço</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nas linhas eléctricas pode originar quedas de postes e aproximação dos condutores a árvores, edifícios, etc. originado curto-circuitos. Nos aerogeradores pode originar a sua paragem por motivos de segurança.</td>
<td>Longo prazo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plano de acções e medidas de adaptação

<table>
<thead>
<tr>
<th>Medidas de adaptação de carácter transversal</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descargas atmosféricas vs. Aerogeradores: Sistema de monitorização eficaz e sistema de captação correctamente dimensionado de escoamento das descargas atmosféricas à terra.</td>
<td>Imediato</td>
</tr>
<tr>
<td>Temperatura/Descargas atmosféricas/Vento vs. Linhas: Na construção, aplicar soluções mais robustas que as exigidas nos Regulamentos de Segurança respectivos.</td>
<td>Em novos projetos</td>
</tr>
<tr>
<td>Uso de tecnologias e materiais com IP de classe mais elevada</td>
<td>Em novos projetos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medidas de adaptação específicas</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existência de equipas no terreno, formadas por operadores e</td>
<td>Imediato</td>
</tr>
<tr>
<td>Outras</td>
<td>Fronteiras de responsabilidade:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

supervisores, com capacidade de intervenção em poucas horas.

Correcta manutenção periódica da faixa de proteção das linhas eléctricas.

Existência de peças de reserva para as linhas eléctricas. | Imediato |
Descrição da instalação

Localização: As pequenas centrais hidroeléctricas de São Pedro do Sul (rio Vouga), Paredes (rio Varosa), Águas Frias (rIBEira de Águas Frias) e Carregal (rio Teixeira) localizam-se no Município de São Pedro do Sul, as PCH de Ermida (rio Pombeiro) e Pereira (rIBEira de Carvalhosa) em Castro D’Aire, a PCH de Vila Viçosa (rio Ardena) em Cinfães, de Teixo (Ribeira do Souto) em Tondela, e de Ruães (Rio Cávado) em Braga e a de Canedo (Rio Beça) em Boticas.

Envolvente e interfaces críticas: As centrais referidas localizam-se todas em zonas mais ou menos pouco densamente povoadas e sem interfaces críticos.

Descrição da actividade: Estas centrais totalizam sensivelmente 58 MW de potência em produção hidroeléctrica.

Cartografia relevante

de acordo com área envolvente da infra-estrutura, para a implementação e monitorização de medidas de adaptação de aplicação territorial

A cartografia relevante para estes casos é a que identifica as zonas RAN, REN e outras áreas protegidas como sejam Parques Naturais, Rede Natura 2000, etc.

Limites de operação

Limites de operação: As centrais em questão apenas param a sua produção por falta de água excepto Ruães, que pela sua natureza de baixa queda (3 metros) apresenta uma janela de cotas fora da qual não pode produzir (se demasiado baixa a água a central para, se demasiado alta, galgando o paredão faz subir a água a jusante e também obriga a central a parar)
Variáveis climáticas críticas

- Precipitação
- Temperatura/Precipitação/Incêndios

Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável(eis) climática(s)<sup>67</sup></th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infraestrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise<sup>68</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixa Precipitação</td>
<td>Redução da produção hidroeléctrica</td>
<td>Paragem da infraestrutura</td>
<td>20 anos</td>
</tr>
<tr>
<td>Muito Alta precipitação</td>
<td>(Ruães apenas) – redução da produção hidroeléctrica</td>
<td>Paragem da infraestrutura</td>
<td>20 anos</td>
</tr>
<tr>
<td>Baixa precipitação / Alta temperatura / Incêncios</td>
<td>Arrastamento de material (cinza, terra) pelos rios</td>
<td>Sedimentação na albufeira, alteração PH da água, agressão às turbinas</td>
<td>20 anos</td>
</tr>
</tbody>
</table>

⁶⁶ Grau com que a infraestrutura é susceptível de suportar ou não os efeitos adversos das alterações climáticas do ponto de vista da segurança e afetação do serviço prestado, considerando o seu nível de exposição às alterações climáticas, a sua sensibilidade e a sua exposição de adaptação.

⁶⁷ Pode ser necessário a análise de uma conjugação de variáveis climáticas de risco.

⁶⁸ Horizonte temporal a partir do qual as vulnerabilidades identificadas poderão ser relevantes do ponto de vista da segurança da infraestrutura e garantia do serviço prestado.
Plano de ações e medidas de adaptação

<table>
<thead>
<tr>
<th>MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dada a dimensão das centrais, não existem medidas de adaptação custo/benefício eficientes</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variáveis</td>
<td></td>
</tr>
<tr>
<td>Precipitação</td>
<td>Dada a dimensão das centrais, não existem medidas de adaptação custo/benefício eficientes</td>
</tr>
<tr>
<td>Incêndios</td>
<td>Dada a dimensão das centrais, não existem medidas de adaptação custo/benefício eficientes</td>
</tr>
</tbody>
</table>

Lacunas de conhecimento/fronteiras de responsabilidade

<table>
<thead>
<tr>
<th>Lacunas de conhecimento</th>
<th>Fronteiras de responsabilidade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Responsável do projeto

| | |
Localização:
O Centro de Produção do Cávado-Lima agrupa as instalações de produção hidroelétrica localizadas nas bacias hidrográficas dos rios Cávado, Lima e Ave.

Envolvente e interfaces críticas:
As principais atividades económicas desenvolvidas nas três bacias são a produção de eletricidade, captações de água para consumo humano e rega, utilização do leito do rio e das margens para atividades náuticas desportivas e pesca.

Nas margens do Rio Lima localizam-se as povoações de Ponte da Barca, Arcos de Valdevez e Ponte de Lima. A presença da barragem do Alto Lindoso veio permitir a minimização dos impactes aquando da ocorrência de grandes afluências pluviométricas.

Descrição da atividade:

Cartografia relevante

Bacia do Lima
O rio Lima percorre cerca de 110 km em território português e neste troço recebe diversos afluentes dos quais se destacam o rio Laboreiro, rio Vez e rio Labruja na margem direita.

Bacia do Cávado
O rio Cávado nasce na serra do Larouco e percorre cerca de 100 km até desaguar em Esposende. Dos seus afluentes destacam-se na margem direita o rio Homem e na margem esquerda o rio Rabagão.

Os principais aproveitamentos acima referidos localizam-se:
- Bacia do Rio Lima:
 - Rio Lima – Alto Lindoso, Lindoso e Touvedo
- Bacia do Rio Cávado:
 - Rio Rabagão – Alto Rabagão e Frades
 - Rio Cávado – Vila Nova, Salamonde, Vilarinho das Furnas, Caniçada e Penide
- Rio Homem – Vilarinho das Furnas

Variáveis climáticas críticas
1. Precipitação
Limites operacionais de projeto

- Nível de armazenamento de água

Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável (eis) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Precipitação elevada</td>
<td>- Risco estratégico e operacional: i. Afluências elevadas face à incapacidade de retenção pelos aproveitamentos a montante</td>
<td>2. Incapacidade de retenção de água pelos aproveitamentos hidroelétricos</td>
<td></td>
</tr>
<tr>
<td>1.2 Défice de precipitação (seca)</td>
<td>- Risco estratégico e operacional: i. Redução do potencial para produção hídrica (redução do IPH)</td>
<td>i.1. Redução da produção hidroelétrica i.2 Paragem das centrais</td>
<td>2020 e 2030</td>
</tr>
</tbody>
</table>

Plano de ações e medidas de adaptação

Medidas de adaptação de caráter transversal

Com reflexo ao nível dos impactes causados pela variável 1.1:

- a) Instalação de 3 descarregadores complementares de cheia, em Salamonde, Paradela e Caniçada, decorrentes de obrigações do plano de emergência interno
- b) Instalação de grupos reversíveis em Salamonde II e Venda Nova III, aumentando a capacidade de regulação de cheias

Horizonte temporal de implementação:

- a) Calendário de entrada em serviço industrial:
 - Salamonde – Agosto 2013
 - Paradela – Novembro 2011
 - Caniçada - 2014
- b) Calendário de entrada em serviço industrial:
<table>
<thead>
<tr>
<th>Medidas de adaptação específicas</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Duplicados os circuitos de alimentação aos descarregadores de superfície e instalados grupos diesel para uso exclusivo dos mesmos, nos casos em que se justificar.</td>
<td>1.1 Implementada</td>
</tr>
</tbody>
</table>

Lacunas de conhecimento / fronteiras de responsabilidade

- **Lacunas de conhecimento:**
- **Fronteiras de responsabilidade:** empresas de Produção do Grupo EDP

Responsável do projeto

EDP Produção
Localização:
O Centro de Produção do Douro agrupa as instalações de produção hidroelétrica localizadas na parte portuguesa da bacia hidrográfica do rio Douro.

Envolvente e interfaces críticas:
As principais atividades económicas desenvolvidas no Douro são a produção de eletricidade, rega, navegação essencialmente turística e a pesca. A foz do Douro localiza-se junto ao Porto e a Vila Nova de Gaia. Assim, quando ocorrem grandes afluências de água à bacia do Douro e há necessidade de proceder às descargas das barragens, geralmente ocorre a afetação das populações ribeirinhas do Porto, Gaia e Gondomar que sofrem inundações.

Para montante, Régua e Pinhão são as restantes localidades que sofrem também danos com a subida das águas do Douro represadas nas barragens. Ao nível de infraestruturas relevantes, são também afetadas por cheias do Douro a Linha do Douro e os seus taludes, bem como a EN 222 que faz a ligação entre a Régua e o Pinhão.

Descrição da instalação:
Este Centro de Produção integra 20 aproveitamentos – Miranda, Picote, Bemposta, Pocinho, Valeira, Tabuaço, Régua, Varosa, Carrapateo, Torrão e Crestuma/Lever, Aregos, Freigil, Nunes, Torga, Rebordelo, Bouçais-Sonim, Terragido, Sordo e Ovadas.

Os aproveitamentos localizados no troço nacional do rio Douro estão equipados com edusas de navegação, criando uma via navegável de 210 km de extensão, ligando barca de Alva ao Oceano Atlântico.

Cartografia relevante:
O Rio Douro percorre 213 km do território português e, neste troço, recebe diversos afluentes, dos quais se destacam, na margem direita, o Sabor, o Tua e o Tâmega e, na margem esquerda, o Côa, o Távora e o Paiva.

Os aproveitamentos acima referidos localizam-se na bacia hidrográfica do Douro, nos seguintes cursos de água:

- Rio Douro – Miranda, Picote, Bemposta, Pocinho, Valeira, Régua, Carrapateo, Crestuma/Lever
- Rio Távora – Tabuaço
- Rio Varosa – Varosa
- Rio Tâmega – Torrão
- Rio Cabrúm – Aregos, Freigil, Ovadas
- Rio Tuela – Nunes e Torga
- Rio Rabaçal – Rebordelo e Bouçais-Sonim
- Rio Corgo – Terragido
Variáveis climáticas críticas

2. Precipitação

<table>
<thead>
<tr>
<th>Variável (eis) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
</table>
| 1.1 Precipitação elevada | - Risco estratégico e operacional:
 i. Afluências elevadas face à incapacidade de retenção pelos aproveitamentos a montante | i.1. Incapacidade de retenção de água pelo conjunto global dos aproveitamentos hidroeléctricos organizados em cascata
 i.2. Os caudais descarregados provocam redução do valor da queda útil (diferença de nível de montante e jusante) | 2020 e 2030 |
| | i.i. “Queda útil” em valor inferior ao tecnicamente permitido com garantia de bom funcionamento dos grupos geradores | ii.1. Paragem das centrais | |
| 1.2. Défice de precipitação (seca) | - Risco estratégico e operacional:
 i. redução do | i.1. Redução da produção | |
<table>
<thead>
<tr>
<th>Medidas de adaptação de caráter transversal</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Com reflexo ao nível dos impactes causados pelas duas variáveis (1.1 e 1.2.):</td>
<td>c) Calendário de entrada em serviço industrial:</td>
</tr>
<tr>
<td>a) Project e construção de novos aproveitamentos em afluentes ao rio Douro: Baixo Sabor e Foz Tua – equipados com bombagem, aumentam a capacidade de regulação de cheias e de armazenamento nos afluentes despectivos do Douro, diminuindo a pressão sobre as instalações fio-de-água.</td>
<td>. Baixo Sabor – Ano 2014</td>
</tr>
<tr>
<td></td>
<td>. Foz Tua – Ano 2015</td>
</tr>
<tr>
<td>Medidas de adaptação específicas</td>
<td>2.1 Implementada</td>
</tr>
<tr>
<td>1.2 Duplicados os circuitos de alimentação aos descarregadores de superfície e instalados grupos diesel para uso exclusivo dos mesmos.</td>
<td></td>
</tr>
</tbody>
</table>

Plano de ações e medidas de adaptação

Medidas de adaptação específicas

1.2 Duplicados os circuitos de alimentação aos descarregadores de superfície e instalados grupos diesel para uso exclusivo dos mesmos.

Responsável do projeto

EDP Produção

Lacunas de conhecimento

- **Lacunas de conhecimento:**

- **Fronteiras de responsabilidade:** empresas de Produção do Grupo EDP

Responsável do projeto

EDP Produção
Descrição da Instalação

Localização:
A Central de Ciclo Combinado (CCC) do Ribatejo situa-se na margem direita do rio Tejo, a cerca de 30 km a NE de Lisboa, no local designado por Vala do Carregado, freguesia do Carregado, concelho de Alenquer, distrito de Lisboa.

Envolvente e Interfaces críticas:
Em termos de envolvente, a CCC do Ribatejo encontra-se limitada a NE pela estrada municipal M1237, a NW pela Central Termoeléctrica do Carregado, a SE pela Linha do Norte da REFER e a SW por terrenos agrícolas que na sua extremitade confinam com a Vala do Carregado.

Pela necessidade de ligação ao rio Tejo, o sítio da Central prolonga-se ainda pelos acessos privativos da EDP onde serão colocadas as tubagens de captação de água e rejeição de efluentes.

As áreas afectas à Central não se localizam, nem afectam áreas sensíveis (áreas protegidas), sítios da Rede Natura 2000, zonas de protecção de monumentos nacionais ou de imóveis de interesse público.

Descrição da actividade:
A CCC do Ribatejo utiliza uma tecnologia de ciclo combinado a gás natural baseada em turbinas de gás e turbinas a vapor. É composta por 3 grupos geradores de ciclo combinado que perfazem uma potência nominal global de 1176 MW.

Cartografia relevante
A CCC do Ribatejo está situada em terrenos industriais, numa plataforma a uma cota altimétrica de 4,5 metros NGP.

Variáveis climáticas críticas

<table>
<thead>
<tr>
<th>Variável(es) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Temperatura</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limites operacionais de projeto

1. Avanço do nível da água para o interior do perímetro da instalação
2. Valor da temperatura ambiente máximo fixado para a tecnologia, com garantia de operacionalidade

Matriz de vulnerabilidades relevantes
<table>
<thead>
<tr>
<th>Central Termoelétrica do Ribatejo</th>
<th>Ficha de Risco Climático nº 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Página 196 de 2111</td>
<td></td>
</tr>
</tbody>
</table>

Plano de acções e medidas de adaptação

<table>
<thead>
<tr>
<th>2. Temperatura elevada</th>
<th>2. Risco estratégico e operacional – perda de vantagens competitivas</th>
<th>2. Redução da eficiência da central</th>
</tr>
</thead>
</table>

Medidas de adaptação de caráter transversal

2. Realização de ações de benchmarking e estudos, conducentes à identificação de ações a implementar e/ou otimizar para manter/aumentar os níveis de eficiência por tecnologia

2. Já iniciada

Medidas de adaptação específicas

<table>
<thead>
<tr>
<th>1. Construção de um muro de reforço de proteção em toda a frente da Central, desde a tomada de água até à Portaria da Central, face à inexistência de uma vala de pluviais.</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Implementada</td>
</tr>
</tbody>
</table>

Lacunas de conhecimento / fronteiras de responsabilidade

Lacunas de conhecimento:

-

Fronteiras de responsabilidade: empresas de Produção do Grupo EDP

Responsável do projeto

EDP Produção
Descrição da Instalação

Localização:
A Central Termoelétrica (CT) de Sines situa-se em pleno litoral alentejano, a cerca de 9 km a Sudeste da cidade de Sines, na freguesia e concelho de Sines, distrito de Setúbal.

Envolvente e interfaces críticas:
Localiza-se numa zona de cariz industrial junto à costa atlântica próximo da praia de S. Torpes e do porto de Sines.
As unidades industriais próximas localizam-se a Norte, sendo de destacar as petroquímicas Repsol, Artland e Carbogal, a refinaria da Galp e a metalomecânica Metalsines. A Noroeste encontra-se a administração do porto de Sines.

É de destacar, pela proximidade e dimensão, apenas um núcleo urbano de cariz rural: o Bairro Novo da Provença Velha, situado a cerca de 600 m a Sudeste da instalação. Actualmente existem também pequenas habitações dispersas das quais se referem a Courela do Meio e Assumada ambas localizadas a Norte. Esta área envolvente, localizada a Norte da instalação, encontra-se classificada no PDM de Sines como área industrial prevista exterior aos aglomerados.

Descrição da actividade:
A CT Sines utiliza uma tecnologia convencional, com geradores de vapor de circulação natural, consumindo carvão betuminoso importado. A instalação é constituída por 4 grupos geradores, cada um dos quais formando uma unidade produtora autónoma com gerador de vapor, turbina, alternador e transformador perfazendo uma potencia nominal global de 1256 MW.

Cartografia relevante
A região de Sines insere-se, sob o ponto de vista geomorfológico, na “Planície Litoral Ocidental” numa faixa com uma largura entre 5 a 20 km. Esta planície característica de todo o litoral alentejano, é também designada por “Superfície planáltica culminante costeira” e ocorre às cotas dos 100-150 m, descendo gradualmente até ao mar.

As linhas de água correspondem em regra a cursos temporários que drenam, quer no sentido Norte – Sul, em direcção à praia de S.Torpes localizada na proximidade da CT de Sines, quer no sentido Este-oeste, em particular as que desaguam na Praia do Norte, a mais importante das quais, a Ribeira de Moinhos.

Variáveis climáticas críticas

Precipitação

69 Plano Diretor Municipal de Sines, Planta de Síntese 2ª fase – Projeto Plano (Novembro 1987) (AN1.9)
<table>
<thead>
<tr>
<th>Limites operacionais de projeto</th>
<th>Indisponibilidade de água bruta para o processo com o padrão de qualidade requerido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz de vulnerabilidades relevantes</td>
<td>Variável(ais) climáticas</td>
</tr>
<tr>
<td>Ausência de precipitação</td>
<td>Risco operacional: indisponibilidade de água na Albufeira de Morgavel que assegura fornecimento de água bruta à Central.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plano de acções e medidas de adaptação</th>
<th>Medidas de adaptação de carácter transversal</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas de adaptação específicas</td>
<td>Horizonte temporal de implementação</td>
<td></td>
</tr>
<tr>
<td>• Melhorar a informação disponível sobre a exploração da Instalação de Tratamento de Água (ITA).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Alteração de calibrações de equipamento de exploração da ITA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Implementação de rotina no computador de processo, baseado na tabela de avaliação de contaminação química, de modo a ter presente informação sobre valores acumulados das</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacunas de conhecimento / fronteiras de responsabilidade</td>
<td>Responsável do projeto</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>● Implementação de um sistema de cloragem na conduta de água industrial.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Montagem de filtros de carvão activado no circuito de água industrial.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Prospeção de água subterrânea no recinto da Central, tendo em vista a análise da viabilidade de recurso ao seu consumo em casos críticos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Contactos externos tendo em vista obter vias alternativas de fornecimento de água.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Já implementadas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacunas de conhecimento:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fronteiras de responsabilidade: Águas de Sto André e empresas de Produção do Grupo EDP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Responsável do projeto: EDP Produção
Descrição da Instalação

- **Localização:** a REN tem cerca de 78 subestações, postos de corte, de seccionamento e transição, dispersas pelo território nacional continental.
- **Envolvente e interfaces críticas:** analisada caso a caso, mediante a localização da instalação.
- **Descrição da actividade:** as subestações e postos de corte são instalações que elevam ou transformam o nível de tensão e asseguram a regulação e repartição das cargas na rede.

Cartografia relevante

Cartografia disponível no site da REN.

Limites de operação e variáveis climáticas críticas

Variáveis climáticas críticas:
- Aumento temperatura
- Inundações
- Aumento do nível do mar
- Descargas atmosféricas

Limites de operação: São os limites de operação de transformadores de potência (TP) e da própria rede nacional de transporte.

<table>
<thead>
<tr>
<th>Variável(s) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>É muito relevante para transformadores de potência e sistemas de proteção e controlo</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Aumento de Pluviosidade</td>
<td>Só se originar inundações ou infiltrações</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Descargas atmosféricas</td>
<td>Pode ocasionar avarias e actuar protecções</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
</tbody>
</table>

Plano de acções e medidas de adaptação

Medidas de adaptação de caráter transversal

- As instalações principais estão bem protegidas: Imediato
- Benchmark com congéneres, formação de projectistas, etc.: Em curso
<table>
<thead>
<tr>
<th>Medidas de adaptação específicas</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outras

Fronteiras de responsabilidade: as que derivam de ser Operador da Rede de Transporte, e em alguns casos da saída de serviço de importantes linhas da rede de distribuição.
Descrição da Instalação

Localização: a REN tem cerca de 8534 km de Linhas Aéreas e Subterrâneas de Muito Alta Tensão, dispersas pelo território nacional continental.

Envolvente e Interfaces Críticas: analisadas caso a caso.

Descrição da actividade: As linhas asseguram o transporte de energia eléctrica entre os centros produtores e a rede de distribuição.

Cartografia relevante

Cartografia disponível no site da REN.

Limites de operação e variáveis climáticas críticas

Variáveis climáticas críticas:
- Aumento temperatura
- Inundações
- Aumento do nível do mar
- Descargas atmosféricas
- Ventos fortes

Limites de operação: associados por efeitos de temperatura à flecha máxima dos condutores, com aproximação a árvores ou edifícios, que pode originar incêndios; ventos fortes com quedas de árvores e outras, etc.

Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável(eis) climáticas</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>Influência na flecha de condutores p.e.</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Aumento de Pluviosidade - Inundações</td>
<td>prejudicam exploração de linhas subterrâneas</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Descargas atmosféricas</td>
<td>Pode originar disparos de protecções e saídas de serviço</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
<tr>
<td>Ventos fortes</td>
<td>Pode originar quedas de postes e outros incidentes</td>
<td>Pode levar à saída de serviço</td>
<td>Longo prazo</td>
</tr>
</tbody>
</table>

Plano de acções e medidas de adaptação

Medidas de adaptação de caráter transversal

Na construção, são aplicadas soluções mais robustas que as exigidas nos Regulamentos de Segurança

Horizonte temporal de implementação

<table>
<thead>
<tr>
<th>Medidas de adaptação específicas</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

203
| Outras | Fronteiras de responsabilidade: as que derivam de ser Operador da Rede |
Descrição da instalação

Localização: O Terminal de Gás Natural de Sines localiza-se na costa atlântica portuguesa, na zona Sul do Porto de Sines, que dispõe de águas profundas e fundos em rocha não sujeitos a assoreamento. O Terminal de GNL confronta a Norte com a estrada VR-53, que é a continuação da via rápida que liga à auto-estrada do Sul em Grândola, a Sul com o Terminal XXI e a linha de caminho de ferro utilizada no transporte de carvão para a Central Termoelétrica do Pego, a Oeste com o Terminal de Carvão e a Leste com uma zona de pinhal.

A estrada VR-53 localizada a Norte do Terminal de GNL constitui a única via de acesso rodoviário ao Terminal a partir do exterior. Trata-se de uma via com um perfil de 2 X 2 vias, que liga a Norte do Terminal com a Avenida Vasco da Gama, que se desenvolve ao longo da marginal de Sines e a Sul conduz a uma rotunda que permite a ligação ao IP8 ou à via de ligação ao Algarve / São Torpes.

O Terminal de GNL apresenta duas vias independentes de acesso ao exterior, sendo estas a entrada principal e a via de acesso à estação de enchimento de camiões-cisterna, ambas efectuando a ligação do Terminal à estrada VR-53.

Envolvente e interfaces críticas:

Unidades industriais:
- Terminal Petroquímico – TPQ, concessionário à Repsol Polímeros;
- Armazenagem, anexa ao TPQ, da Repsol Polímeros;
- Armazenagem da Nafta Química – 1 tanque, da Repsol;
- Parque de Bancas – 2 tanques de fuelóleo, 1 tanque de Marine Diesel e 1 tanque de Gasóleo – licenciamento da Petrogal;
- Armazenagem de Carbogal – 1 tanque de fuel de pirólise;
- Armazenagem da Euroresinhas- 1 tanque de Metanol;
- Armazenagem da Artlant – 2 tanques de p-xileno e 1 tanque de ácido acético;
- Estação ATEC da Sigás;
- Esteira de Oleodutos, no interior do TGLS, à qual têm acesso as entidades detentoras das tubagens aí instaladas, como a CLT, a Repsol e outras.

Fora da área de influência do TGLS, mas na área de influência da APS localizam-se as seguintes instalações:
- Terminal XXI, concessionário à PSA, destinado à movimentação de contentores;
- TMS – Terminal Multipurpose de Sines, concessionário à Portsines.
Num raio de cerca de 8 km regista-se ainda presença das seguintes indústrias relevantes:

- Refinaria de Sines;
- Pólo Petroquímico da Repsol Polímeros;
- Fábrica do Carbogal;
- Fábrica de Euroresinas;
- Fabrica de Artlant;
- Central Térmica da EDP (a carvão);
- Metalsines;
- Recípueu.

Núcleos urbanos:

- Nordeste – Daída, Pardieiros, Barbuda, Chaparral, Borbugão, Cadaveira e pequenos aglomerados entre 3 e 5 km; Stº. André a 12 km, Santiago do Cacém, Aldeia dos Chão e Santa Cruz, todas entre 10 e 15 km;
- A Sul – Provença e Palmeiras a 4km; Sonega, Morgavel e Porto Covo a 12 km;
- A Este – Afeteira (1 km) e Vila de Sines a 1,5 Km; Cerca Velha, Casoto, Bragada, Casinha e outros pequenos núcleos até 2km; Relvas Verdes e Paio a 6 km; Santiago do Cacém, Aldeia dos Chão e Santa Cruz, todas a cerca de 12 km.

Operações efectuadas:

A operação do Terminal de GNL envolve as seguintes actividades principais:

- Acostagem dos navios metaneiros e respectiva ligação aos braços de descarga;
- Descarga dos navios metaneiros;
- Armazenagem do gás natural liquefeito;
- Regaseificação;
- Expedição de GNL / GN

Áreas protegidas

Sítio de Interesse Comunitário da Comporta / Galé (classificado ao abrigo da Rede Natura 2000 – Directiva Habitats) a cerca de 4 km a Nordeste:

- Zona de Protecção Especial da Lagoa de Sancha (classificada ao abrigo da Rede Natura 2000 – Directiva Aves) a cerca de 8 km a Norte-Nordeste;
- Zona de Protecção Especial da Lagoa de Santo André (classificada ao abrigo da Rede Natura 2000 – Directiva Aves) a cerca de 13 km a Norte-Nordeste;
- Reserva Natural das Lagoas de Santo André e da Sancha a cerca de 5 km a Nordeste;
- Sítio de Interesse Comunitário da Costa Sudoeste (classificado ao abrigo da Rede Natura 2000 – Directiva Habitats) a cerca de 7 km a Sudeste;
- Zona de Protecção Especial da Costa Sudoeste (classificada ao abrigo da Rede Natura 2000 – Directiva Aves) a cerca de 14 km a Sudeste;
- Parque Natural do Sudoeste Alentejano e Costa Vicentina a cerca de 6 km a Sudeste.

Instrumentos de ordenamento do território

- Plano Regional de Ordenamento do Território (PROT) do Alentejo;
- Plano de Bacia Hidrográfica do Sado
- Plano Regional de Ordenamento Florestal (PROF) do Alentejo Litoral
- Plano Director Municipal (PDM) de Sines
<table>
<thead>
<tr>
<th>Variáveis climáticas críticas</th>
<th>Variáveis climáticas críticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempestade⁷⁰, Precipitação⁷¹ e Vento</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matriz de vulnerabilidades relevantes⁷²</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Variável(eis) climática(s)**⁷³</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Precipitação e tempestade</td>
</tr>
<tr>
<td>Precipitação, tempestade e vento</td>
</tr>
</tbody>
</table>

⁷⁰ Inclui mudanças na altura das ondas, suscetíveis de atingir as proteções de cheia.

⁷¹ Inclui a ocorrência de cheias, secas, sobreleitura do mar.

⁷² Grau com que as infraestruturas são suscetíveis de suportar ou não os efeitos adversos das alterações climáticas do ponto de vista da segurança e afetação da produção, considerando o seu nível de exposição às alterações climáticas, a sua sensibilidade e a sua exposição de adaptação.

⁷³ Pode ser necessário a análise de uma conjugação de variáveis climáticas de risco.

⁷⁴ Horizonte temporal a partir do qual as vulnerabilidades identificadas poderão ser relevantes do ponto de vista da segurança das infraestruturas e garantia da produção.

⁷⁵ Refere-se a aumento da frequência e intensificação de eventos climáticos extremos.
Plano de ações e medidas de adaptação

MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL

<table>
<thead>
<tr>
<th>MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Melhoria de previsões de clima – em colaboração com Entidades Competentes – para melhor prever a ocorrência de eventos climáticos extremos; Curto prazo</td>
<td></td>
</tr>
<tr>
<td>• Consciencializar a população da possibilidade de aumento de custos inerente a falhas ou interrupções de abastecimento;</td>
<td></td>
</tr>
<tr>
<td>• Coordenação com entidades portuárias para recepção de matérias-primas na definição de cenários climáticos críticos e medidas de adaptação passíveis de implementação;</td>
<td></td>
</tr>
<tr>
<td>• Coordenação com Entidades Competentes, no que respeita a definição de cenários climáticos críticos e articulação e integração de ações e medidas de adaptação de planeamento territorial a implementar, de acordo com as vulnerabilidades identificadas no campo anterior;</td>
<td></td>
</tr>
<tr>
<td>• Formação de colaboradores e parceiros da REN Atlântico para a ocorrência de situações de operação anormal e de actuação extraordinárias de emergência;</td>
<td></td>
</tr>
</tbody>
</table>

MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS

<table>
<thead>
<tr>
<th>VARIÁVEL CLIMÁTICA(S)</th>
<th>MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS</th>
<th>Horizonte temporal de implementação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>• Verificação dos critérios estruturais da zona portuária do terminal.</td>
<td>Curto prazo</td>
</tr>
<tr>
<td>Precipitação, tempestade e vento</td>
<td>• Verificação de janelas de operação de carga e descarga dos navios, para as variáveis climáticas críticas identificadas, sob a forma de valores de referência que possam condicionar as operações efectuadas – condições marítimas (altura, período e direcção de ondas) ou outras que se considerem relevantes.</td>
<td>Curto prazo</td>
</tr>
</tbody>
</table>

Lacunas de conhecimento

Lacunas de conhecimento

A presente ficha de risco climático carece de dados e modelos climáticos à escala regional, especialmente a curto prazo (2020), para o qual se consideraram dados climáticos disponíveis à escala europeia. Por outro lado, afigura-se como essencial a realização de estudos complementares para corroborar a significância dos impactes de erosão costeira nas fundações estruturais do Terminal de GNL de Sines, especialmente a longo prazo (2050).

Face ao aumento de dados e cenários climáticos disponíveis, a presente ficha está sujeita a alterações.

Fronteiras de responsabilidade

Entidades competentes de ordenamento do território, recursos hídricos e transporte rodoviário:

- Administração do Porto de Sines

Responsável do projecto

- [Nome]
| **Descrição da Instalação** | **Localização:** a REN tem cerca de 1248 km de gasodutos de transporte de gás natural em alta pressão em Portugal Continental.
Envolvente e interfaces críticas: existe uma grande dispersão e pode haver impactes significativos
Descrição da actividade: A configuração da rede de transporte de gás natural inclui um gasoduto principal que se estende ao longo da zona oeste do país, entre Sines e Valença do Minho, onde se localizam os principais pontos de consumo de gás natural, um gasoduto de trânsito que interliga a zona central do sistema na região de Leiria - Pombal com a fronteira leste com Espanha, dois lotes que abastecem o interior do país na zona da Beira Interior e vários ramais com destaque para o ramal que abastece a zona de Lisboa e o ramal de ligação ao armazenamento subterrâneo do Carriço. Os pontos de entrada na rede incluem a ligação do Terminal de GNL de Sines, duas interligações totalmente reversíveis com a rede de gás natural de alta pressão espanhola, em Campo Maior e em Valença do Minho, através dos quais chega a Portugal o gás natural proveniente do norte de África, e também o ponto de ligação à instalação de armazenamento subterrâneo do Carriço. |
| **Cartografia relevante** | Cartografia disponível no site da REN. |
| **Limites de operação** | **Limites de operação**
Face a fenómenos climáticos e meteorológicos extremos é essencial a averiguação e identificação de limites operacionais para análise das vulnerabilidades relevantes identificadas. |
| **Variáveis climáticas críticas** | **Variáveis climáticas críticas**
Tempestade76 e Precipitação77 |

76 Ocorrência de fenómenos climáticos extremos, como por exemplo agitação marítima intensa.

77 Ocorrência de fenómenos climáticos extremos como cheias, secas ou fenómenos climáticos graduais, como a erosão costeira (associada a um clima de ondas significativo)
Matriz de vulnerabilidades relevantes

<table>
<thead>
<tr>
<th>Variável(eis) climática(s)</th>
<th>Vulnerabilidades relevantes</th>
<th>Impactes na infra-estrutura e partes interessadas</th>
<th>Horizonte temporal relevante análise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação e tempestade</td>
<td>Possível afectação estrutural do gasoduto, decorrente da ocorrência de secas e diminuição/contração do solo, no horizonte temporal de curto médio prazo. Possível afectação estrutural do gasoduto, decorrente da ocorrência de precipitação e na eventualidade de deslocação/deslizamento de terrenos.</td>
<td>Pode causar saída de serviço.</td>
<td>2020</td>
</tr>
</tbody>
</table>

78 Grau com que as infra-estruturas são susceptíveis de suportar ou não os efeitos adversos das alterações climáticas do ponto de vista da segurança e afectação da produção, considerando o seu nível de exposição às alterações climáticas, a sua sensibilidade e a sua exposição de adaptação.

79 Pode ser necessário a análise de uma conjugação de variáveis climáticas de risco.

80 Horizonte temporal a partir do qual as vulnerabilidades identificadas poderão ser relevantes do ponto de vista da segurança das infra-estruturas e garantia da produção.
Plano de acções e medidas de adaptação

MEDIDAS DE ADAPTAÇÃO DE CARÁCTER TRANSVERSAL

Melhoria de previsões de clima – em colaboração com Entidades Competentes – para melhor prever a ocorrência de eventos climáticos extremos;	Curto prazo
Coordenação com Entidades Competentes, no que respeita a definição de cenários climáticos críticos e articulação e integração de acções e medidas de adaptação de planeamento territorial a implementar, de acordo com as vulnerabilidades identificadas no campo anterior;	
Formação de colaboradores para a ocorrência de situações de operação anormal e de actuação extraordinárias de emergência;	

MEDIDAS DE ADAPTAÇÃO ESPECÍFICAS

<table>
<thead>
<tr>
<th>Variável(s) climática(s)</th>
<th>Precipitação e tempestade</th>
</tr>
</thead>
</table>

Lacunas de conhecimento/fronteiras de responsabilidade

Lacunar de conhecimento
A presente ficha de risco climático carece de dados e modelos climáticos à escala regional, especialmente a curto prazo (2020), para o qual se consideraram dados climáticos disponíveis à escala europeia.

É essencial a realização de estudos complementares para corroborar a possível significância de impactes associados à contração do solo, decorrentes de fenómenos climáticos extremos a curto médio prazo (cheias e secas), e consequentes assimetrias geográficas e sazonais das disponibilidades hídricas a longo prazo.

Face ao aumento de dados e cenários climáticos disponíveis, a presente ficha está sujeita a alterações.

Fronteiras de responsabilidade
As decorrentes de ser operador da Rede Nacional de Transporte

Responsável do projecto